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Abstract 

In the CAT Tournament, specialists facilitate transactions 
between buyers and sellers with the intention of maximizing 
profit from commission and other fees.  Each specialist must 
find a well-balanced strategy that allows it to entice buyers 
and sellers to trade in its market while also retaining the 
buyers and sellers that are currently subscribed to it.  
Classification techniques can be used to determine the 
distribution of bidding strategies used by all traders 
subscribed to a particular specialist.  Our experiments 
showed that Hidden Markov Model classification yielded 
the best results.  The distribution of strategies, along with 
other competition-related factors, can be used to determine 
the optimal action in any given game state.  Experimental 
data shows that the GD and ZIP bidding strategies are more 
volatile than the RE and ZIC strategies, although no traders 
ever readily switch specialists.  An MDP framework for 
determining optimal actions given an accurate distribution 
of bidding strategies is proposed as a motivator for future 
work. 

1  Introduction 

The field of Catallactics, or the science of exchanges, has 

received significant attention in the Artificial Intelligence 

community over the past few years, in large part, due to 

increasing use of e-commerce environments such online 

auctions and ticket vendors.  In particular, significant 

attention has been given to designing efficient markets in 

which traders of numerous roles and preferences interact 

and exchange goods while utilizing various bidding 

strategies and trading tactics.  The CAT Tournament [1], 

an offshoot of the original Trading Agents Competition 

introduced in 2007, is a contest in which markets (hereon 

referred to as “specialists”) attempt to lure buyers and 

sellers (hereon collectively referred to as “traders”) to their 

respective trading platforms in hopes of maximizing profit.  

Unlike the original TAC Classic and TAC SMC 

competitions in which specialists fulfilled stationary 

requests, CAT specialists must respond to a variety of 

bidding techniques employed by the traders who also wish 

to maximize their own profits; this dynamic environment 

serves as the main motivation for developing adaptive 

markets that actively respond to the traders’ ever-changing 

preferences.   

 Successful specialist design requires a balanced 

decision-making strategy that entices new traders to 

subscribe to the specialist while also retaining existing 

traders.   One method of developing such a strategy 

involves creating a model for every trader and determining 

how each action affects each model.  This approach is 

highly infeasible, however, because the specialist does not 

receive any information regarding the traders other than 

which ones are currently subscribed to it; all incoming bids 

are masked before they reach the specialist, so the 

specialist is unable to definitively link each bid with a 

particular trader.  Creating a model for each trader is also 

highly ineffective given that there may be hundreds of 

traders interacting with one another.  Processing hundreds 

of models can take a significant amount of time on even 

the most powerful systems and may require more system 

memory .than is available. 

 One important feature of the CAT Tournament is that all 

traders use strictly one of four previously-defined bidding 

strategies.  In this paper we describe how classification 

techniques can be used to exploit the fact that traders must 

use one of four bidding strategies, reducing the number of 

models required to accurately represent all traders to just 

four.  We provide experimental results indicating how 

certain actions affect the trader pool, especially groups of 

traders utilizing the same bidding strategy.  We also 

discuss how these group models can be used to train the 

specialist, allowing it make decisions quickly during the 

competition. 

The paper first provides a brief description of each 

bidding strategy in Section 2.  The benefits of classifying 

traders according to bidding strategies are described in 

detail in Section 3, along with a comprehensive analysis of 

various classification techniques that have been applied to 

this problem and their final results.  Section 4 briefly 

describes how classification (in conjunction with other 

game factors) can be used to determine the optimal action 

the specialist should take at any particular point in the 

competition. Experimental results are presented in Section 

5, followed by a brief conclusion and a discussion of 

possible future work in Section 6. 
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2  Bidding Strategies 

All traders in the CAT Tournament are required to utilize 

one of four bidding strategies.  A brief description of each 

strategy is provided here, but the reader is urged to consult 

the original publications (see references [2]-[5]) that 

describe the strategies in detail. 

A trader using the Double Auction strategy [3] 

(henceforth called GD) keeps track of the number of bids 

accepted and rejected by the market at a particular price. 

