
A Constraint-based Modeling of Calendars

Benjamin Han
IBM Watson Research Center

1101 Kitchawan Road, Yorktown Heights, NY 10598, U.S.A.
dbhan@us.ibm.com

Abstract

Temporal information in the real world is often pre-
sented in an incomplete fashion. In this paper we pro-
pose a constraint-based calendar system suitable for in-
ferring implicit calendric information. Our approach
views calendars as constraint satisfaction problems, and
time points are represented as instantiations of temporal
units. We also present a semantic model for the system
to justify the imposed design requirements, and describe
selected services provided by such systems.

Introduction
Consider the following news story written in 2005 regarding
the most recent space shuttle accident:

Over the long holiday weekend honoring Martin
Luther King Jr.’s birthday, the mission managers sus-
pended their meetings... They met on the next day the
21st...

For a system to deduce that the meeting took place on Jan-
uary 21, 2003, it needs to know that Martin Luther King
Jr.’s birthday is a Monday in January, and in this particular
scenario its next day, Tuesday, is January 21. With these re-
quirements the system can then infer that the possible years
are 2003, 1997, 1992, etc, with 2003 being the most recent
one. This requires, among other things, a calendar system
that captures the relations among different temporal units
(year, month, etc) to make reasoning with incomplete in-
formation possible.

In this paper we present a constraint-based model of cal-
endars, which has primarily been motivated by the develop-
ment of natural language applications. Contrasting to the
previous proposals of modeling calendars as an algebraic
system (Bettini and Sibi 2000; Peng Ning, Wang, and Ja-
jodia 2002), as a logical framework (Ohlbach and Gabbay
1998; Combi, Franceschet, and Peron 2004), or as a string-
based representation (Wijsen 2000), one major character-
istic of our approach is that we view a calendar as a con-
straint system: different temporal units are related via con-
straints (e.g., February in a non-leap year cannot have 29
days), and more information can be inferred from a usually
under-specified natural language expression. Our calendar

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

model is also designed to work with a higher-level temporal
representation, Time Calculus for Natural Language (Han,
Gates, and Levin 2006), to capture semantics of expressions
such as “the third Monday in January this year” (written as
{|3{mon}|@{jan, {now + |0year|}}} in TCNL). We should em-
phasize, however, that our approach is not mutually exclu-
sive to the other proposals mentioned earlier – it remains to
be explored if the constraints among temporal units can be
implemented in an algebraic or string-based fashion.

The rest of this paper is organized as follows. First in the
next section we describe the basic structure of our calendar
constraint system, the concept of a time point, and the so-
lution methods of the system. The vanilla constraint system
is then souped up with two relations in the following sec-
tion, with which concepts such as granularity and anchoring
status are then defined. In the next section we describe com-
plete calendars built by multiple calendar components and
the requirements for them. We then describe how some of
the calendar services can be provided. Finally we conclude
the paper with a summary.

Calendar as a Constraint System
At the most basic level a calendar contains two kinds of en-
tities: temporal units and temporal values. Each unit can
be viewed as a variable that takes on a set of fully-ordered
values; e.g., unit year can be assigned with value 2006, and
unit month can be assigned with value “May”, etc. This
unit/value dichotomy enables us to treat a calendar as a con-
straint satisfaction problem (CSP) (Dechter 2003), defined
as follows.

Definition 1. A calendar CSP is a triple (U,D,R) where
U = {u1, . . . , un} is a set of temporal units with respective
domains D = {Du1 , . . . ,Dun }, and R = {RU1 , . . . ,RUm } is a
set of constraints among the units. Each Dui = (Vui , <Vui

)
specifies a fully-ordered set of values, and each RU j is a
relation defined over a subset of unitsU j ⊆ U, whereU j is
called the scope of RU j .

As an example, Fig. 1 shows a simplified Gregorian calen-
dar CSP featuring units year, quarter of year (qoy), semester
(sem), month and day. Note that we do not explicitly define
R{year,qoy} and R{year,month} because every possible pair in the
Cartesian products of the involved values is allowed. Also

30

U B {year, qoy, sem, month, day}

D B {(Vyear, <�), (Vqoy, <�),
(Vsem, spring < summer < fall)
(Vmonth, jan < . . . < dec), (Vday, <�)}

R B {R{qoy,month},R{sem,month},R{month,day},R{year,month,day}}

Vyear B {1753, . . . , 3000}
Vqoy B {1, . . . , 4}
Vsem B {spring, summer, fall}

Vmonth B {jan, . . . , dec}

Vday B {1, . . . , 31}
R{qoy,month} B ({1} × {jan, feb, mar})

∪ ({2} × {apr, may, jun})
∪ ({3} × {jul, aug, sep})
∪ ({4} × {oct, nov, dec})

R{sem,month} B ({spring} × {jan, feb, mar, apr, may})
∪ ({summer} × {jun, jul})
∪ ({fall} × {aug, sep, oct, nov, dec})

R{month,day} B ({jan, mar, may, jul, aug, oct, dec} × Vday)
∪ ({apr, jun, sep, nov} × {1, . . . , 30})
∪ {(feb, 29)}

R{year,month,day} B (Vyear × {jan, mar, . . . , dec} × Vday)
∪ (leapYears × {feb} × {1, . . . , 29})
∪ (commonYears × {feb} × {1, . . . , 28})

leapYears B {y ∈ Vyear | y ≡ 0 mod 4
and (y . 0 mod 100 or y ≡ 0 mod 400)}

commonYears B Vyear \ leapYears

Figure 1: A simplified Gregorian calendar

note that the constraint R{year,month,day} alone permits invalid
dates such as April 31, 2007, but they will be rejected by the
constraint R{month,day}.

Related to a calendar CSP is the concept of a time point.
A straightforward way of representing a point is to treat it as
a set of assignments to the units of a calendar CSP, namely,
an instantiation of those units; e.g., the time point “February
29” can be represented by the instantiation {febmonth, 29day},
which is incomplete because not every unit existing in the
calendar is assigned1. Formally we define a coordinate in
time as follows.
Definition 2. Given a calendar CSP P = (U,D,R), a coor-
dinate c with scope S(c) ⊆ U is an instantiation of the units
in S(c), and c is called a complete coordinate if S(c) = U.
The extensions of c, written as E(c), is the set of all complete
coordinates c′ that are solutions to P and c ⊆ c′. Finally c is
consistent if E(c) is not empty.

Intuitively speaking, extensions are all possible interpre-
tations of a coordinate, therefore empty extensions indi-
cate that there is no plausible interpretation for the co-
ordinate. Using the example calendar CSP above we
have c = {feb, 29day} as a consistent coordinate since

1In the rest of the paper we shall drop unit subscripts when writ-
ing a coordinate if no ambiguity is possible; e.g., {feb, 29day}.

jan janfeb feb

1 131 28 1 131 29
2003 2004

... ...

...

