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Abstract

We undertake an experimental study of heuristics designed
for the Travel division of the Trading Agent Competition.
Our primary goal is to analyze the performance of the sam-
ple average approximation (SAA) heuristic, which is approx-
imately optimal in the decision-theoretic (DT) setting, in this
game-theoretic (GT) setting. To this end, we conduct exper-
iments in four settings, three DT and one GT. The relevant
distinction between the DT and the GT settings is: in the
DT settings, agents’ strategies do not affect the distribution
of prices. Because of this distinction, the DT experiments are
easier to analyze than the GT experiments. Moreover, set-
tings with normally distributed prices, and controlled noise,
are easier to analyze than those with competitive equilibrium
prices. In the studied domain, analysis of the DT settings
with possibly noisy normally distributed prices informs our
analysis of the richer DT and GT settings with competitive
equilibrium prices. In future work, we plan to investigate
whether this experimental methodology—namely, transfer-
ring knowledge gained in a DT setting with noisy signals to a
GT setting—can be applied to analyze heuristics for playing
other complex games.

Introduction
In the design of autonomous trading agents that buy and sell
goods in electronic markets, a variety of interesting compu-
tational questions arise. One of the most fundamental is to
determine how to bid on goods being auctioned off in sep-
arate markets when the agent’s valuations for those goods
are highly interdependent (i.e., complementary or substi-
tutable). The Trading Agent Competition (TAC) Travel di-
vision was designed as a testbed in which to compare and
contrast various approaches to this problem (Wellmanet al.
2001). We partake in an empirical investigation of heuris-
tics designed for bidding in the simultaneous auctions that
characterize TAC in a simplified TAC-like setting.

At a high-level, the design of many successful TAC agents
(for example, Walverine (Chenget al. 2005), RoxyBot
(Greenwald and Boyan 2004 & 2005) andATTac (Stone
et al. 2003)) can be summarized as: Step 1:predict, i.e.,
build a model of the auctions’ clearing prices; Step 2:opti-
mize, i.e., solve for an (approximately) optimal set of bids,
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given this model. This paper is devoted to the study of bid-
ding, that is, the optimization piece of this design. We as-
sume that agents are given price predictions in the form of a
black box from which they can sample a vector of predicted
prices; such samples are calledscenarios. Because finding
an optimal solution to the bidding problem is not generally
tractable, our study centers around a series ofheuristicsthat
construct bids based on approximations or simplifications.
We subject these heuristics to experimental trials within a
simplified version of the TAC domain that we find more
amenable to experimental study than the full-blown TAC
Travel game.

TAC Travel Game
In this section, we briefly summarize the TAC game. For
more details, seehttp://www.sics.se/tac/.

A TAC Travel agent is a simulated travel agent whose task
is to organize itineraries for a group of clients to travel to and
from TACTown. The agent’s objective is to procure “desir-
able” travel goods as inexpensively as possible. An agent
desires goods (i.e., it earns utility for procuring them) to the
extent that they comprise itineraries that satisfy its clients’
preferences.

Travel goods are sold in simultaneous auctions:

• Flights are sold by the “TAC seller” in dynamic posted-pricing
environments. No resale is permitted.

• Hotel reservations are also sold by the “TAC seller,” in multi-
unit ascending call markets. Specifically, 16 hotel reservations
are sold in each hotel auction at the 16th highest price. No resale
is permitted.

• Agents trade tickets to entertainment events among themselves
in continuous double auctions.

Flights and hotel reservations are complementary goods:
flights do not garner utility without complementary hotel
reservations; nor do hotel reservations garner utility with-
out complementary flights. Tickets to entertainment events,
e.g., the Boston Red Sox and the Boston Symphony Orches-
tra, are substitutable.

Clients have preferred departure and arrival dates, and a
penalty is subtracted from the agent’s utility for allocating
packages that do not match clients’ preferences exactly. For
example, a penalty of 200 (100 per day) is incurred when a
client who wants to depart Monday and arrive on Tuesday is
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assigned a package with a Monday departure and a Thurs-
day arrival. Clients also have hotel preferences, for the two
type of hotels, “good” and “bad.” A client’s preference for
staying at the good rather than the bad hotel is described by
ahotel bonus, utility the agent accumulates when the client’s
assigned package includes the good hotel.

Bidding Heuristics
Our test suite consists of six marginal-utility-based and two
sample average approximation heuristics. We present a brief
description of these heuristics here. Interested readers are
referred to Wellman, Greenwald, and Stone (2007) for more
detailed explanations.

Marginal-Utility-Based Heuristics
In a second-price auction for a single good, it is optimal
for an agent to simply bid its independent value on that
good (Vickrey 1961). In simultaneous auctions for multi-
ple goods, however, bidding is not so straightforward be-
cause it is unclear how to assign independent values to in-
terdependent goods. Perfectly complementary goods (e.g.,
an inflight and outflight for a particular client) are worthless
in isolation, and perfectly substitutable goods (e.g., rooms
in different hotels for the same client on the same day) pro-
vide added value only in isolation. Still, an agent might be
tempted to bid on each good itsmarginalutility (MU), that
is, the incremental value of obtaining that good relative to
the collection of goods it already owns or can buy. Many
reasonable bidding heuristics (e.g., Greenwald and Boyan
(2004, 2005), Stoneet al. (2003)) incorporate some form of
marginal utility bidding.

