
Programming Spatial Algorithms in Natural Language

Boris Galitsky
1
 and Daniel Usikov

2

1Knowledge-Trail Inc. 9 Charles Str. Natick MA 01760

2Electroglas, Inc. 5729 Fontanoso Way San Jose, CA 95138

Abstract

We attempt programming spatial algorithms in natural lan-
guage. The input of the proposed system is a natural lan-
guage description of a spatial processing algorithm, and the
output is the object-oriented program code to be compiled
and executed.
 Two approaches are proposed and evaluated: the first
one is based on textual pattern matching: the best fit pattern
is selected for each sentence, and objects and methods are
instantiated according to this textual pattern. The second
one converts text into logic forms subject to a number of
transformations to derive resultant code. A number of heu-
ristic rules are built to perform these transformations at
every step. Additional pass is then required to process sen-
tences’ coreferences to find identical objects, methods and
variables between code statements.
 The result of this preliminary research suggest that the
using the system for programming in natural language in the
interactive mode, where a user manually edits the generated
code, is a way to noticeably increase coding performance.
However, at this time, an accuracy of a fully automated (i.e.
non-interactive) code generation mode is still too low to be
usable.

Introduction

More than 30 years ago Edsger W. Dijkstra, a Dutch com-

puter scientist who invented the concept of "structured

programming", wrote: “I suspect that machines to be pro-

grammed in our native tongues -be it Dutch, English,

American, French, German, or Swahili-- are as damned

difficult to make as they would be to use” (Dijkstra 1986).

The visionary was definitely right – the specialization and

the high accuracy of programming languages are what

made possible the tremendous progress in the computing

and computers as well. Dijkstra compares the invention of

programming languages with invention of mathematical

symbolism. In his words “Instead of regarding the obliga-

tion to use formal symbols as a burden, we should regard

the convenience of using them as a privilege: thanks to

them, school children can learn to do what in earlier days

only genius could achieve”. But thirty years later we again

hit a wall – this time with the amount of code sitting in a

typical industry applications – tens and hundreds of mil-

lions lines of code, - a nightmare to support and develop.

Copyright © 2008, Association for the Advancement of Artificial Intelli-

gence (www.aaai.org). All rights reserved.

The examples are abound, with Microsoft as an immediate

call with their burden of legacy and countless postpones of

new releases. The classical: “The code itself is the best de-

scription” became kind of a bad joke. May be there is a

good time to ask again: how about natural language pro-

gramming?

 Recently, the researchers from MIT Media Lab came

with a project “Metafor”, - an attempt to translate (simpli-

fied) sentences of simple scenarios in natural language di-

rectly into one of the high-level object programming lan-

guages (Liu & Lieberman 2005). However, rather com-

plex means are required to understand the program, which

contains interconnected set of expressions which are que-

ries, declarations, definitions and imperative statements.

 In this study we introduce an interactive code devel-

opment environment for programming in natural language

(PNL) and perform its initial evaluation. We select the do-

main of spatial knowledge processing and image under-

standing algorithms because it is rather narrow and allows

compact formalizations. It has been noticed that there is a

good match between the structure of natural language and

object-method relations in object-oriented programming

(Pane and Myers 2004). As a result, the image objects

could be relatively easily translated into objects of an ob-

ject-oriented programming. In general, programming in

natural language (without any constrain on the syntax)

could seem impossible to implement because it would re-

quire full understanding of natural language and dealing

with the peculiarities of human natural language descrip-

tions. However, we believe in a properly circumscribed

domain, reasoning can compensate for natural language

ambiguity, since the number of entities and possible mean-

ing for each of these entities is limited in such domain as

spatial knowledge processing. Primarily, reasoning about

coreferences (reference in one expression to the same refe-

rent in another expression) is important to combine code

representation of individual NL statements.

 The advantage of PNL in comparison with the conven-

tional (formal language) programming is primarily ease of

code sharing: it is much easier to understand someone

else’s code written in the natural language. Hence a team-

work would benefit from programming in natural lan-

guage, and, overall, it would become possible to design

much more complex systems (particularly, AI systems).

Universality, brevity, intuitiveness and inherent possibility

16

of high-level programming are among the other features of

the desired programming in natural language.