Figure 2: A timeline fragment

{2008year, feb, 29day, . . .} ∈ E(c) are possible interpreta-
tions, and {apr, 31day} is inconsistent. If we want to obtain a
set of possible interpretations over only a subset of units, we
need to project the extensions on the set as described below.
Definition 3. Let X be a set of coordinates and U be a
set of units. The set projection of X on U is defined as
π̄U(X) = {πU(x) | x ∈ X}.2 When X = E(c) (the exten-
sions of coordinate c) we call π̄U(E(c)), written as EU(c),
the extension projection of c onU.

For example given a coordinate c = {2006year, 1qoy} (“the
first quarter of 2006”) andU = {year, month}, we have

EU(c) = {{2006year, jan}, {2006year, feb}, {2006year, mar}}.

Thus the application of an extension projection on a coor-
dinate is akin to conducting a “time conversion”, where an
original denotation is expressed using a different set of tem-
poral units.

Semantics of a Calendar CSP
A calendar CSP in Definition 1 is not required to conform
to any reality. In fact it is possible to design constraints that
let in “impossible” times such as February 30 or Monday,
January 2, 2007. In the following we will define the un-
derlying conceptual model of a calendar CSP, and describe
the requirements for a well-defined instance. Note that in
operations our calendar systems do not directly manipulate
this conceptual model. Our goal is replacing any direct ma-
nipulation of the semantic model with a syntactic operation
performed on a calendar CSP.

Intuitively a value assignment to a temporal unit in a cal-
endar CSP should be mapped to a set of intervals on a time-
line – an integer line representing our conception of time.
Consider a fragment of a timeline in Fig. 2. The value 2003
of the unit year is mapped to a single interval representing
the year 2003, and the value 1 of the unit day is mapped to
a set of intervals representing January 1, 2003, February 1,
2003, etc. Certain value assignments will be mapped to in-
tervals of size zero if they are impossible times; for example,
30 of the unit day is mapped to a null interval when it is in
February (omitted on the timeline in Fig. 2). This intuition
is formalized by the time mapping function.
Definition 4. Let u be a temporal unit with values Vu. The
time mapping of u is a set Tu(v) = {T 1

u (v), . . . ,T p
u (v), . . .}

where T p
u (v), the p-th period of v (p ∈ �), maps v ∈ Vu to a

semi-open integer interval [startv,p, endv,p) with the follow-
ing requirements:

1. T p
u (vi) meets T p

u (vi+1) (vi and vi+1 are two successive val-
ues in Vu); i.e., endvi,p = startvi+1,p;

2The projection of c is defined as πU j (c) = {vu | vu ∈ c and u ∈
U j}

31

2. T p
u (vn) meets T p+1

u (v1) (v1/vn is the minimal/maximal
value in Vu); i.e., endvn,p = startv1,p+1.

Additionally we call T p
u (v) a null period if startv,p = endv,p.

Essentially the definition above captures the way a calen-
dar is used to conceptualize time in a cyclic manner: within
the finite set of values of a temporal unit, each successive
value is mapped to a successive and adjacent interval, and
upon reaching the maximal value we “restart” our mapping
process from the minimal value again. In this process no
stretch of the timeline is left unmapped.

The meaning of a temporal expression, on the other hand,
must be built on the meaning of its parts. For example, the
expression “January 2006” should denote the portion of the
timeline where it is both in January and in the year 2006.
Thus the time mapping of a coordinate is defined as the in-
tersection of the time mappings of its value assignments.
Definition 5. Given two time mappings Tu1 (v1) =
{. . . , ti, . . .} and Tu2 (v2) = {. . . , t j, . . .} (ti and t j are two pe-
riods), their intersection is defined as Tu1 (v1) ∩ Tu2 (v2) =
{. . . , ti ∩ t j, . . .} where ti ∩ t j , ∅. The time mapping of a
coordinate c is defined as T (c) =

⋂
u∈S(c) Tu(πu(c)).

We can now define two ordering relations between any
two time mappings: the chronological ordering (<) and the
set inclusion ordering (⊆): if c1 and c2 be two coordinates,
we say T (c1) ⊆ T (c2) if for every interval ti ∈ T (c1) there
exists a t j ∈ T (c2) such that ti ⊆ t j, and T (c1) < T (c2) if the
maximal integer in T (c1) is less than the minimal integer in
T (c2), assuming both extremes exist. A simple corollary is
that the superset relation between two coordinates becomes
the subset relation between their time mappings.
Corollary 6. If c1 and c2 are two coordinates and c1 ⊆ c2,
then T (c2) ⊆ T (c1).

With the semantics of a coordinate defined in terms of its
time mapping, we can also find the corresponding semantic
interpretations for coordinate extensions and extension pro-
jections (Definition 1 and 3). We will however defer that
discussion until after the introductions of the necessary con-
cepts and results.

Using time mappings as our semantic model, we can now
explicate the requirements of a well-defined calendar CSP as
follows.
Definition 7. A calendar CSP P is well-defined if it imple-
ments a time mapping such that

1. every solution to P is mapped to a unique non-null period;
2. every non-null period must be mapped to by at least one

consistent coordinate of P.
It turns out that with the help of Definition 4, the first re-

quirement above establishes an injection mapping from the
set of solutions to the set of non-null periods, namely two
different solutions cannot occupy the same portion of the
timeline.
Corollary 8. Let P be a well-defined calendar CSP, c1 and
c2 be two solutions to P and c1 , c2, then T (c1) , T (c2).

The simplified Gregorian calendar CSP presented earlier
is a well-defined calendar CSP, provided the resolution of

the underlying timeline is day (i.e., each integer denotes one
day). This formulation therefore implies the existence of
a “common-divider” unit among all units, because a coor-
dinate is mapped to the intersection of the periods mapped
from its individual value assignments. Without the help of
this unit an intersection between two periods at different
“granularity” cannot be guaranteed to yield an integral set
of periods. We will later introduce the concept of granular-
ity and describe how the existence of this common-divider
unit is enforced.

In the rest of this paper we shall assume every calendar
CSP is well-defined.

Solving Calendar CSPs
Conventional methods for constraint propagation and distri-
bution can be used to solve a calendar CSP given a coordi-
nate. In particular we use a standard AC-3 algorithm (Mack-
worth 1977) to eliminate illegal values from the domains of
constrained temporal units, and a backtracking search pro-
cedure to iterate over the coordinates in an extension pro-
jection. Our implementation of the distribution algorithm
can iterate forward or backward over EU(c) starting from a
designated coordinate c0. The overall time complexity for
finding the first solution is O(|R| ·w|U|) where w is the maxi-
mum size of any domain – this is a manageable cost since a
typical calendar CSP is usually small.

Relational Structures
Although a calendar CSP captures the intersective na-
ture of temporal units via its constraints (e.g., the con-
straint R{month,day} allows {feb, 28day} because Tmonth(feb)∩
Tday(28) , ∅), there are other characteristics of a calendar
that are not captured by this basic formulation. The most
pronounced one is one of a hierarchical nature, e.g., every
year is composed of a set of consecutive quarters, which is
then composed of a set of consecutive months, etc. Related
to this property is the concept of granularity, namely how
precise in time a particular coordinate is. A second charac-
teristic is one of a cyclic nature, e.g., quarters are periodic
in every year, but months are not periodic in every quar-
ter. Explicating this property will allow us to distinguish
between anchored coordinates vs. unanchored ones (e.g.,
{2006year, feb} is anchored but {feb} is not), and only an-
chored coordinates can be compared chronologically to one
another. In this section we will therefore propose two rela-
tions to capture these characteristics.