Definition 1 Given a set of goodsX , a valuation function
v : 2X → IR, and bundle pricesq : 2X → IR. Themarginal
utility µ(x, q) of goodx ∈ X is defined as:

µ(x) = max
Y ⊆X\{x}

[v(Y ∪{x})−q(Y )]− max
Y ⊆X\{x}

[v(Y )−q(Y )]

Consistent with TAC Travel, we assume additive prices:
that is, in the above equation, the bundle pricing functionq
returns the sum of the predicted prices of the goods inY .

Our heuristics actually sample a set of scenarios, not a
single vector of predicted prices. We consider two classes
of marginal utility heuristics based on how they make use of
the information in the scenarios.

Bidding Heuristics that Collapse Available Distribu-
tional Information The following heuristics collapse all
scenarios into a single vector of predicted prices, namely the
average scenario, and then calculate the marginal utility of
each good assuming the other goods can be purchased at the
average prices.

StraightMU bids the marginal utility of each good.

TargetMU bids marginal utilities only on the goods in a
target set of goods. The target set is one that an agent would
optimally purchase at the average prices.

TargetMU* is similar toTargetMU, but calculates marginal
utilities assuming only goods from the target set are avail-
able. This results in higher bids.

Bidding Heuristics that Exploit Available Distributional
Information The heuristics discussed thus far collapse the
distributional information contained in the sample set of sce-
narios down to a point estimate, thereby operating on ap-
proximations of the expected clearing prices. The heuristics
described next more fully exploit any available distributional
information; they seek bids that are effective across multiple
scenarios, not in just the average scenario.

AverageMU calculates the marginal utilities of all goods,
once per scenario, and then bids theaverageMU of each
good in each auction.

BidEvaluator evaluatesK candidate bidding policies on a
fixed set ofE sample scenarios. The policy that earns the
highest total score is selected.

BidEvaluator generates its candidates by making succes-
sive calls to theTargetMU heuristic, each time sending it a
different scenario to use as its predicted prices.

BidEvaluator* is identical toBidEvaluator, except that
its candidate bidding policies are generated by callingTar-
getMU* instead ofTargetMU.

Sample Average Approximation
The problem of bidding under uncertainty—how to bid
given a distributional model of predicted prices—is a
stochastic optimization problem. The objective is to select
bids that maximize the expected value of the difference be-
tween the value of the goods the agent wins and the cost of
those goods. Formally,

Definition 2 [Stochastic Bidding Problem] Given a set of
goodsX , a (combinatorial) valuation functionv : 2X →
IR, and a distributionf over clearing pricesp ∈ IRX , the
stochastic bidding problemis defined as:

max
b∈IRX

Ep∼f [v(Win(b, p)) − p̃(Win(b, p))] (1)

Here, x ∈ Win(b, p) if and only if b(x) ≥ p(x), and p̃ :

2X → IR is the additive extension ofp ∈ IRX , that
is, the real-valued function on bundles defined as follows:
p̃(Y ) =

∑
x∈Y p(x), for all Y ⊆ X .

Sample average approximation(SAA) is a standard way
of approximating the solution to a stochastic optimization
problem, like bidding under uncertainty. The idea behind
SAA is simple: (i) generate a set of sample scenarios, and
(ii) solve an approximation of the problem that incorporates
only the sample scenarios.

Technically, the TAC Travel bidding problem, in which
the goal is to maximize the difference between the value
of allocating travel packages to clients and the costs of the
goods procured to create those packages, is a stochastic pro-
gram with integer recourse (Lee, Greenwald, & Naroditskiy
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2007). Using the theory of large deviations, Ahmed and
Shapiro (2002) establish the following: the probability that
an optimal solution to the sample average approximation of
a stochastic program with integer recourse is in fact an op-
timal solution to the original stochastic program approaches
1 exponentially fast as the number of scenariosS → ∞.
Given time and space constraints, however, it is not always
possible to sample sufficiently many scenarios to make any
reasonable guarantees about the quality of a solution to the
sample average approximation.

Our default implementation of SAA which we call
SAABottom always bids one of the sampled prices. How-
ever, given a set of scenarios, SAA is indifferent between
bidding the highest sampled price or any amount above that
price: in any case SAA believes it will win in all scenarios.
Consequently, we do not know exactly how much SAA is
willing to pay when it bids the highest sampled price. In
the settings with imperfect price prediction or when SAA is
given too few scenarios, it may be desirable to bid above the
highest sampled price to increase the chances of winning.
For this reason, we introduce a modified SAA heuristic—
SAATop—in which bids equal to the highest sampled price
are replaced with the “maximum” bid. In general, this bid
is the most the agent is willing to pay. In our domain, this
maximum is the sum of the utility bonus (300; see Foot-
note 2) and, for good hotels, the largest hotel bonus among
the agent’s clients’.