 In this article we make an attempt to map a natural

language description into the sequence of method invoca-

tion for a set of software objects. We follow this metho-

dology in general, but augment it with representation of in-

put text by means of logic forms to handle. It allows con-

trolling the above mapping directly into the program, sepa-

rate natural language expressions for special logical con-

structions of programming language. These constructions

include branching and loops, signatures of functions

(which variable is known, which is checked and which

value is to be obtained), and other features of programming

languages existing independently of object-orientation

properties.

 The paper is organized as follows. We start with sim-

ple examples of algorithms in NL such as factorial and

demonstrate direct mapping from parts of speech to control

operators, objects, and their methods and attributes. A pat-

tern matching algorithm is then presented which facilitates

more complex transformation from NL to the program-

ming code. A spatial reasoning domain is then introduced,

and a logic form (rule-based) approach is employed. Both

approaches are evaluated by means of building a series of

edge detection algorithms, and the conclusion is drawn

about satisfactory code accuracy if used within an inte-

grated development environment.

Mapping natural language statements into the

code

We first demonstrate that for simple algorithms expressed
in NL we can translate from NL to Java directly. The pur-
pose of this section is to show an easy part of NL program
understanding: how parts of speech are mapped into con-
trol operators and objects with their methods. We start
with a basic definition of a factorial function (via loop and
recursive, traditional for introduction to programming)
Figure 1a and 1b.

NL Java

We are Defining new me-
thod factorial

It gets an integer X and
returns integer Y.

int factorial(int x) {

Set a value of Y to X. y.set value(x)

While X is more than 1 while (X.more(1)) {

Multiply Y by X y.multiply_by(x);

Decrement X x.decrement();

End While }

Return Y return y; }

We now proceed to recursive definition

NL Java

We are Defining new

method factorial

It gets an integer X
and returns integer Y.

int factorial(int x) {

Check if X is less or
equal than 1

if x.less_or_equal(1)

Return 1 return 1;

Else return multiply
X by factorial of the
decrement of X

else return
x.multiply_by(factorial(x.decreme
nt));

Decrement X x.decrement();

End While }

Return Y return y; }

Figure1a. Code for Factorial function.

The words to code mapping required to build the above al-
gorithms follow the context-free grammar and are as fol-
lows (Fig.1b). The Java IDE shown on the right, requesting
to define decrement method.

 Java

We are Defin-
ing new me-
thod factorial

Gets integer X …(int x) {

Check if X if x…

Return 1 return 1;

multiply X by
factorial of

x.multiply_by
(factorial(…));

While X while (X …) {

Figure 1b. Required mappings and IDE screen-shot

There are two passes: the first one just builds object, me-
thods and attributes for every part of speech in the sentence
without worrying whether it is known to the system, and
then the second pass identifies unknown variables and re-
quests to provide definition for them. In this case second
pass does not modify a program.

Domain of image analysis

PML required building an ontology including four compo-
nents:
1. It is assumed, that the entities for basic arithmetic and
logic operations are already incorporated in the program-
ming platform;
2. It is also assumed, that the entities for object-oriented
programming terms (which are words in natural language),
like “objects”, “methods”, “attributes”, “declarations”, etc)
are already incorporated in the programming platform;
3. Indefinable task-oriented/domain dependent entities,
which are not defined via the entities of the components 1,
and 2 above. These can be seen as extended types of va-
riables in the standard programming languages which are
handled by additional software libraries.