Measurement Relation
In a calendar a certain unit of time can always be measured
by another unit, unless the unit is already at the finest possi-
ble resolution. Using the semantic model established earlier,
we can capture this hierarchical nature of calendars in the
measurement relation defined below.

Definition 9. Let u1 and u2 be two temporal units with val-
ues Vu1 and Vu2 , respectively. We say u1 is measured by u2,
or u2 ≤̇ u1, if every non-null period T p

u1 (vu1) (vu1 ∈ Vu1 and
p ∈ �) is a concatenation of consecutive value periods of

32

unit u2, namely

T p
u1 (vu1) =

⋃
q∈Q⊂�

⋃
vi∈Vq⊆Vu2

T q
u2 (vi)

where Vu2 = {v1, . . . , vn}, 1 ≤ i ≤ n, and the set {(q−1) ·n+ i}
is an interval of �.

If |Q| = |Vq| = 1 (or T p
u1 (vu1) = T q

u2 (vu2)) we say u1 and u2
are measurement equivalent, or u2 =̇ u1; otherwise u2 <̇ u1.
If |Q| = 1 and |Vq| > 1 we also say u1 is immediately mea-
sured by u2, written as u2 ≺̇ u1.

Additionally we call u a maximal unit if u′ ≤̇ u for every
unit u′, and u must have only one period (its values never
repeat on the timeline), i.e., Tu(v) = {T 1

u (v)} for v ∈ Vu. We
say u is a minimal unit if u ≤̇ u′ for every unit u′, and define
min(·) as a function returning the set of minimal units in the
argument set.

Note that the difference between u2 <̇ u1 and u2 ≺̇ u1 (u1 is
immediately measured by u2) is that the latter requires every
period of a value vu1 to be composed of the time mappings
of consecutive values of u2 in the same q-th period. For
example, month ≺̇ year because T 1

year(y) = T q
month

(jan) ∪
. . . ∪ T q

month
(dec) for every y ∈ �, but day ⊀̇ year because

T 1
year(y) = T q

day
(1)∪. . .∪T q

day
(31)∪T q+1

day
(1)∪. . .∪T q+1

day
(29)∪

. . . (every year has more than one instance of 1day, 2day,
etc); in contrast both month <̇ year and day <̇ year are
true. The relation ≺̇ is therefore intransitive. On the other
hand, the measurement equivalence relation =̇ is transitive
via the bijection mapping it establishes; e.g., day =̇ dow (day
of week).
Proposition 10. Let u1/u2 be two temporal units and
Pu1 / Pu2 be the respective set of the non-null periods they
map to; i.e., Pu1 = {T

p
u1 (vi) , ∅ | p ∈ �, vi ∈ Vu1 } and

Pu2 = {T
q
u2 , ∅ | q ∈ �, v j ∈ Vu2 }. Then the measurement

equivalence relation u1 =̇ u2 establishes a bijection mapping
between Pu1 and Pu2 .

With a partial ordering of temporal units specified via the
measurement relation, we can then define granularity of a
coordinate as the finest resolution the coordinate can dis-
tinguish on the timeline. For example, the granularity of
c = {2006year, jan} should be month since its time mapping
T (c) = Tyear(2006) ∩ Tmonth(jan) is resolved to a period
T q
month

(jan) (q ∈ �) because month ≤̇ year. It is defined
below.
Definition 11. The granularity of a coordinate c, written as
g(c), is a set of minimal units of the scope of c under the
measurement relation; i.e., g(c) = min(S(c)).

For example, using the measurement relation illustrated
earlier, we have

g({2006year, feb}) = {month}
g({2006year, 3qoy, fallsem}) = {qoy, sem}

Note that in the second example the granularity is a set con-
taining more than one unit. We could have defined granu-
larity to be the greatest lower bound unit of a scope under
the measurement relation, so that the granularity of the sec-
ond example would have been a single unit month (since

month ≺̇ qoy and month ≺̇ sem). We chose the current defi-
nition because in comparison it preserves more information
that is directly available from a coordinate.

Periodicity Relation
In addition to the “downward” relation that is measurement
(i.e., we can think of measurement as a relation linking the
most coarse unit “down” to the finest unit), there is a “up-
ward” relation in force among temporal units. Consider
again the expression “the next January”. We can derive its
paraphrase “the January of the next year” if we can recog-
nize month to be a unit periodic in the unit year; i.e., ev-
ery year has one January and one January only. In com-
parison, the expression “the January of the next quarter” is
not a valid paraphrase because not every quarter of a year
has a January, i.e., unit month is not periodic in unit qoy.
Contrasting to the measurement relation month ≺̇ year and
month ≺̇ qoy we can conclude that periodicity is indeed a
distinct relation from the measurement relation. We now
formalize the notion as follows.

Definition 12. Let u1 and u2 be two temporal units with
values Vu1 and Vu2 , respectively. We say u2 is periodic in u1,
written as u2 � u1, if (a) u2 ≺̇ u1; and (b) for every q ∈ �
there exists a unique p ∈ � and vi ∈ Vu1 such that⋃

v j∈Vu2

T q
u2 (v j) ⊆ T p

u1 (vi).

For examples we have day � month and month �
year, but we have month 6� qoy because not every quarter
has every possible month, a violation to the requirement (b).
We also have day 6� year, because day ⊀̇ year, a violation
to the requirement (a).

Since u1 � u2 means every period of u2 contains one
(and only one) period of every possible value of u1, if we are
given a particular period of u2 and a value of u1, we should
be able to identify a unique period of u1 that corresponds
to the value. For example, given the period T 1

year(2006)
and a value jan, we should be able to find a unique pe-
riod T q

month
(jan) (q ∈ �) on the timeline that corresponds

to the overall coordinate {2006yearjan}. This is stated as a
corollary below.

Corollary 13. Let u1 and u2 be two temporal units with val-
ues Vu1 and Vu2 , respectively. If u1 � u2 then given a period
T p

u2 (vi) and v j ∈ Vu1 where p ∈ � and vi ∈ Vu2 , there exists a
unique q ∈ � such that T q

u1 (v j) ⊆ T p
u2 (vi).

Consequently if a consistent coordinate assigns a unique
value for every unit along a path u1 � u2 � . . . � un
with un being a maximal unit, then its time mapping can be
uniquely identified. This is the intuition behind the concept
of anchoring, to be discussed below.