Experiments in TAC Travel-like Auctions
We consider four experimental settings: normally dis-
tributed prices in two decision-theoretic settings, one with
perfect and another with imperfect prediction; and competi-
tive equilibrium (CE) prices in a decision-theoretic setting
with perfect prediction and a game-theoretic setting with
typically imperfect prediction.

Our experiments were conducted in a TAC Travel-like set-
ting, in which nearly all the standard rules apply.1 Most
notably, we simplified the dynamics of the game. In TAC,
flights and entertainment tickets are available continuously
at time-varying prices, and hotel auctions close one at a time,
providing opportunities for agents to revise their bids on
other hotels. In this work, we focus on one-shot auctions.
More specifically, we assume all hotels close after one round
of bidding.

To reduce variance, we eliminated entertainment trading
and simplified flight trading by fixing flight prices at zero.2,3

1For a detailed description of the TAC Travel rules, visithttp:
//www.sics.se/tac.

2Since we fixed flight prices at zero (instead of roughly 700 for
round trip tickets), we adjusted the utility bonus for constructing a
valid travel package down from 1000 to 300. That way, our simu-
lation scores fall in the same range as real game scores.

3Initially, we ran experiments with flight prices fixed at 350,
which is the value close to the average flight price in the TAC Travel
game. However the resulting one-shot setting was not interesting
as flight tickets represented a very high sunk cost and the dominant
hotel bidding strategy was to bid very high on the hotels that would
complement the flights in completing travel packages.

We built a simulator of the TAC server, which can eas-
ily be tailored to simulate numerous experimental designs.
Our simulator is available for download athttp://www.
sics.se/tac/showagents.php.

Each trial in an experiment (i.e., each simulation run) pro-
ceeded in five steps:

1. The agents predict hotel clearing prices in the form ofsce-
narios- samples from the predicted distribution of clear-
ing prices.

• In the settings where prices are normally distributed,
the scenarios were sampled from given distributions of
predicted prices.

• In the settings characterized by competitive equilib-
rium prices, scenarios were generated by simulating si-
multaneous ascending auctions, as described in Leeet
al. (2007).

2. The agents construct bids using price information con-
tained in the scenarios and submit them.

3. The simulator determines hotel clearing prices, and bids
that are equal to or above those clearing prices are deemed
winning bids.

• In the decision-theoreticsettings, the clearing prices
were sampled from given distributions of clearing
prices.

• In the game-theoreticsetting, each hotels’ clearing
price was set to the 16th highest bid on that hotel.

4. Agents pay clearing prices for the hotels they win. They
use the hotels and free flight tickets to create packages for
their clients, based on which they earn the corresponding
utilities.

5. Each agent’s final score is the difference between its util-
ity and its cost.

The first two steps in the above sequence correspond to
the prediction and optimization steps typical of autonomous
bidding agents. To carry out step 2, the agents employ
heuristics from a test suite that includes the eight bidding
heuristics detailed in Wellman,et al.(2007), and summa-
rized above.

Regarding price prediction in step 1, hotel price predic-
tions were perfect in our first and third experimental setups
and imperfect in our second and fourth. In the first two,
hotel prices were predicted to be normally distributed; in
the second two, hotel prices were predicted to be competi-
tive equilibrium prices. Our first three experimental setups
were decision-theoretic; the fourth was game-theoretic. In
the second setup, we simply tweaked the normal distribu-
tion of predicted prices to generate a similar, but distinct,
normal distribution of clearing prices. In the fourth setup,
the game-theoretic setting, clearing prices were dictated by
the outcome of 16th price auctions. Our experimental design
is summarized in Table 1. All setups, with all settings of the
parameters (µ, σ, andλ), were run for 1000 trials.

Heuristic Parameter Settings
The parameter settings we chose for the heuristics are shown
in Table 2. Breaking down a TAC agent’s work into two
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Experimental Design
Normally-Distributed Prices Perfect Prediction DT
Normally-Distributed Prices Imperfect Prediction DT
CE Prices Perfect Prediction DT
CE Prices Imperfect Prediction GT

Table 1: Price predictions were either normally distributed
or competitive equilibrium prices. Moreover, they were
sometimes perfect and sometimes imperfect. Three of the
four experimental setups were decision-theoretic (DT); only
the fourth was game-theoretic (GT).

key steps—price prediction and optimization—the column
labeled SG lists the scenario generation (i.e., CE price pre-
diction) times; the column labeled BC lists the bid construc-
tion (i.e., optimization) times. The rightmost column lists
total runtimes. The goal in choosing these parameter set-
tings was to roughly equalize total runtimes across agents in
TAC games.