17

4. Derived entities, i.e. task oriented objects (in our exam-
ple - the spatial domain) which are defined (or derived
from) from the entities of above components 1,2, and 3.
 Naturally we start defining spatial objects with the in-
definable entities, such as pixel, allowing the construction
of any image. Pixel has attributes such as its position in the
image (X,Y coordinates) and brightness. Pixel is an exam-
ple of indefinable domain-specific entity, which belongs to
the above defined domain 3.
Below we show examples of derived entities, i.e. belong-
ing to the component 3. We will then specifically show
how an image algorithm expressed in the natural language
(using all components 1,2,3,4) could be transformed into a
code written in one of the standard object-oriented lan-
guages (Java).
 We proceed to the examples defining the derived enti-
ties, with the binary images being used in the examples as
follows.
On-pixel – pixel with brightness 128 or greater.
Off-pixel – pixel with brightness less than 128.
Image – a set of pixels to work with.
Area – a set of pixels (usually all having a specific proper-
ty -- for instance, consisting of off-pixels).
Neighboring pixels for p – four-tuple of pixels p1, p2, p3,
p4 which are above, below, on the right, or on the left of p.
The “four-neighbors” definition is assumed as a default for
the word (i.e. object) neighbor, but it can be an “eight
neighbors” as well, if the attribute has been explicitly
changed.
Connected area – a set of pixels so that each two pixels
p1,p2 of the area, are connected via a chain of neighbors.
Line segment connecting pixels p1 and p2 (let’s call it
“p1-p2”) is a minimal connected area (i.e. having the mi-
nimal number of pixels) including the pixels p1 and p2.
The length of the line segment is equal to the number of
pixels in the line segment (default). The line segment
length attribute might be changed to the Euclidian distance
between pixels p1 and p2.
Pixel p is located between pixels p1 and p2 if it belongs to
the p1-p2 line segment and does not coincide with p1 or
p2.
Convex area – a set of pixels with a property that for any
two pixels p1 and p2 from the set, any pixel located on the
line segment p1-p2 belongs to the set. The line segment is
a convex area itself.
Edge of a connected area is a set of pixels which among
their neighbors have at least one pixel not belonging to the
set. In other words, the edge consists of the “outmost” pix-
els of the area.
Correspondingly, border of a connected area is a set of
pixels which do not belong to the area, but among their
neighbors have at least one pixel which does belong to the
area.
Size of an area is a maximum distance between two pixels
of the area.
Above and other definitions are covered by five syntactic
templates, which are the intermediate step before building
logical forms (Fig. 2, Galitsky 2003).

New predicate is, are, can be, etc. Words for

unary predic.

that, when, such that,

etc.
Words for defining

predicates

New predicate of, from, by,

etc.
Words for unary predicate,

object or attribute

when ,if

Words for defining

predicates

New predicate is referred to as, is

called as , etc.
Other words for defining

predicates

is a, etc.

List of defining

predicates

New predicate is, are, can be, etc. Words for

unary predic.

when, if, etc. Words for defining

predicates

New predicate call, denote Unary

predic.

which, that, etc. Words for defining

predicates

as a, a etc.

Figure 2. Selected syntactic templates of generic definitions,

formed for their recognition. Lexical units are schematically de-

picted which will be interpreted as predicated: the new one, being

defined, the unary one, naming the introduced object, and the de-

fining ones. Examples of linking words are presented.

 Having defined the entities, PNL now allows introduc-
tion of an example algorithm for object finding in an im-
age. As an example, we choose the following algorithm for
finding a connected off-pixels area with a constrained size:

1) Find in the image any pixel p1 of type “off-pixel”.
Call the pixel a_off area.

2) For all border pixels of a_off area find all pixels
of “off-pixel” type. Add them to a_off area.

3) Verify that the border of the a_off area has all
pixels above 128 (i.e. consisting of pixels of “on-
pixel” type).

4) If the above verification succeeds, stop with posi-
tive result. Otherwise, add all pixels which are be-
low 128 to the a_off.

5) Check that the size of a_off is below the thre-
shold. Then go to 2. Otherwise, stop with negative
result.

 Using placeholders (such as a_off) for objects and
attributes, explicit variables, etc. instead of pronouns de-
creases the complexity of syntactic analysis of a definition,
as well as the formation of the resultant clause. For exam-
ple, if in definitions above we use p1 and p2 for the deno-
tation of pixels that would make the definition structure
clearer and easier to understand for both human and com

Pattern matching algorithm

In this section we will observe how an algorithm descrip-

tion can be converted into code using surface-level under-

standing of text using pattern matching. We assume that a

natural language definition consists of two components of

a (complex) sentence, one of which contains the predicate

(word combination) being defined, and the second compo-

nent begins from if, when, as only as and includes the de-

fining predicates.

 To map a NL statement into a code statement, we use a

duple, which can be matched against a sentence and form a

generic code expression. A duple includes

18

1) NL matching component, which verifies if a NL

statement contains indications of control operators,

objects, their methods etc., and

2) Generic code structure to instantiate execution con-

trol operators, objects, method invocation, definition,

as well as an execution control.