Anchoring Coordinates
One obvious result from Definition 4 and 5 is that not ev-
ery coordinate can be mapped to a unique interval on the
timeline. For example, a mere {feb, 1day} can only map to
a set of disjoint intervals, each one denoting a February 1 in
a particular year. Since these ambiguous coordinates cannot

33

participate in certain operations such as coordinate compar-
ison, we need to design a procedure to test if a coordinate is
one of them. We will first define the concept of an anchored
coordinate with respect to our semantic model.
Definition 14. Assume that glb(Ui), the greatest lower
bound of the set of units Ui under the measurement rela-
tion, always exists, and let c be a consistent coordinate and
u = glb(g(c)). We say c is anchored if T (c) = {t} where t is
a non-null concatenation of consecutive value periods of u,
namely,

t =
⋃

q∈Q⊂�

⋃
vi∈Vq⊆Vu

T q
u (vi)

where Vu = {v1, . . . , vn}, 1 ≤ i ≤ n, and the set {(q− 1) · n+ i}
is an interval of �.

For examples, the coordinate c1 = {2006year, feb} is an-
chored because T (c1) = T q

month
(feb) (|Q| = |Vq| = 1), and

c2 = {2006year, 3qoy, fallsem} is anchored because T (c2) =
T q
month

(aug)∪ T q
month

(sep) (|Q| = 1 and {(q− 1) · 12+ 8, (q−
1) · 12 + 9} is an interval of �).

To devise a syntactic procedure for testing the anchoring
status of a coordinate, we first observe from Corollary 13
that if a coordinate is an instantiation of a chain of periodic
units led by a maximal unit, we can always find a unique
period of the sequence’ finest unit such that the period is
the time mapping of the coordinate, i.e., the coordinate is
anchored. We therefore call this sequence an anchor path.
Corollary 15. We call a sequence of temporal units p =
〈un, . . . , u1〉 an anchor path of unit u1 if u1 � u2 � . . . �
un and un is a maximal unit. A consistent coordinate c is
said to be anchored on p or anchored at u1 if p ⊆ S(c); i.e.,
πui (c) is defined for 1 ≤ i ≤ n.

For example, p = 〈year, month〉 is an anchor path, but
〈year, day〉 is not. The coordinate {2006year, feb} is there-
fore anchored on p. The decision method for determining
the anchoring status of a coordinate is described below.
Proposition 16. A consistent coordinate c is anchored if for
every ui ∈ g(c), c is anchored on an anchor path pi of ui.
Additionally if g(c) = {u} then T (c) = {T q

u (πu(c))}.

Constructing a Calendar
With calendar CSPs and the two inter-unit relations – mea-
surement and periodicity – in our toolbox, we can now con-
struct a cohesive structure for modeling calendars. But in-
stead of proposing a monolithic structure encompassing all
imaginable temporal units and constraints, we opt for a more
modular approach. A calendar structure is assembled from
a set of calendar components: each component has its own
minimal and maximal temporal unit, and every component
is related to another by an alignment constraint. This mod-
ular approach has the following advantages:

1. This organization fits with our intuition about calendars.
Consider unit week in the Gregorian calendar: although
day ≤̇ week is true, we cannot assert day � week since
the “days” periodic in week have a different “cycle” (7
instead of 31). week also has to be a maximal unit since
no other temporal unit in daily use can be measured by

week

Week-based component

dow

Year-based component

unit constraints

periodicity relation

measurement relation
(* is a measurement unit)

alignment constraints

year

month day

*
qoysem

Figure 3: Two aligned calendar components

it. By introducing a separate component for week and its
company, we are essentially creating a different counting
system over the same timeline.

2. With different counting systems delegated to different cal-
endar components, we can “shut down” certain compo-
nents for efficiency during constraint propagation if the
components are deemed irrelevant.

3. New counting systems can be introduced without much
disruption with the existing components.
We will now introduce calendar components and describe

how to align them to form a full calendar.

Calendar Components
A calendar component is essentially a well-defined calendar
CSP souped up with the measurement relation and the peri-
odicity relation. It must also observe several requirements to
ensure the unique existence of lower bound and upper bound
units and the anchorability of each unit.
Definition 17. A calendar component is a triple (P, ≤̇ ,�)
where P = (U,D,R) is a well-defined calendar CSP, ≤̇ is
the measurement relation on units U and � is the period-
icity relation onU. All calendar components must meet the
following requirements:

1. (lattice) the partially ordered set (U, ≤̇) forms a lattice;
i.e., for any two units u1 and u2 there exists a unique least
upper bound usup such that u1 ≤̇ usup and u2 ≤̇ usup, and a
unique greatest lower bound usub such that usub ≤̇ u1 and
usub ≤̇ u2; the top/bottom unit of the component is denoted
as umax/umin, respectively;

2. (anchorability) for every unit u ∈ U there must exist an
anchor path p = 〈umax, . . . , u〉.
Fig. 3 shows two calendar components. Note that some

units can be measured by multiple units (e.g., year), and
we mark one of them (by an asterisk) as the representative
measurement unit.

An important consequence of Definition 17 is that a calen-
dar component actually establishes a bijection mapping be-
tween its solutions and the set of time mappings at its finest
resolution.
Theorem 18. Consider the calendar component (P, ≤̇ ,�)
where P = (U,D,R) is a calendar CSP. Then P establishes
a bijection mapping between the set of solutions to P and the
time mapping Tumin , namely

1. if c is a solution to P and v = πumin (c), then T (c) contains
a unique non-null period in Tumin (v); i.e., T (c) = {T q

umin (v)}
with a unique q ∈ �;

34

2. if T p
umin (v) is a non-null period where p ∈ � and v ∈ Vumin ,

then there exists a unique solution c such that πumin (c) = v
and T (c) = {T p

umin (v)}.

Calendar as Aligned Components
A calendar consists of a set of calendar components, with
each one of them representing a different counting system
over the same span of time. The components are related to
one another via alignment constraints, which are used essen-
tially to translate a coordinate of one component to its coun-
terpart in another component. For example, if we have a
year-based component and a week-based component as de-
picted in Fig 3, their alignment must capture the fact that
January 6, 2006 is the Friday of the 1046160-th week (count-
ing from January 1, 1 AD). We define alignments as follows.

Definition 19. Two calendar components with calendar CSP
P1 = (U1,D1,R1) and P2 = (U2,D2,R2) can be aligned at
unit ui ∈ U1 and u j ∈ U2 using an alignment constraint
Aui,u j provided the following requirements are met:

1. (scope) the scope of Aui,u j is pi ∪ p j, where pi/p j are an-
chor paths of units ui/u j, respectively;

2. (measurement equivalence) ui and u j are measurement
equivalent; i.e., ui =̇ u j.

The unit ui and u j are called the alignment units of their
respective calendar component.

The second requirement not only sets up the desired bijec-
tion mapping between Tui and Tu j (Proposition 10), it also
bridges the measurement relation and the periodicity rela-
tion across the two calendar components.