All experiments were run on AMD Athlon(tm) 64 bit
3800+ dual core processors with 2GB of RAM. All times
are reported in seconds, averaged over 1000 games. The ma-
chines were not dedicated, which explains why generating
50 scenarios could take anywhere from 8.7 to 9.4 seconds,
on average. Presumably, all the heuristics (but most notably,
AverageMU, the variants ofBidEvaluator, and theSAA
heuristics) could benefit from higher settings of their param-
eters.

Agent E S K SG BC Total
TMU – 50 – 9.4 1.0 10.4
TMU* – 50 – 9.0 1.1 10.1
BE 15 – 25 7.0 5.3 12.3
BE* 15 – 25 7.0 4.7 11.7
AMU – 15 – 2.3 10.2 12.5
SMU – 50 – 8.7 1.5 10.2
SAABottom – 50 – 8.8 1.7 10.5
SAATop – 50 – 9.0 1.6 10.6

Table 2: Parameter Settings.E is the number of evaluations,
S is the number of scenarios, andK is the number of candi-
date bidding policies.

We optimized the heuristics that bid only on the goods
in a target set to bid∞ on all flights in that set; they do
not bother to calculate the marginal utilities of their desired
flights.4 This helps explain why the bid construction phase
within TargetMU andTargetMU* is so fast.StraightMU,
and henceAverageMU, are also optimized to stop comput-
ing marginal utilities once a good’s marginal utility hits zero.

4Note that we ran many more experiments than those reported
here. In particular, flight prices were not always zero (e.g., see
Footnote 3). Indeed, in many cases it was sensible for the various
heuristics to make informed decisions about how to bid on flights.

Multiunit Marginal Utility
TAC Travel auctions are multi-unit auctions. For bidding
in multi-unit auctions, we extend the definition of marginal
utility, originally defined for a single copy of each good, to
handle multiple copies of the same good. The marginal util-
ity of the first copy of a good is calculated assuming that no
other copies of the good can be had; the marginal utility of
the second copy of a good is calculated assuming that the
first copy is on hand but that no other copies can be had; and
so on.

We assume the set of goodsX containsJ goods, withKj

copies of each good1 ≤ j ≤ J .

Definition 3 Given a set of goodsX , a valuation function
v : 2X → IR, and a pricing functionq : 2X → IR. The
marginal utility µ(xjk , X, v, q) of thekth copy of goodj is
given by:

max
Y ⊆X\{xj1,...,xjKj

}
[v(Y ∪ {xj1, . . . , xjk}) − q(Y )] −

max
Y ⊆X\{xj1,...,xjKj

}
[v(Y ∪ {xj1, . . . , xj,k−1}) − q(Y )]

In words, the marginal utility of thekth copy of good
j is simply the difference between the value of an op-
timal set of goods to buy, assumingxj1, . . . , xjk cost 0
andxj,k+1, . . . , xjN cost∞, and the value of an optimal
set of goods to buy, assumingxj1, . . . , xj,k−1 cost 0 and
xjk, . . . , xjN cost∞.

Our agent implementations of the marginal-utility-based
agents employ this definition.

Decision-Theoretic Experiments with Perfect
Distributional Prediction

Our first experimental setup is decision-theoretic, with
prices determined exogenously. Each agent is endowed with
perfect distributional information, so that it constructs its
bids based on samples drawn from the true price distribu-
tion. Under these conditions, it is known that the SAA-based
heuristics bid optimally in the limit asS → ∞ (Ahmed
& Shapiro 2002). The purpose of conducting experiments
in this setting was twofold: (i) to evaluate the performance
of the SAA-based heuristics with only finitely many scenar-
ios; and (ii) to evaluate the performance of the MU-based
heuristics relative to that of the SAA-based heuristics. We
find that both the SAA-based heuristics and certain variants
of the MU-based heuristics (primarily,TargetMU* andBid-
Evaluator*) perform well assuming low variance, but that
the SAA-based heuristics andAverageMU outperform all
the other heuristics assuming high variance.

Setup
Hotel prices were drawn from normal distributions with
means5 µ̄ = (150, 150, 150, 150, 250, 250, 250, 250) con-
stant across experiments and standard deviationsσ ∈
{0, 20, 40, 60, 80, 100} varying across experiments.

5In this, and all, hotel price vectors, the first four numbers refer
to the price of the bad hotel on days 1 through 4, respectively, and
the second four numbers refer to the price of the good hotel on days
1 through 4, respectively.
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Figure 1: Mean Scores. Decision-theoretic setting with per-
fect distributional prediction.

Results

Figure 1 depicts the mean scores earned by each agent in
each experiment: i.e., for each setting ofσ.

The SAA-based agents perform better than most of the
agents as variance increases. They gain an advantage by
submitting low bids on more goods than necessary in an at-
tempt to win only the goods that are cheap. We refer to this
strategy ashedging. We see that the SAA agents employ
hedging because the number of bids they place increases,
their average bids decrease, and the number of hotels they
win remains constant as the variance increases. The num-
ber of low-priced hotels increases with the variance making
hedging especially effective when variance is high.