The components in the duple are connected so that the

names of classes, variables, and methods, are instantiated

correspondingly.

 NL matching component is expected to be a unique

match for every valid PNL expression. It is specified as an

encoded parsing tree, or as a sequence of keywords, where

some keyword placeholders specify constraints on part of

speech or other linguistic parameters.

 As a simple example of duple, the template {_verb,

_variable1, “by”, variable2} is mapped into a method

(usually described as a verb) _verb which is applied to

_variable1 with parameter _variable2. Here _term denotes

a placeholder for a keyword with certain constraints (such

as part-of-speech, enumeration, and others). The code for

this expression is _variable1._verb(_variable2). Let us

look at the generic template and its instantiation for the

above case

 The NL template component of the simple duple is on

the top, and the code component is on the bottom. Direct

mapping (instantiation) is shown by arrows.

Let us now introduce a generic duple which covers all ba-

sic programming expression. The NL template component,

starting with control wrapper for execution control (return-

ing, jump, or possibly a start of declaration), is shown on

the top, followed by the type of variable, the variable it-

self, the object, the method, and a list of its arguments (Fig.

3-1, 3-2).

 We now proceed to the examples outlined above in our

definition of Factorial. The above NL matching template

would match the expression “Multiply Y by X“ (Fig. 3-3).

We are Defining new public method Factorial. It gets an

integer X and returns integer Y.

{“define”, _declaration-directives, _method-name, ”get”,

_type1, _variable1, “return”, _type2, _variable2}

For X =Y1:Y2 {“for”, _variable, “equal”, “to”, _variable1,

“to”, _variable2} - Fig. 3-4).

Here we need to use a generic method loop which imple-

ments increments of Y1 till it reaches Y2.

For X =Y1:Y2 such that X is satisfied (i.e. is valid)

{“for”, _variable, “equal”, “to”, _variable1, “to”,

_variable2, “such”, “that”, _variable, “satisfies”.

_function } – Fig. 3-5).

 Hence the syntax of NL template expressions is as fol-

lows. It is a sequence of terms, each of which is:

• a keyword, which can be noun, verb, adjectives, ad-

verbs, and prepositions;

• a placeholder for a NL terms with certain linguistic

constraint; these are used to instantiate the PL struc-

ture;

• a placeholder for an arbitrary words, which can be

substituted by any parts of speech or not substituted

at all.

Since our templates are syntactic, the complexity of ex-

pressions it can handle is limited. In the section to follow

we introduce semantic means to deal with more complex

expressions to be converted into code.

Figure 3. Duples for pattern matching.

Building the code fragment via logic forms

Textual pattern matching can perform satisfactorily in a

relatively simple code with rather short NL statements. To

approach a realistic software development environment,

we build a number of intermediate representation layers

(Galitsky 2003) to apply a series of semantic transforma-

tion rules, enumerated below at a high level.

 Using logic forms for semantic analysis, in addition to

the set of indefinable entities, the domain ontology should

be built, including:

a) Entities, represented as logic predicates (for inde-

finable entities);

b) Their parameters, represented as arguments of

these predicates;

c) Clauses for available set of definitions.

We illustrate a step-by-step conversion of a natural lan-

guage expression into an object-oriented program. At a

high level, there are two major analysis levels for this con-

version:

1) Building a parsing tree of each sentence;

2) Building logic forms from the parsing tree;

3) Forming expressions for objects’ methods, given

(1) and (2).

19

At a more specific level, there are the following steps:

1-1) Identify syntactic relationship between words, includ-

ing relationships:

1-1-1 Predicate-argument

1-1-2 Predicate-predicate

1-1-3 Epistemic action (request to find or verify a

value or logical condition).

1-2) Represent syntactic tree as a list of pairs of linked

words.

2-1) Rewriting the natural language sentence grouping

words by logic predicates. We express predicates with ar-

guments as a sequence of NL expressions (tuples of words

for predicates and their arguments);

2-2) Reorganize words from the tuples into logical predi-

cates and their arguments;

2-3) Converting all constants into variables, we attempt to

minimize the number of free variables, and not over-

constrain the expression at the same time;

2-4) Adding predicates which constrain free variables;

2-5) Quantification;

3-1) Mapping predicates and their arguments into the ob-

jects, their methods and arguments:

3-2) Finding code template for specified epistemic action

3-3) Building the resultant code fragment

Figure 4. Each word is assigned a graph node, parent node is

specified, and recognized part-of-speech parameters are indi-

cated. This serves as a basis for deciding which word is mapped

into a predicate, its argument, or neither. We group parts of

speech to be mapped into the predicates, using such expressions

as verb-object, subject-has-object, object-related to-value, and

others.