Corollary 20. Let K1 = (P1, ≤̇1 ,�1) and K2 =
(P2, ≤̇2 ,�2) be two calendar components aligned at units
ui ∈ U1 and u j ∈ U2. The overall measurement relation, ≤̇ ,
and the overall periodicity relation,�, are the union of the
individual relations (≤̇1 ∪ ≤̇2 and�1 ∪�2 respectively)
plus the following:

1. if ui ≤̇1 uk then u j ≤̇ uk, and symmetrically if u j ≤̇2 ul then
ui ≤̇ ul;

2. if uk ≤̇1 ui then uk ≤̇ u j, and symmetrically if ul ≤̇2 u j then
ul ≤̇ ui;

3. if uk �1 ui then uk � u j, and symmetrically if ul �2 u j
then ul � ui.

where uk ∈ U1 and ul ∈ U2.

For example, if we add a unit hour ≤̇ day in the year-
based component shown in Fig. 3, it is obvious that we
should also have hour ≤̇ dow. In addition, day ≤̇ month
should imply day ≤̇ week. On the other hand, hour� day
entails hour � dow, but day � month does not imply
day � week – because not every week has 1day (the first
day of a month). This last entailment does not work since
Proposition 10 only establishes a bijection mapping on pe-
riods of the alignment units – it does not change the ways
their values are cyclic on the timeline.

We are now ready to show how to construct a calendar out
of a set of calendar components.

u1 u'2
u2 u'3

u3 u'm...

K1 K2 K3 Km...

Figure 4: Grounded alignments: u1 is not a bottom unit, but
u′2 . . . u

′
m must be bottom units

Definition 21. A calendar K is a triple (P, ≤̇ ,�) where
P = (U,D,R) is a calendar CSP, ≤̇ is the measurement
relation on units U and� is the periodicity relation on U.
K is composed of a set of aligned calendar components Ki =
(Pi, ≤̇i ,�i) where Pi = (Ui,Di,Ri) and i = 1 . . . n, and the
following requirements must be observed:

1. (tree) if we view K as a undirected graph where nodes are
the calendar components and edges are the alignments,
then K must be a simple connected graph with no cycle;

2. (grounded alignments) if unit u1 ∈ U1 in an alignment
Au1,u′2 is not the bottom unit of the component K1, then on
the longest path of the aligned components 〈K1, . . . ,Km〉

with the alignments Au1,u′2 ,Au2,u′3 , . . . ,Aum−1,u′m , unit
u′2, . . . , u

′
m must be the bottom unit of the component

K2, . . . ,Km, respectively (Fig. 4).

Finally letA be the set of all alignment constraints in K, the
construction of K is specified as follows:

U = U1 ∪ . . . ∪Un

D = D1 ∪ . . . ∪Dn

R = R1 ∪ . . . ∪ Rn ∪A

≤̇ = ≤̇1 ∪ . . . ∪ ≤̇n ∪

(∪Au1 ,u2∈A
{(u2, u′1) | u1 ≺̇i u′1} ∪ {(u1, u′2) | u2 ≺̇ j u′2}∪

{(u′1, u2) | u′1 ≺̇i u1} ∪ {(u′2, u1) | u′2 ≺̇ j u2})
� =�1 ∪ . . .∪�n ∪

(∪Au1 ,u2∈A
{(u′1, u2) | u′1 �i u1} ∪ {(u′2, u1) | u′2 � j u2})

Note that the constructions of ≤̇ and� above basically
follow Corollary 20, except that we are patching up ≤̇ using
the individual ≺̇i relations for efficiency reason (because
the measurement relation is transitive). The first require-
ment above (tree structure) is needed to simplify the model
and to support some of the proofs shown in the appendix.
The second requirement (grounded alignments) is imposed
to ensure the existence of a unique greatest lower bound (up
to measurement equivalence) given any pair of units, as as-
serted by the following theorem.

Theorem 22. A calendar K constructed in Definition 21 has
the following properties:

1. (semilattice) for any two units in U there exists a unique
greatest lower bound up to measurement equivalence;

2. (anchorability) for every unit u in U there exists an an-
chor path of u;

3. (well-defined calendar CSP) The calendar CSP of K, P,
is well-defined;

35

4. (modularity) if c is a consistent coordinate whose scope
is within a single calendar component Ki = (Pi, ≤̇i ,�i),
then for every solution ci ∈ E(c) with respect to Pi, E(ci) ,
∅ with respect to P.
A corollary of Theorem 22 is that Theorem 18 can now

be carried over to a calendar as well.
Corollary 23. Let P be the calendar CSP of a calendar, then
Theorem 18 applies to P as well.

A final observation of Theorem 22 is that the modularity
property enables an opportunity to enhance efficiency when
running the solution methods of a calendar CSP: given a co-
ordinate c that instantiates only units from a single calendar
component, we can ignore all of the other components when
iterating through E(c). For example, if c = {feb, 29day},
then propagating any constraint related to the week-based
component will not affect E(c) with respect to only the
year-based component; e.g., {2006year, feb, 29day} should
be consistent whether we propagate the alignment constraint
Aday,dow or not. This is easy to implement by ignoring the
unnecessary alignment constraints when performing con-
straint propagation.

Time Mappings and Extensions
We have introduced earlier the semantic model of a calen-
dar CSP, but deferred the discussion of a semantic interpre-
tation for coordinate extensions and extension projections
(Definition 1 and 3). We are now ready to relate the two
concepts – the time mappings and the extension/extension
projection operations – in the form of the two propositions
below. The result will also be helpful to prove the correct-
ness of our method for comparing anchored coordinates (see
Theorem 30 and its proof in the appendix).

The first proposition states that the time mapping of a co-
ordinate is the union of the time mapping of every solution
in its extension.
Proposition 24. Let c be a consistent coordinate with re-
spect to a calendar defined in Definition 21, then T (c) =⋃

c′∈E(c) T (c′).
For example, we have

T ({2006year, jan}) =
T ({2006year, jan, 1qoy, spring,1day}) ∪ . . .∪
T ({2006year, jan, 1qoy, spring,31day}).

A similar result holds for extension projections: the time
mapping of a coordinate is the union of the time mapping of
every coordinate in its extension projection, as long as the
projection is done over an anchor path of a unit “finer” than
the granularity of the coordinate.
Proposition 25. Let c be a consistent coordinate with re-
spect to a calendar defined in Definition 21, and p be an an-
chor path of unit u ≤̇ glb(g(c)), then T (c) =

⋃
c′∈Ep(c) T (c′).

For example, if c = {2006year, spring} and p1 =
〈year, month〉, we have

T (c) = ∪c′∈Ep1 (c)T (c′) = T ({2006year, jan}) ∪ . . .

∪ T ({2006year, may}).

But for p2 = 〈year, qoy〉, Proposition 25 no longer holds
since qoy ˙6≤ sem:

T (c) ⊂ ∪c′∈Ep2 (c)T (c′)

= T ({2006year, 1qoy}) ∪ T ({2006year, 2qoy})
= T ({2006year, jan}) ∪ . . . ∪ T ({2006year, jun}).

Calendar Services
A calendar system must provide useful services to the rest of
a system. In this section we describe how some of these ser-
vices can be implemented under our constraint-based model.
Due to space restriction we will not describe services such
as searching for a compatible coordinate and performing cal-
endric arithmetic, other than to simply mention that both of
them can be implemented using the constraint distribution
algorithm mentioned earlier.