Recall that target bidders (TargetMU, TargetMU*, Bid-
Evaluator, andBidEvaluator*) bid only on goods in their
target set, i.e. they do not hedge. Consequently, failing to
win one of the requisite hotels results in not being able to
complete a package (most packages are for one-night stays
as extending the stay for an extra day is likely to be more ex-
pensive than incurring the penalty for deviating from client’s
preferences).TargetMU andBidEvaluator win fewer and
fewer hotels as the variance increases, and hence complete
fewer and fewer packages. At the same time the average
cost of hotels they win decreases. The agents’ scores have a
slight upward trend as the benefit from lower cost outweighs
the loss from completing fewer packages.

BidEvaluator bids on more hotels thanTargetMU when
variance is 100. Recall thatBidEvaluator chooses the best
of K bidding policies. Bidding policies that bid on more
hotels score higher because they hedge, implicitly. For ex-
ample, a policy that bids to reserve two nights for a client
may earn a higher score than a policy that bids to reserve
one night as the reservation for two nights can be used to
create two separate one-night packages if some of the other
bids fail.

TargetMU* and BidEvaluator*, the main rivals of the
SAA-based agents, do not perform well in this setting. Just
like TargetMU and BidEvaluator, TargetMU* and Bid-

Evaluator* bid only on target goods. When variance is low
(σ = 20), bidding high on target good is a good strategy
as evidenced byTargetMU*’s and BidEvaluator*’s good
performance. As variance increases the agents fail to win
some of the target goods. In fact when variance is 100,
TargetMU* submits 5.8 bids but wins only 4.8 whileBid-
Evaluator* submits 7.4 bids and wins only 5.2. The average
cost of hotels thatTargetMU* andBidEvaluator* do win is
50% higher than the prices the SAA-based agents pay per
hotel.

Interestingly,AverageMU’s strategy happens to be very
close to hedging when variance is high.StraightMU sub-
mits a lot of bids too but unlikeAverageMU does not
perform well. StraightMU’s bids are higher thanAver-
ageMU’s resulting in more purchased hotels and higher av-
erage hotel cost. The increase in cost thatStraightMU in-
curs compared toAverageMU is not compensated by the
increase in utility that extra hotels bring.

In conclusion, the SAA-based agents andAverageMU
with their hedging strategy outperform the other agents
when variance is high.

Decision-Theoretic Experiments with
Imperfect Distributional Prediction

In our second decision-theoretic experimental setup, the
agents construct their bids based on samples drawn from a
normal distribution that resembles, but is distinct from, the
true distribution. Our intent here is to evaluate the agents’
behavior in a controlled setting with imperfect predictions,
in order to inform our analysis of their behavior in the game-
theoretic setting, where predictions are again imperfect. We
find that SAATop performs worse thanTargetMU*, and
BidEvaluator* at low variance, but outperforms most of the
other agents at high variance.

Setup
In these experiments, thepredictedprice distributions were
normal with mean values̄µ = (150, 150, 150, 150, 250,
250, 250, 250), whereas theclearing price distributions
were normal with mean values̄µ + λ. That is, the mean
of each predicted distribution differed byλ from the true
mean. For example, forλ = −40, predicted prices were
sampled from normal distributions with̄µ = (150, 150, 150,
150, 250, 250, 250, 250), and clearing prices were sam-
pled from normal distributions with̄µ = (110, 110, 110,
110, 210, 210, 210, 210). Hence, negative values ofλ
implied “overprediction.” Similarly, positive values ofλ
implied “underprediction.” Theλ parameter varied as fol-
lows: λ ∈ {−40,−30,−20,−10, 0, 10, 20, 30, 40}. We
chose as standard deviations of the distributions a low set-
ting (σ = 20) and a high setting (σ = 80).

In the low (and similarly in the high) deviation experi-
ments the strategies of the agents did not change withλ be-
cause the agent received the same predictions for all values
of λ. Experiments in this setting evaluate the strategies from
the perfect prediction setting withσ = 20 andσ = 80 under
different distributions of clearing prices as controlled by the
values ofλ.
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Results

Low Variance: σ = 20 The results assuming low vari-
ance are shown in Figure 2(a).

Recall from the perfect prediction experiments that the
strategy of bidding high on the goods from a target set is as
good as hedging when variance is low. In particular,Tar-
getMU* andBidEvaluator* perform as well as the SAA-
based agents. We will see that hedging is not a good strategy
in the low-variance setting with imperfect prediction while
bidding high on the goods in a target set works fairly well.

In an attempt to hedge, the SAA-based agents sub-
mit twice as many bids asTargetMU, TargetMU*, Bid-
Evaluator, andBidEvaluator*. The strategy of the SAA-
based agents is to bid low hoping to win approximately half
the bids. Because predictions are not perfect, the SAA-
based agents win too many hotels when prices are lower
than expected and too few hotels when prices are higher
than expected. Not surprisingly,SAATop, which bids higher
than its counterpart, performs worse thanSAABottom when
prices are lower than expected and better thanSAABottom
when the opposite it true.