Subsequent values for the bids are chosen depending on 

the probability of acceptance of a bid, given the past 

history. Utilizing the Extensive Form Game strategy [5] 

(hereon referred to as RE), a trader alters its future bid 

values based on the profits that were observed for the 

previous bids.  The Zero Information-Constrained (ZI-C) 

strategy [4] involves generating random bids constrained 

between a maximum and minimum value.  A buyer using 

the ZI-C strategy will never bid more than what it believes 

a good is worth.  Likewise, a seller will never sell a good 

for less than the amount it cost the seller to obtain the 

good.  Finally, if a trader uses the Zero Information, Plus 

(ZIP) strategy [2], it utilizes the same trading techniques as 

a trader that employs ZI-C, but it also updates the 

constraints based on feedback from the market.  Thus, each 

process (except when using the ZI-C strategy) receives 

feedback from the market in various forms and updates 

itself to generate new bids.  

3  Classifying Traders by Bidding Strategies 

In the CAT Tournament, all traders must employ one of 

four previously-defined bidding strategies when placing 

bids with their respective specialist.  With this stipulation, 

it is reasonable to assume that all traders utilizing the same 

bidding strategy will behave similarly (at least more so 

than the other traders).  Likewise, any action taken by the 

specialist, such as raising or lower a particular fee, will 

most likely have a similar affect on all traders utilizing the 

same bidding strategy.  These assumptions allow the 

specialist to reason about how its actions may affect an 

entire group of traders rather than individuals, turning the 

trader-modeling problem into a classification problem.  We 

discuss the validity of our assumption in the Experimental 

Results section (5). 

 For simplicity, we consider only the bids that the 

specialist has received from its traders.  Unfortunately, the 

data cannot be used for classification in its rawest form 

because bids are masked before they reach the specialist, 

making it virtually impossible to determine from which 

trader each bid originated.  As a result, a set of collected 

data was manually unmasked in order to train and then test 

various classifiers.  Furthermore, based on the assumption 

that traders act as groups, it is sufficient for the classifier to 

predict the overall representation of each bidding strategy 

rather than link each trader to a specific strategy.  This 

subtle difference becomes crucial during the actual 

competition when all of the bids are again masked and the 

specialist is unable to determine the origin of each bid it 

receives. 

 Bid sequences were collected for 400 traders (100 

traders for each strategy), with their identities unmasked. 

We decided that focusing on the selling trader sequences 

alone would suffice to evaluate the efficacy of the 

classification strategy. In all, 2076 bid sequences were 

generated by the system. Two-thirds (1384) of these 

samples were randomly chosen to be the training set and 

one-third of the data (692) was used for testing. 

 We describe our data collection methods in Section 3.1 

and then examine two classification techniques in detail, 

focusing our attention on SVM Classification in Section 

3.2 and HMM Classification in Section 3.3.  In Section 3.4 

we briefly discuss other classification techniques that were 

considered but not explored in detail. 

 

3.1 Data Collection 
In CAT, each trader makes a bid to the market and 

continues to update it until another trader in the same 

market accepts the bid price and a transaction takes place. 

We call each string of updated bids from the same trader a 

“bid sequence”.  Sample bid sequences can be seen in 

Figure 1. Given the competitive nature of the market with 

several traders attempting to make the transaction, a 

buyer’s bid could be accepted by a seller at any point 

during the bid process. This means that the number of bids 

a trader has to make before successfully concluding a 

transaction is not constant.  As a result, the number of bids 

in each bid sequence can vary significantly. There is no 

upper bound on the length of the sequence.  The number of 

bids in the sequence can range from 1 to any large number 

depending on the state of the market and the strategies of 

other traders in that market.  We witnessed a number of 

occasions in which bid sequences contained more than 200 

bids.  The problem is further complicated when we 

consider multiple traders using different strategies. 

 

 
Figure 1: Illustration of bid sequences from a sample market 

with multiple traders employing different bidding strategies. 
 

The traders’ bidding data was collected through 

numerous simulations of a typical CAT competition
1
.  

                                                 
1
 Simulations were run using the TAC Market Design 

Competition Platform[6], which was obtained at 

https://sourceforge.net/projects/jcat 
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Although there were no problems collecting a sufficient 

amount of data (one could always run more simulations), 

the “raw” data collected could not immediately be used for 

classification purposes for a number of reasons. The most 

significant obstacle of data classification was dealing with 

anonymized data. By “anonymized” we mean that the true 

origin of each bid was masked. This occurred per the 

specification of the CAT Competition Protocol, in which 

bids shouted by traders first reached the server, which 

replaced the identity of the bid source with a unique bid 

identifier used only for that particular sequence of bids. 