Coordinate Comparison
One of the basic services that a calendar model needs to pro-
vide is comparing the chronological ordering of two coordi-
nates, namely deciding which of the two is earlier. From the
semantic point of view, it is to compare their time mappings
on the timeline, as defined below.

Definition 26. Let c1 and c2 be two consistent coordinates.
We say c1 < c2 if T (c1) < T (c2).

As before we would like to find a corresponding “syn-
tactic procedure” that obviates any direct manipulation of
time mappings. First we note that such a comparison does
not make sense if the two participating coordinates are not
anchored. To facilitate our discussion, we define a useful
concept called anchor sets below.

Definition 27. Let p = 〈un, . . . , u1〉 be an anchor path, then
the anchor set of p is defined as the set of consistent co-
ordinates of scope p, namely AnchorSetp = {c | E(c) ,
∅ and S(c) = p}.

Obviously by Proposition 16 every coordinate in an an-
chor set is anchored on the same anchor path. If both of the
coordinates in a comparison belong to the same anchor set,
then an intuitive way to compare the two is to compare their
value assignments lexicographically from the maximal unit
downward along the anchor path. For example, we can con-
clude that {2006year, jan} is before {2006year, feb} because
we have 2006 = 2006 and jan is before feb, in that order.
This procedure is formalized as follows.

Definition 28. Let p = 〈un, . . . , u1〉 be an anchor path and
c1, c2 ∈ AnchorSetp. We say c1 <p c2 if there exists 1 ≤
k ≤ n such that πui (c1) = πui (c2) for all i > k and πuk (c1) <
πuk (c2); c1 =p c2 if πp(c1) = πp(c2).

It can be shown that the lexicographic comparison indeed
establishes the ordering of the two coordinates on the time-
line, as asserted in the proposition below.

Proposition 29. Let p = 〈un, . . . , u1〉 be an anchor path and
c1, c2 ∈ AnchorSetp, then c1 <p c2 iff T (c1) < T (c2) and
c1 =p c2 iff T (c1) = T (c2).

36

Obviously the lexicographic test described in Defini-
tion 28 is useless when the two coordinates in a comparison
are not anchored on the same anchor path (e.g., comparing
{2006year, 1qoy} with {2006year, fallsem}). For these gen-
eral cases we need to compute a common anchor path end-
ing at the greatest lower bound of the two granularities, and
to compare the projections of the two coordinates on this
anchor path. This is formalized in the following theorem.
Theorem 30. Let c1 and c2 be two consistent anchored
coordinates and p be an anchor path such that min(p) =
glb(g(c1) ∪ g(c2)), then c1 < c2 iff c′1 <p c′2 for every
c′1 ∈ Ep(c1) and c′2 ∈ Ep(c2), and c1 = c2 iff =p establishes a
bijective mapping between Ep(c1) and Ep(c2).

For example, to compare c1 = {2006year, 1qoy} with
c2 = {2006year, fallsem} we first compute glb(qoy, sem) =
month and then the anchor path p = 〈year, month〉 (see
Fig. 3). Using a constraint distribution algorithm we can
then compute the latest coordinate in Ep(c1) to be c′1 =
{2006year, mar} and the earliest coordinate in Ep(c2) to be
c′2 = {2006year, aug}. Since c′1 <p c′2 we conclude c1 < c2.

Granularity Conversion
Intuitively speaking, converting granularity of a coordinate
is to look at the same coordinate at a new granularity; for
example, when looking at February 2006 on a timeline at
granularity day, we see that February 1-28, 2006 are the
dates included in the original one. On the other hand, if we
look at February 1, 2006 at granularity month, we will see
that the original date becomes February 2006 at that granu-
larity. It turns out that this intuition is already embodied in
Definition 3: for example in converting c = {2006year, feb}
from granularity {month} to {day}, we are essentially com-
puting EΘ(c) where Θ = {year, month, day}. Obviously for
any c′ ∈ EΘ(c) we are guaranteed to have the right granular-
ity g(c′) = min(S(c′)) = min(Θ) = {day}. This is formalized
as follows.
Definition 31. Given a coordinate c and a target granular-
ity γ, the granularity conversion function gconv(c, γ) returns
EΘ(c) where Θ is computed as:

Θ = ∪Ki (Φi ∪ Ψi ∪ Γi)
Φi = {u′ | u ≤̇ u′, u ∈ γi, u′ ∈ Si(c)} (1)
Ψi = {u′, u′′, u | u′� . . .� u′′� . . .� u, u′ ∈ γ′i ,

u ∈ gi(c)} (2)

Γi =

{u′, u′′, umax | u′� . . .� u′′� . . .� umax,

u′ ∈ γi \ γ
′
i } if c is anchored at g(c);

γi \ γ
′
i otherwise.

(3)

where Ki is a calendar component, Ui is the set of units in
the component Ki, Si(c) = S(c) ∩ Ui, γi = γ ∩ Ui, γ′i =
{u′ | u′� . . .� u, u′ ∈ γi, u ∈ gi(c)} and gi(c) = g(c) ∩Ui.

The granularity conversion function defined above essen-
tially returns the extension projection of the input coordinate
on a new scope Θ. Fig. 5 illustrates how the new scope is
computed. For every calendar component Ki, (1) removes

remove

Promotion higher granularity
(coarser)

lower granularity
(finer)

gi(c)

γi

add

Demotion

gi(c)

γi

Ki Ki

add add

add

add add add

Figure 5: Granularity conversion of a coordinate c on a sin-
gle calendar component: component-wise the original gran-
ularity is gi(c) and the target granularity is γi. The solid
arrows represent the measurement relation, and the dashed
arrows represent the periodicity relation. This illustration
shows the case where c is anchored at g(c).

any unit in the original scope (Si(c), the scope of c in Ki)
that is not measured by any unit in the target granularity (γi,
the target granularity specific to Ki). (2) then adds to the
new scope any unit along the anchor path of u ∈ γi up to a
unit in gi(c) (the original granularity specific to Ki). Finally
(3) adds those units in the target granularity that do not have
anchor paths passing through any unit in the original gran-
ularity: if c is originally anchored, the equation adds entire
anchor paths to maintain the anchoring status of the coordi-
nate, otherwise only the units in γ′i are added. In summary,
(1) promotes granularity by shrinking the scope, while (2)
and (3) demote granularity by enlarging the scope.

The correctness of Definition 31 is stated below, which
can be easily verified by observing from the definition that
every unit in Θ must be measured by a unit in γ.
Corollary 32. Let c be a coordinate and γ be a set of mini-
mal units, then for every c′ ∈ gconv(c, γ), g(c′) = γ.

For examples, we have the following conversions

gconv({2006year, feb}, {year}) = {{2006year}} (4)
gconv({2006year, 1qoy}, {sem}) = {{2006year, spring}}

(5)
gconv({2006year}, {day}) = {{2006year, jan, 1day}, . . . ,
{2006year, dec, 31day}} (6)

In the examples above, (4) shows granularity promotion
(month is removed from the scope) while (5) shows both
promotion (qoy is removed from the scope) and demotion
(sem is added to the scope). When a demotion involves a tar-
get unit that is “far” from the units in the original granularity,
more units along the relevant anchor paths are added to the
scope to make the converted coordinates more “granularity-
smoothed”, e.g., month is added to the scope in (6).