When there is a high degree of overprediction and vari-
ance is low, (e.g., whenλ = −40 andσ = 20), clearing
prices are very likely to be below predicted prices. Since
TargetMU always bids at least the predicted price, it is
likely to win all the hotels it expects to win in this setting,
and hence performs well. Consequently,TargetMU*, Bid-
Evaluator, andBidEvaluator* all perform well. In contrast,
when prices are often lower than expected,AverageMU and
StraightMU win too many goods and thus incur high unnec-
essary costs.

As λ increases from−40 to −10, AverageMU and
StraightMU win fewer unnecessary hotels, which improves
their scores. But onceλ reaches 0, they fail to win enough
hotels, and their utilities decrease asλ increases to40. Tar-
getMU andBidEvaluator encounter the same difficulty.

TargetMU* and BidEvaluator* bid higher thanTar-
getMU and BidEvaluator; hence, underprediction affects
the former pair less than the latter pair.

To summarize, in the low-variance settingTargetMU*’s
andBidEvaluator*’s strategy of bidding high on a target set
of goods is more robust to imperfect predictions than the
strategy of the SAA-based agents that involves some hedg-
ing.

High Variance: σ = 80 The results assuming high vari-
ance are shown in Figure 2(b).

As we observed in the experiments with perfect predic-
tion andσ = 80, hedging allowed the SAA-based agents to
dominate. We are going to see that hedging is effective in the
high-variance setting even when predictions are not perfect.

The SAA-based agents submit over four times as many
bids asTargetMU, TargetMU*, BidEvaluator, and Bid-
Evaluator*. In contrast to the setting with low variance,
high overprediction (λ = −40) does not cause the SAA-
based agents to overspend on hotels. In the high-variance
setting the SAA-based agents’ bids are 40% lower than in

the low-variance setting (σ = 20) and only one-third of the
bids are winning bids.

Similarly, the SAA-based agents perform much better in
the high underprediction (λ = 40) setting when variance is
high than when variance is low. In the high-variance set-
ting with underprediction the SAA-based agents win at least
as many hotels as the high biddingTargetMU* and Bid-
Evaluator* agents. Although the SAA-based agents bid half
the price thatTargetMU* andBidEvaluator* bid, a much
higher number of bids that the SAA-based agents submit
combined with high variance results in a similar number of
winning bids.

Performance of the other agents is similar to their per-
formance in the setting with perfect prediction.Tar-
getMU, TargetMU*, BidEvaluator, andBidEvaluator* do
not hedge and perform poorly in under and over prediction
settings. Target bidders often fail to win some of the target
hotels even in the overprediction setting.AverageMU sub-
mits a lot of low bids resulting in a well-hedged strategy and
the scores that are as high as SAA’s for some values ofλ. As
before,StraightMU wins too many hotels.

In contrast to the setting with low variance and imperfect
predictions, the SAA-based agents’ hedging strategy works
well when there is high variance.

Experiments with Competitive Equilibrium
Prices

In contrast with our first two experimental settings, in which
the hotel clearing prices and their corresponding predic-
tions are exogenously determined and hence independent
of any game specifics, in our second two experimental set-
tings, both hotel clearing prices and predictions are deter-
mined endogenously (i.e., based on features of each game
instance). Specifically, following Walverine (Chenget al.
2005), hotel clearing prices and their corresponding predic-
tions are taken to be approximatecompetitive equilibrium
(CE) prices. CE prices are prices at which supply equals de-
mand when all market participants act as price-taking profit
maximizers (Mas-Colell, Whinston, & Green 1995). CE
prices need not exist, and likely do not in many of the games
studied here. Still, we approximate CE prices as follows:
in a market inhabited by its own eight clients and eight ran-
domly sampled clients per competitor, each agent generates
a scenario by simulating simultaneous ascending auctions
(i.e., increasing prices by some small increment until sup-
ply exceeds demand; see Leeet al. (2007) for details); the
resulting prices form a scenario.

Setup
In this context, where hotel price predictions are (roughly)
competitive equilibrium prices, we designed two sets of ex-
periments: one decision-theoretic and one game-theoretic.
In the former, hotel clearing prices are also the outcome of a
simulation of simultaneous ascending auctions, but depend
on the actual clients in each game, not some random sam-
pling like the agents’ predictions. (Our simulator is more in-
formed than the individual agents.) In the latter, hotel clear-
ing prices are determined by the bids the agents submit. As
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Figure 2: Mean Scores. Imperfect prediction.

in TAC Travel, the clearing price is the 16th highest bid (or
zero, if fewer than 16 bids are submitted). Note that hotel
clearing prices and their respective predictions are not inde-
pendent of one another in these experiments.