Once a transaction completed, the bid identifier was 

discarded and a new bid identifier was assigned to the next 

sequence of bids from the same trader. As a result, all bids 

were masked by the time they reached the specialist. Thus, 

the specialist could determine neither the true identity of 

each bid, nor which bid sequences originated from the 

same trader.  

The random order in which the bids arrived also further 

complicated the process of determining the true origin of 

each bid. Fortunately, the CAT source code (freely 

available to all CAT Competition participants and 

researchers) gives users access to all functional modules 

that make up the competition. With these additional 

resources, and a number of code modifications, the authors 

were able to obtain the required data in its “unmasked” 

form, allowing them to identify the true source of each bid 

that the specialist received. This data was collected under 

the assumption that it would be used for training only, 

since the identity of each bid would not be available to the 

specialist during an actual competition.  

 

3.2 Classification Using a Support Vector Machine 
Support Vector Machines are a set of popular classification 

algorithms that strive to simultaneously minimize 

classification error and maximize the margin of separation 

of data [7]. 

In order to perform classification using the SVM, 

collected data was first converted to the appropriate data 

format.  Each sequence of bids was represented by a 

unique vector, and each bid in the sequence became a 

feature in the corresponding vector.  Feature numbers were 

assigned incrementally, so a bid sequence made up of n 

bids was represented by a vector of features 1 through n.  

Each vector was assigned a classification as follows: a bid 

sequence coming from a trader using the GD strategy was 

classified as class 1, RE as class 2, ZIP as class 3, and ZIC 

as class 4.  An example of the data can be seen in Figure 2. 

SVM training and classification was performed using 

LibSVM® v2.85 [8]. Prediction results using SVM 

classification varied greatly, depending largely on the type 

of kernel that was used for training.  Training on the 

sigmoid kernel (with default gamma and coefficient 

values) yielded the worst results, predicting only 28.2% of 

the testing set correctly (only 3% better than completely 

random prediction).  Training under the linear and 

polynomial kernels also yielded rather poor results, 

predicting only 32.8% and 38.4% of the testing data 

correctly, respectively.  The sigmoid kernel, however, 

produced much better results, predicting 53.8% of the 

testing data correctly under default parameters and 59.7% 

of the data correctly when gamma was set to 0.8.  An 

observation was also made that the GD and ZI-C strategies 

were predicted with a high degree of accuracy, while data 

from the ZIP and RE strategies was more difficult to 

classify. 

 

 
 
 Figure 2: Bid sequence data converted to SVM format.  The 

number of bids in each sequence varied and was heavily 

dependent on the bidding strategy utilized by each bidding 

trader. 

 

3.3 Classification Using a Hidden Markov Model 
Hidden Markov Models are graphical models that can be 

used to model the underlying process that generates a 

given set of data [9]. They are most widely used for 

classifying time-series data, (e.g. speech processing [10]). 

HMM-based classification showed a slight improvement 

over the SVM-based method that was used earlier, 

supporting the authors’ expectation that a Hidden Markov 

Model would most effectively model the variables 

involved in the bidding process. Several HMM runs were 

executed with different values for the parameters (number 

of hidden states and mixture components).  A summary of 

the results can be seen in Figure 3. The HMM models took 

between 10 and 68 minutes to train depending on the 

number of states and mixture components. In contrast, 

SVM training ranged between only a few seconds and 2-3 

minutes. Nevertheless, the accuracy for the HMM method 

was always greater than 52%, and the authors were able to 

achieve about 62% accuracy by tuning the parameters 

(number of hidden states = 10, number of mixture 

components = 10).   

A small experiment was also carried out to explore the 

efficacy of feature reduction of the observed dataset in the 

HMM classification framework. We could not use standard 

reduction methods like PCA because the dataset included 
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instances of varying feature lengths (treating each bid as a 

single feature).  Most samples had only one feature, while 

some had as many as 200. Experiments showed that when 

only two features were used, the HMM accuracy fell to 

49%, while using only the first 10 features improved upon 

earlier best results slightly. Thus, we concluded that a 

moderate reduction in the number of features could result 

in improved performance while also maintaining the 

integrity of the observed data. 

 

 
Figure 3: HMM Classification results for varying parameters 

 

3.4 Alternative Classification Techniques 
 A number of other interesting methods were explored 

for improving the results of the HMM. We tried to fit a 

Conditional Random Fields (CRF) model to the data, using 

the CRF Toolbox for MATLAB® source code provided by 

Professor Kevin Murphy (U. of B.C.).  The model failed to 

converge in many cases, however, and resulted in accuracy 

that was not much better than random performance. 