We will now show this process for a single sentence from

the above algorithm description. Given the sentence “Veri-

fy that the border of the selected area has all pixels above

128”, we yield its syntactic structure (Fig. 4).

 Below the arrows show how the sequence of mapping is

defined to map original NL expression into a logic form,

and then into a fragment of code.
Verify that the border of the selected area

has all pixels above 128.

2-1) We express in predicate with arguments as sequences

of NL expressions

Verify:Verb + border –of- area + border –

have- pixel + pixel above 128

2-2) And now code it as predicates
epistemic_action(verify) & border(area) &

border(pixel)& above(pixel, 128)

2-3) Convert constants into variables with proper generali-

ty control
epistemic_action(verify) & border(Area) &

border(Pixel) & above(Pixel, 128)

Converting all constants into variables, we attempt to mi-

nimize the number of free variables, and not over-constrain

the expression at the same time. Coupled (linked by the

edge) arrows show that the same constant values (pixel)

are mapped into equal variables (Pixel), following the con-

ventions of logic programming. To achieve this, we add

(unary) predicates which need to constrain free variables.

2-4) Adding predicates which constrain free variables
epistemic_action(verify) & border(Area) &

border(Pixel) & above(Pixel, 128) &

area(Area)

Now we need to build an explicit expression for quantifica-

tion all. In this particular case it will not be in use, since

we use a loop structure anyway

2-5) Quantification
epistemic_action(verify) & border(Area) &

not (border(Pixel) & not above(Pixel, 128))

& area(Area)

3-1) Next step is to map predicates and their arguments in-

to the objects, their methods and arguments:
Loop => Pixel.next()

border.belong(Pixel) && Pixel.above(128)){

Finally, the expression can be transformed into a loop,

since epistemic_action is ‘verify’. We have the following

template for it.

3-2) Finding code template for specified epistemic action
Bool bOn=true;

while (!(ObjectToTest.next()==null)) {

if !(Conditions){

 bOn=false;

 break;}

} Return bOn;

Finally, we have

3-3) Resultant code fragment
while (!(Pixel.next()==null)) {

if !(border.belong(Pixel) && Pix-

el.above(128)){

 bOn=false;

 break;

}

}

20

Return bOn;

Notice that in a general case, not all mappings applied to

all entities and predicates might be required, and some

mappings are redundant.

Constructing the code for the whole algorithm

Determining if a larger area is an off –area (lower bright-

ness). We start with a randomly selected pixel

0) Randomly select a pixel at an image.
epistemic_action(random_selection), pix-

el(PixelSelect).

1) Find a convex area a_off this pixel belongs so that

all pixels are less then 128.
epistemic_action(find) & convex_area(A_off)

not (belong(Pixel, A_off) & not

above(Pixel, 128))

2) Verify that the border of the selected area has all

pixels brighter than 128.
epistemic_action(verify) & border(Area) &

not (border(Pixel) & not above(Pixel, 128))

& area(Area)

3) If the above verification succeeds, stop with posi-

tive result. Otherwise, add all pixels which are be-

low 128 to the a_off.

convex_area(A_off)(obtained from the above)
ifthenelse (epistemic_action(succeeds-

verify), return true,

not (border(Pixel) & not above(Pixel, 128),

add()

4) Check that the size of a_off is below the thre-

shold. Then go to 2) above. Otherwise, stop with

negative result.
epistemic_action(verify) &

ifthenelse((size(Area, Size), less(Size,

thre)), goto(2), return false;

Actually, we need to the statement 2) and insert while…do

to avoid jumps.

We now proceed to the final code for each statement
0) epistemic_action(random_selection),

pixel(PixelSelect).