In these experiments games are played with a random
number of agents drawn from a binomial distribution with
n = 32 andp = 0.5, with the requisite number of agents
sampled uniformly with replacement from the set of eight
possible agent types. The agents first sample the number of
competitors from the binomial distribution, and then gener-
ate scenarios assuming the sampled number of competitors,
resampling that number to generate each new scenario.

Decision-Theoretic Experiments
Marginal frequency distributions of CE prices in these ex-
periments have means (109, 126, 126, 107, 212, 227, 227,
210) and standard deviations (47, 37, 37, 46, 50, 41, 41, 49).
Standard deviation in this setting is close to 40 making this
setting similar to the one with perfect prediction andσ = 40.
The mean hotel prices are approximately 20% lower in this
CE setting but we do not expect the difference in mean hotel
prices to have a strong effect on the ranking of the agents

and attribute the differences in relative results to the differ-
ent structure of prices: unlike the setting with normally dis-
tributed prices, CE prices are not independent.

SAATop, SAABottom, TargetMU*, andBidEvaluator*
are among the best agents in this CE setting (see Figure 3).
However,StraightMU and especiallyAverageMU perform
poorly.AverageMU andStraightMU submit more bids and
win more hotels than the other agents, but cannot create
as many packages as the top-scoring agents. This is be-
cause (i) CE prices of substitutable goods are similar, and
(ii) marginal utilities of substitutable goods are similar. As
a result,AverageMU andStraightMU bid almost the same
amount on all substitutable goods and either win or lose all
of them.

SAA-based agents employ some hedging but do not per-
form significantly better than the non-hedging heuristics
TargetMU* andBidEvaluator*.
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Figure 3: Mean scores and confidence intervals. Decision-
theoretic setting with CE price prediction.

Game-Theoretic Experiments
The predicted prices are the same as in the decision-theoretic
experiments with CE prices and 32 agents: means (109,
126, 126, 107, 212, 227, 227, 210) and standard deviations
(47, 37, 37, 46, 50, 41, 41, 49). Marginal frequency dis-
tributions of clearing prices have means (91, 98, 100, 91,
198, 186, 187, 197) and standard deviations (41, 33, 32, 40,
50, 56, 54, 50). L1-norm of the difference between mean
price vectors is 197. Predicted prices are slightly higher (by
about 20) than the clearing prices. This is similar to the
decision-theoretic setting with overprediction (λ = −20)
and medium deviation (between 20 and 80).

Indeed, we find that the results in this setting (see Fig-
ure 4) are similar to the results in the decision-theoretic set-
ting with imperfect prediction and high variance:λ = −20
and σ = 80 (see the ranking of agents forλ = −20 in
Figure 2(b)). The ranking of non-SAA agents is almost the
same in both settings. A notable exception isAverageMU,
which performs much worse in the game-theoretic setting
for the reasons described above.SAATop and SAABot-
tom are the best agents in this setting, withSAABottom
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performing slightly better.
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Figure 4: Mean scores and confidence intervals. Game-
theoretic setting with CE price prediction.

Summary and Discussion of Experimental
Results

In our experiments, we evaluated the performance of various
bidding heuristics in simultaneous auctions. Based on our
findings, we summarize the performance of the heuristics
analyzed as follows:

• SAATop andSAABottom perform well in all settings ex-
cept for the setting with imperfect prediction and low vari-
ance. SAATop andSAABottom are especially effective
in high-variance settings because they are able to take ad-
vantage of hedging opportunities.

• TargetMU andBidEvaluator are competitive only in the
settings with low variance and high overprediction.Bid-
Evaluator outperformsTargetMU in high-variance set-
tings.

• TargetMU* andBidEvaluator* perform well in the set-
tings with low variance.

• AverageMU performs well in the settings with indepen-
dent prices.

• StraightMU performs worse than the other heuristics.

We can also make the following observations about the
various bidding behaviors:
• SAABottom, SAATop, andAMU place low bids on many

goods, intending to win whatever sells at cheap prices.
These heuristics incur high penalties for not satisfying
their clients’ precise preferences.

• TargetMU, TargetMU*, BidEvaluator, and Bid-
Evaluator* place higher bids but on fewer goods, namely
those for which their clients have clear preferences.
These heuristics incur lower penalties, but risk alienating
some clients, by not allocating them any travel packages
at all.6

6No penalty is incurred when a client is not allocated any pack-
age at all. (Of course, no utility is awarded either.)

The performance ofSAA is known to approach optimal-
ity as the number of scenarios approaches∞ in decision-
theoretic settings. We investigated the viability of two
SAA heuristics with only finitely-many scenarios in both
decision-theoretic and game-theoretic settings. Our first
and third experimental settings (with normally distributed
and competitive equilibrium prices, assuming perfect price
prediction) established the viability of these heuristics in
decision-theoretic settings with only finitely-many scenar-
ios. Our fourth experimental setting established the viability
of these heuristics (again, with only finitely-many scenarios,
but in addition) in a rich game-theoretic setting.