Summary
In this paper we have presented a constraint-based model
of calendars, where temporal units are viewed as variables
with fully-ordered domains, and constraints are given to re-
late the units. The resulting calendar constraint satisfaction
problem is augmented with the measurement relation and
the periodicity relation to form calendar components, which
can then be aligned via constraints to construct a full cal-
endar. We also introduced a semantic model to justify the
imposed design requirements over the calendar system, and

37

described selected calendar services such as time compari-
son and granularity conversion.

A complete system using the proposed calendar system
has been implemented and successfully deployed in natural
language applications such as “normalizing” temporal ex-
pressions found in news articles and web blogs (Florian et
al. 2007). One possible future work is to explore the connec-
tions between our approach and the algebraic representation
proposed in (Peng Ning, Wang, and Jajodia 2002), e.g., how
to infer constraints among temporal units using an algebraic
representation.

References
Bettini, C., and Sibi, R. D. 2000. Symbolic representation
of user-defined time granularities. Annals of Mathematics
and Artificial Intelligence.
Combi, C.; Franceschet, M.; and Peron, A. 2004. Repre-
senting and reasoning about temporal granularities. Jour-
nal of Logic and Computation.
Dechter, R. 2003. Constraint Processing. Morgan Kauf-
mann.
Florian, R.; Han, B.; Luo, X.; Kambhatla, N.; and Zitouni,
I. 2007. IBM ACE’07 System Description. In Proceedings
of NIST 2007 Automatic Content Extraction Evaluation.
Han, B.; Gates, D.; and Levin, L. 2006. From Language to
Time: A Temporal Expression Anchorer. In Proceedings
of the 13th International Symposium on Temporal Repre-
sentation and Reasoning (TIME 2006).
Mackworth, A. K. 1977. Consistency in networks of rela-
tions. Artificial Intelligence 8:99–118.
Ohlbach, H., and Gabbay, D. 1998. Calendar logic. Jour-
nal of Applied Non-classical Logics 8(4):291–324.
Peng Ning, X.; Wang, S.; and Jajodia, S. 2002. An alge-
braic representation of calendars. Annals of Mathematics
and Artificial Intelligence 36(1-2):5–38.
Wijsen, J. 2000. A string-based model for infinite granular-
ities. In The AAAI-2000 Workshop on Spatial and Temporal
Granularity, 9–16. AAAI Press.

Appendix: Selected Proofs
Proof of Theorem 18.

1. Since c is a solution, by Corollary 15 c must be anchored
at umin, and by Proposition 16 we must have T (c) =
{T q

umin (v)} since g(c) = {umin}.
2. By the second requirement of a well-defined calendar

CSP (Definition 7) we know there exists a consistent
coordinate c for T p

umin (v). Assume there are two differ-
ent solutions c1, c2 ∈ E(c), then according to the first
part of this proof we have T (c1) = {T q1

umin (πumin (c1))} and
T (c2) = {T q2

umin (πumin (c2))} (q1, q2 ∈ �). Since c ⊆ c1,
from Corollary 6 we must have T q1

umin (πumin (c1)) ⊆ T p
umin (v),

which can only be true if T q1
umin (πumin (c1)) = T p

umin (v),
q1 = p and πumin (c1) = v. By similar reasoning we have
T q1

umin (πumin (c1)) = T q2
umin (πumin (c2)) = T p

umin (v), a violation
to Corollary 8 since c1 , c2. Therefore c1 = c2 and
πumin (c1) = πumin (c2) = v.

u1 u'2 u2 u'i
...

K1 K2 Ki

ui u'i+1 ui+1

Ki +1

u'm

u'

Km

u

...

......

Figure 6: Proof of unique greatest lower bound.

�

Proof of Theorem 22.

1. Given two units u and u′, if both of them are in the same
calendar component then they must have a unique greatest
lower bound (see the lattice requirement in Definition 17).
If u and u′ belongs to two different components K1
and Km, respectively, since all calendar components are
aligned and there is no alignment cycle, we can find a
unique path 〈K1, . . . ,Km〉 connected by the alignments
Au1,u′2 ,Au2,u′3 , . . . ,Aum−1,u′m . We then have the following
cases:

(a) If u1 is not the bottom unit of component K1, then
according to the grounded alignments requirement in
Definition 19, unit u′2, . . . , u

′
m must be the bottom unit

of K2, . . . ,Km, and we have u1 =̇ u′2 ≤̇ u2 =̇ . . . u′m ≤̇ u′.
Therefore glb(u, u′) = glb(u, u1).

(b) If u1 is the bottom unit of component K1, let
〈K1, . . . ,Ki〉 be the longest path such that u1, . . . , ui
are all bottom units of their respective components
(i < m; see Fig. 6). Then ui+1 must not be a bot-
tom unit, and according to the proof in (a) we know
for u′′ ∈ Ui+1, glb(u′′, u′) = glb(u′′, ui+1). From (a)
we also know glb(u, u′′) = glb(u′i+1, u

′′), therefore
glb(u, u′) = glb(u′i+1, ui+1).

2. See the anchorability requirement in Definition 17.
3. We need to prove that both of the requirements in Defini-

tion 7 are met.
(a) We need to show that given a solution c to P there ex-

ists a unique non-null period t such that T (c) = {t}.
Let us first consider two calendar components K1 and
Km in the calendar. From the first part of this proof
we know K1 and Km must be connected by a path
of components aligned in the way shown in Fig. 6
(u1, u2, . . . , ui and u′i+2, u

′
i+3, . . . , u

′
m are bottom units;

ui+1 is not a bottom unit). Since c is a solution to P,
ci = πUi (c) must be a solution to Pi – the calendar CSP
of the component Ki. Additionally because Pi is pre-
sumed to be a well-defined CSP, by Theorem 18 we
have T (ci) = {T

pi
umin,i (πumin,i (c))} with unique pi ∈ � and

umin,i = glb(Ui). Based on the topology shown in Fig. 6
and the proposition of measurement equivalence rela-
tion (Proposition 10), we then have

T pi+1
umin,i+1 (πumin,i+1 (c)) ⊆ T q′i+1

u′i+1
(πu′i+1

(c)) = T pi
ui (πui (c))

⊆ T q′i
u′i

(πu′i (c)) = . . .

T pi+1
umin,i+1 (πumin,i+1 (c)) ⊆ T qi+1

ui+1 (πui+1 (c)) = T pi+2
u′i+2

(πu′i+2
(c))

⊆ T qi+2
ui+2 (πui+2 (c)) = . . .

38

where p1, . . . , pm ∈ � are period indices for the bot-
tom units, q′1, . . . , q

′
i+1 ∈ � and qi+1, . . . , qm ∈ � are

the other period indices. Combining the two equations
above, we have

∩1≤ j≤mT (c j) = {∩1≤ j≤mT p j
umin, j (πumin, j (c))}

= {T pi+1
umin,i+1 (πumin,i+1 (c))}.