 Pixel pixel = new Pixel(rand)

 1)epistemic_action(find) &

convex_area(A_off) not (belong(Pixel,

A_off) & not above(Pixel, 128))

 Area A_off=new Area(Pixel);
 while (NewPixel=Pixel.next().

 intensity()>128) {

 A_off.add(NewPixel); }

Everything which appears new implicitly requires a con-

structor. An appropriate constructor is selected based on

objects available after previous statements

 3) convex_area(A_off)
ifthenelse (epistemic_action(succeeds-

verify), return true,

not (border(Pixel) & not above(Pixel, 128),

add(A_off, Pixel)
Border border= new Border(A_off);

while(BorderPixel = border.next()

.intensity()>128

border.add(BorderPixel)

 3) epistemic_action(verify) & border(Area)
& not (border(Pixel) & not above(Pixel,

128)) & area(Area)
if (border==A_off.getBorder())

 return true;

else A_off.add(border).

 4) epistemic_action(verify) &
ifthenelse((size(Area, Size), less(Size,

thre)), goto(2), return(false)
 if (A_off.size()<thre goto 2 else re-

turn false;

Evaluation

For the purpose of preliminary evaluation, we selected

simple image processing algorithm of edge detection. We

looked at the Matlab ‘edge’ set of six functions for edge

detection (Image Processing Toolbox).

 Usually, when an algorithm is described as a web tu-

torial, its discourse structure is not well suited for PNL.

Hence for the purpose of evaluation we selected algorithm

descriptions, which contains the instructions on what needs

to be done and not why it is done in a particular way. To

build the corpus, we obtained NL descriptions of Matlab

implementation of edge-functions from existing code

comments and the code itself (Matlab 08).

Canny algorithm

The first step is to filter out any noise in the original im-

age before locating and detect any edges.

Once a suitable mask has been calculated, the Gaussian

smoothing can be performed using standard convolution

methods.

A convolution mask size is selected to be much smaller

than the actual image.

As a result, the mask is slid over the image, manipulating a

square of pixels at a time.

To lower is the detector's sensitivity to noise, increase

the width of the Gaussian mask.

To decrease the localization error in the detected edges,

decrease the width Gaussian width.

The Gaussian mask used in implementation is ...

Using thresholding with hysteresis

This method uses multiple thresholds to find edges.

We begin by using the upper threshold to find the start of

an edge.

Once we have a start point, we then trace the path of the

edge through the image pixel by pixel, marking an edge

whenever we are above the lower threshold.

We stop marking our edge only when the value falls below

our lower threshold.

21

 The list of entities used included: grayscale image
(I), edge, binary image with identified edge

pixels as 1’s and 2’s otherwise (BW), deriv-

ative, gradient, filtering, direction of

detection. The functions signatures are of the form
 BW = edge(I,method,thresh).

Each algorithm includes three high-level parts: defining

what is gradient, applying gradient operation to the image,

and performing the threshold operation. Below are two ex-

amples of simple description of algorithms used in PNL

evaluation. Entities which formed the objects are shown in

bold.

Method of

edge detec-

tion

Number of

statements

describing

algorithm

step

Number of

errors indi-

cated by

compiler

and forced

to be fixed

Number of

remaining er-

rors, unidenti-

fied by com-

piler

PM LF PM LF

Sobel 6 8 6 2 2

Prewitt 5 5 3 2 2

Roberts 11 7 4 3 1

Laplacian of

Gaussian

6 4 1 2 1

Zero-Cross 8 5 3 1 1

Canny 5 4 4 2 0
Table 1: Quality of the edge detection code generated from tex-

tual description in the interactive mode.

Results of preliminary evaluation are shown in Table 1.

The reader observes that LF always outperforms PM even

in the simple cases. Also, significant number of misunders-

tandings are identified by the Java IDE. Regretfully, even

for simple algorithms the built code contains an error or

two, which would produce either runtime error or produces

incorrect data. They should be corrected manually. How-

ever, we believe it is a substantial aid to developers even at

the current code generation accuracy because the code is

“ideally” commented; there is a good match between tex-

tual description statements and lines of code.