Related Work
The test suite considered here is far from exhaustive. In this
section, we mention several heuristics that were not included
in our study—some TAC-specific; some more general—and
the reasons for their exclusion.

The creators of theATTac agent (Stoneet al. 2003) pro-
pose usingAverageMU for TAC hotel bidding.ATTac also
employs distributional information about hotel prices to de-
termine the benefit of postponing flight purchases until hotel
prices are known; this additional functionality, while cer-
tainly of interest, is not applicable to the one-shot auction
setting studied here.

WhiteBear’s (Vetsikas & Selman 2003) TAC hotel bids
are computed by taking a weighted average of the current
price and the marginal utility of each hotel. The particular
weights, which were fine-tuned based on historical compe-
tition data, varied with time. In a one-shot setting,White-
Bear’s strategy essentially reduces toTargetMU: it is too
risky to bid anything lower.

SouthamptonTAC (He & Jennings 2003) andMerta-
cor (Toulis, Kehagias, & Mitkas 2006) focus on hotel
price prediction, and do not thoroughly analyze bidding.
SouthamptonTAC uses fuzzy reasoning to predict how ho-
tel prices change during the game.

Unlike the heuristics studied in this paper,Walver-
ine’s (Chenget al. 2005) bidding strategy incorporates
some game-theoretic reasoning. Specifically,Walverine an-
alytically calculates the distribution of marginal utilities of
the other agents’ clients and bids a best-response to this
distribution. The authors implicitly assume that the other
agents bid marginal utilities (i.e., act decision-theoretically)
and only their agent bids a best-response (i.e., acts game-
theoretically). We learned from the study reported in this
paper thatSAA can be a successful bidding heuristic in cer-
tain markets. FollowingWalverine’s line of thought, we can
imagine bidding a best-response to a distribution ofSAA
bids. However, if this bidding strategy were successful, we
would have to assume that other agents would act game-
theoretically as well; that is, they would also play a best-
response to a distribution ofSAA bids. We may then seek a
fixed point of this process. This line of inquiry could be fas-
cinating, but any approach based on this insight ofWalver-
ine’s warrants a detailed study of its own.

Aside from TAC Travel there is a rich literature on bid-
ding in other settings. We reference a few papers here, high-
lighting some of the settings that have been studied. We are
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not aware of any papers that address the problem of bidding
in multiple one-shot auctions for both complementary and
substitutable goods. Gerdinget al. (2006) describes a strat-
egy for bidding in simultaneous one-shot second-price auc-
tions selling perfect substitutes. Byde, Priest, & Jennings
(2002) consider the decision-theoretic problem of bidding
in multiple auctions with overlapping closing times. Their
model treats all goods as indistinguishable (i.e., winning any
n goods results in utilityv(n)). Krishna & Rosenthal (1996)
characterize a symmetric equilibrium for the case of one-
shot simultaneous auctions with indistinguishable comple-
mentary goods (i.e.v(n) ≥ nv(1)).

Conclusion

The primary purpose of this work was to show that using as
much distributional information as possible is an effective
approach to bidding in TAC Travel-like one-shot simultane-
ous auctions. Most TAC Travel agents used point price pre-
dictions or employed little distributional information about
prices in constructing their bids. Some of the difficulties
with using distributional price predictions include the inac-
curacy of and the high computational cost of optimizing with
respect to distributional predictions. We showed experimen-
tally that theSAA heuristic, which uses more distributional
information than the other heuristics in our test suite, is one
of the best heuristics in the GT setting.

The underlying research question motivating this line of
inquiry was: how can we facilitate the search for heuris-
tics that perform well against a variety of competing agents
in complex games? Analyzing the performance of an indi-
vidual agent in a game-theoretic setting is complicated be-
cause each agent’s performance is affected by the strategies
of the others, and can vary dramatically with the mix of par-
ticipants. Others tackling this problem in the TAC Travel
domain have employed more direct game-theoretic analy-
sis techniques based on equilibrium computations (e.g., Vet-
sikas et al. (2007) and Jordan, Kiekintveld, & Wellman
(2007)). In contrast, we first used systematic decision-
theoretic analysis to help us understand some of the intrinsic
properties of our bidding heuristics, before attempting any
game-theoretic analysis. We found that certain properties of
the heuristics that may have been hard to identify in game-
theoretic settings, such as how they perform in conditions of
over- vs. under-prediction, carried over from our DT to our
GT settings.

In summary, the methodology advocated in this paper for
analyzing game-theoretic heuristics is this: first, evaluate the
heuristic in DT settings with perfect and imperfect predic-
tions; and second, measure the accuracy of the agent’s pre-
dictions in GT experiments and use the corresponding DT
analysis to inform the analysis of the GT results. It remains
to test this methodology in other complex games, such as
TAC SCM (Arunachalam & Sadeh 2005).
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Appendix
We include game statistics collected from our experiments
with CE prices to illustrate the type of data we used in our
analyses. Statistics for other settings and further data can be
found in Lee (2007).
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