We call the component Ki+1 the “inflection” component
among the components K1 . . .Km, since its bottom unit
is a lower bound of all of the other bottom units, and
the unique non-null period T pi+1

umin,i+1 (πumin,i+1 (c)) represents
the result of intersecting all of the unique non-null peri-
ods mapped by the components K1 . . .Km. We can then
repeat this process on the pair of the inflection com-
ponent Ki+1 and another “unprocessed” component Kk
(k < {1, . . .m}), and find the new inflection component
Kl among the set of components aligned between Ki+1
and Kk – let us call this set of aligned components S .
Again T pl

umin,l (πumin,l (c)) (pl ∈ �) will represent the re-
sult of intersecting the unique non-null period mapped
by every component in S ∪ {K1 . . .Km}. Repeating this
process over all components in K we can then obtain a
unique non-null period t from the final inflection com-
ponent, and T (c) = {t}.

(b) From the grounded alignments requirement in Defini-
tion 21, we know for any two calendar components K1
and K2 aligned with the alignmentAu1,u2 , one of u1 and
u2 must be a bottom unit. Without loss of generality let
u2 be the bottom unit of K2.
If we are given a non-null period of unit u ∈ U1, say
T p

u (vu) (p ∈ � and vu ∈ Vu), since P1 – the calendar
CSP of K1 – is well-defined, according to Definition 7
there must exist a consistent coordinate c (with respect
to K1) such that T (c) = {T p

u (vu)}. Let c1 ∈ E(c) be a
solution to K1, then according to Theorem 18 T (c1) =
{T p1

glb(U1)(πglb(U1)(c1))}, where the sole period – let us
rewrite it as t – is non-null. Therefore we must have
t ⊆ T p

u (vu) ∩ T q
u1 (vu1) (q ∈ �, vu = πu(c1) and vu1 =

πu1 (c1)). But we already know both t and T p
u (vu) are

non-null, hence T q
u1 (vu1) is also non-null. Since u1 =̇ u2,

by Proposition 10 we know T q
u1 (vu1) = T q′

u2 (vu2) (q′ ∈ �
and vu2 ∈ Vu2), therefore T q′

u2 (vu2) is non-null. Since P2
is a well-defined calendar CSP and u2 is a bottom unit,
from Theorem 18 we know there exists a solution c2

such that T (c2) = {T q′
u2 (vu2)}. Finally we note c1 ∪ c2

must be a solution to the aligned K1 and K2, therefore
c ⊆ c1 ∪ c2 must be consistent over the aligned K1 and
K2.
On the other hand, if we are given a non-null period of
unit u′ ∈ U2, say T p′

u′ (vu′) (p′ ∈ � and vu′ ∈ Vu′), since
P2 – the calendar CSP of K2 – is well-defined, accord-
ing to Definition 7 there must exist a consistent coordi-
nate c′ (with respect to K2) such that T (c′) = {T p′

u′ (vu′)}.
Let c′2 ∈ E(c′) be a solution to K2, then according

to Theorem 18 T (c′2) = {T p′2
glb(U2)(πglb(U2)(c′2))}, where

the sole period – let us rewrite it as t′ – is non-null.
Since u1 =̇ u2, by Proposition 10 we know T q′

u1 (v′u1
) = t′

(q′ ∈ � and v′u1
∈ Vu1), therefore T q′

u1 (v′u1
) is non-null.

Now because P1 is a well-defined calendar CSP, from
Definition 7 there must exist a consistent coordinate c
(with respect to K1) such that T (c) = {T q′

u1 (v′u1
)}. Let

c′1 ∈ E(c) be a solution to K1, then c′1 ∪ c′2 must be a
solution to the aligned K1 and K2, therefore c′ ⊆ c′1∪c′2
must be consistent over the aligned K1 and K2.
In the above we have shown both cases when two cal-
endar components are aligned. Similar reasoning can
be applied to find a consistent coordinate with respect
to all of the aligned components given a non-null period
of any unit.

4. LetAui,u j be an alignment between component Ki and K j.
Since ci is a solution to Pi, there must exist a non-null pe-
riod T q

ui (πui (ci)) (q ∈ �) according to Theorem 18. Since
ui =̇ u j is true, according to Proposition 10 we also have
a non-null period t = T q

ui (πui (ci)) of unit u j. Because P j
is also a well-defined CSP, by the second requirement of
Definition 7 we know there exists a consistent coordinate
c′ with respect to P j such that T (c′) = {t}, hence a so-
lution c j ∈ E(c′) exists, and ci ∪ c j is a solution to the
aligned Ki and K j. By induction we can extend a solution
in one component to a solution in another, and the union
of these component-wise solutions becomes a solution to
P. Therefore ci can be extended to a solution to P, i.e.,
E(ci) must not be empty.

�

Proof of Theorem 30.

⇒: If c′1 <p c′2 for all c′1 ∈ Ep(c1) and c′2 ∈ Ep(c2),
since c′1, c

′
2 ∈ AnchorSetp, from Proposition 29 we know

T (c′1) < T (c′2). Next since min(p) ≤̇ glb(g(c1)) and
min(p) ≤̇ glb(g(c2)), by Proposition 25 we derive T (c1) =⋃

c′1∈Ep(c1) T (c′1) <
⋃

c′2∈Ep(c2) T (c′2) = T (c2).
If =p is a bijective relation between Ep(c1) and Ep(c2),
then from Proposition 29 again we know T (c′1) = T (c′2)
for every pair of c′1 =p c′2. And by Proposition 25 we de-
rive T (c1) =

⋃
c′1∈Ep(c1) T (c′1) =

⋃
c′2∈Ep(c2) T (c′2) = T (c2).

⇐: If c1 < c2, given min(p) ≤̇ glb(g(c1)) and
min(p) ≤̇ glb(g(c2)), we know from Proposition 25 that
T (c1) =

⋃
c′1∈Ep(c1) T (c′1) < T (c2) =

⋃
c′2∈Ep(c2) T (c′2),

which implies T (c′1) < T (c′2) for all c′1 ∈ Ep(c1) and
c′2 ∈ Ep(c2). Since c′1, c

′
2 ∈ AnchorSetp, by Proposition 29

we know c′1 <p c′2.
If c1 = c2, again from Proposition 25 we know T (c1) =⋃

c′1∈Ep(c1) T (c′1) = T (c2) =
⋃

c′2∈Ep(c2) T (c′2). Every T (c′1)
must be disjoint since Ep(c1) is a set, and according to
Proposition 16 T (c′1) = {t} where t is a single value period
of unit min(p). Similarly every T (c′2) is also disjoint. It is
obvious then that for every T (c′1) there must exist a T (c′2)
such that the two are equal, or by Proposition 29, c′1 =p c′2,
and the reverse is also true. Therefore =p is a bijective
relation between Ep(c1) and Ep(c2).

�

39