Related work and conclusions

Natural language understanding of texts about space and

required reasoning has been addressed in a number of stu-

dies. One of the closest area to PNL is querying spatial da-

tabases (see e.g. Frank 1992. COSIT93, Egenhofer &

Shariff 1998). Widely used in spatial algorithms, primary

linguistic markers of space are spatial prepositions (in, on,

under, below, behind, above) and verbs of motion (arrive,

cross) were shown (Herkovits 1986) to be ambiguous as

purely geometric terms, and that their interpretation de-

pends heavily on contextual factors. General theories of

spatial reference and interpretations of prepositions were

developed in (Clementini & Di Felice 1998), where spatial

information also involves specifying spatial location from

the perspective of a speaker or hearer in the communica-

tive context, functional elements such as the typical func-

tions of objects, and the physical nature of objects. Ob-

viously, it is rather hard to include such forms of spatial

reference in our ontology for code building, however as

long as the NL description of algorithm defines all neces-

sary attributes of involved objects, an adequate code would

be generated.

 In our further studies we plan to consider a wider set of

spatial algorithms and a higher diversity of human descrip-

tions. (Mainwaring et al 2003) studies how people describe

the location of a target object relative to other objects. This

task requires a reference object or frame and terms of ref-

erence. Traditional linguistic analyses have loosely orga-

nized perspectives around people, objects, or environments

as reference objects, using

reference terms based on a viewpoint or the intrinsic sides

of an object, such as left, right, front,

and back or based on the environment, such as north,

south, east, and west. In actual communication, social, spa-

tial, and cognitive factors may also affect perspective

choice; these factors were examined by varying the spatial

information. We will observe which of these factor can be

reflected in generated code.

 In this work we explored the opportunity to employ

text understanding to increase the efficiency of software

development. We observed that from the standpoint of

general text understanding problem, building representa-

tion for explicit enumeration of tasks to be performed is

not as hard as an arbitrary text understanding. The assump-

tion that enumeration of tasks has an object-method-

attribute structure allowed a simple pattern matching ap-

proach to produced meaningful results for simple algo-

rithms. Furthermore, a rule-based semantic analysis, ap-

plied at the level of individual statements and whole de-

scription, delivered chunks of code which were improved

using conventional programming means such as Java IDE.

Hence we believe the PNL system described here is a rea-

sonable step towards a fully automated code generation

system.

References

COSIT93 Proceedings of the European Conference on Spa-

tial Information Theory (COSIT'93), volume 716 of Lec-

ture Notes in Computer Science. Springer-Verlag, 1993.

Clementini, E. & Di Felice P Topological Invariants for

Lines IEEE Transactions on Knowledge and Data Engi-

neering archive Volume 10 , Issue 1, 1998.

Dijkstra, E.W. On the Foolishness of "Natural Language

Programming". Program Construction, 51-53, 1978.

Herkovits, A. Language and Cognition. Cambridge Uni-

versity Press, New York, 1986.

22

Liu, H. & Lieberman, H. Metaphor: Visualizing Stories

As Code. Intelligent User Interfaces Conference (IUI

2005), San Diego CA 2005.

web.media.mit.edu/~hugo/publications/papers/IUI2005-

metafor.pdf;

Pane, JF & Myers, BA More Natural Programming Lan-

guages and Environments, in End User Development, vol.

9 of the Human-Computer Interaction Series, In Lieber-

man, H., Paterno, F. and Wulf V., eds. Dordrecht, The

Netherlands: Springer, 2006, pp. 31-50.

Cole, R., Mariani, J., Uszkoriet H., Zaenen, A. and Zue,

V. (Eds) Representations of Space and Time. In A Survey

of the State of the Art in Human Language Technology.

Cambridge University Press, 1996.

Egenhofer MJ, Shariff, RBM Metric details for natural-

language spatial relations. ACM Transactions on Informa-

tion Systems. Volume 16, Issue 4 295 – 321, 1998.

Frank, A. 1992. Qualitative Spatial Reasoning about Dis-

tances and Directions in Geographic Space. Journal of

Visual Languages and Computing 3, 4, 343-371.

Galitsky, B. Natural Language Question Answering Sys-

tem: Technique of Semantic Headers. Advanced Know-

ledge International, Australia 2003.

Matlab 08 www.mathworks.com Last downloaded Apr 2,

2008.

Mainwaring, SD, Tversky,B., Ohgishi, M., Schiano, D.J.

Descriptions of Simple Spatial Scenes in English and Japa-

nese. Spatial Cognition & Computation, Volume 3, Issue 1

March 2003, pages 3 – 42.

23