Since SVM is the most popular and successful 

classification method in most applications, we decided to 

also try the time-dependent Fourier kernel [11]. We 

thought that the power of SVM when combined with some 

time information provided by the Fourier kernel might 

show significant improvement in the classification 

accuracies. A Fourier kernel was calculated for all the 

instances in the training and testing data set, as required by 

the LibSVM framework for implementing user-defined 

kernels in LibSVM.  Accuracy of between 28% and 42% 

was observed for different cases of the Fourier kernel, 

suggesting that it was not an improvement over the other 

kernel functions of the SVM framework.   

We briefly contemplated the use of the pyramid kernel 

[12] because it is designed to work with datasets that have 

a varying number of features. However, due to a lack of 

time we decided to pursue this as future work. 

 

4  Utilizing Strategy Classification to Determine 

Optimal Action Policies 
An accurate model of CAT is required for the specialist to 

make sound decisions throughout the competition.  The 

specialist is privy to a large amount of data, most notably 

every bid it receives from its traders, but it is not 

immediately clear how this data should be represented in 

the game model.  Clearly, modeling every individual bid is 

not only impractical but also very likely infeasible and 

probably unnecessary.  The classification techniques we 

discussed in the previous section allow us to model all bids 

using a simple yet highly-descriptive distribution.  We can 

then use this distribution, along with a number of other 

observable factors, to uniquely and correctly identify the 

state of the competition and take the action that is deemed 

optimal for that state. 

  Preliminary data suggested that an accurate 

description of the state of the CAT competition should 

include at least the following characteristics: 
 

State: 

1) Distribution  ::= bidding strategy combinations 

2) Position    ::= numerical score position 

3) Trader Count  ::= 0 – total_trader_count  

4) Current Fees  ::= 0 – ∞∞∞∞ flat fees, 0 – 1 profit fee  
 

Utilizing the classification results from Section 3, each 

bidding strategy combination can be described in a 

sequence of bidding strategies (most popular, 2
nd

 most 

popular, 3
rd

 most popular, and least popular), thus giving 

us 24 (4!) total combinations.  

In addition to the distribution of bidding strategies, the 

specialist should consider a number of other observable 

factors such as Position, Trader Count, and Current Fees.  

All of these factors may be subject to a wide range of 

values or may not be bounded at all, so some sort of 

mapping is required to reduce the number of total possible 

states to a finite and practical quantity.  For example, it 

may be sufficient to categorize Trader Count based on a 

particular range of total traders (e.g. 0-10% of all traders, 

10-20%, etc…).  Likewise, the Current Fees factor can be 

classified in relation to some numerical constants 

determined to be “threshold boundaries” for certain groups 

of traders.   

The actions each specialist can take can be limited to 

raising, lowering, or maintaining each of the five fees the 

specialist charges each trader.  However, because four of 

the five fees do not have an upper bound, it does not make 

sense to enumerate the actions based on raw values (of 

which there are infinitely many).  Similar to the Trader 

Count factor used to define the state of the CAT 

Tournament, raw actions must also be mapped to produce a 

finite and enumerable set of distinct actions.  One such 

mapping involves simply determining whether each fee has 

been raised, lowered, or unmodified, resulting in 3^5, or 

243 unique actions.  We describe our implementation of 

this framework in section 5.4. 

 

5  Experimental Results 

A set of experimental test runs was executed to determine 

if certain actions had a more profound effects on specific 

14



groups of traders; they yielded a number of interesting 

properties for various bidding strategies.  We also describe 

our attempt to determine optimal bidding policies using a 

Markov Decision Process (MDP) framework outlined 

earlier.   

 We first describe the environment in which our 

experiments were executed, as well as the algorithm that 

was implemented to adjust fees throughout the 

experiments. 

 

5.1 Testing Environment 

All non-clustering experiments were run on a Compaq 

C712NR laptop with the following specifications: 

 

Intel® Pentium® Dual-core CPU T2310 @ 1.46GHz 

 1 GB DDRAM, 789 MHz 

 Windows XP with Service Pack 2 

 Java
TM

 SE Runtime Environment (build 1.6.0_05-b13)  
 

All CAT agents (server, specialists, and traders) were run 

on the same machine.  The server and traders were run 

using the tournament.params parameter file provided with 

the CAT source code.  Important features included: 
 

 400 total traders (100 for each bidding strategy) 

 200 buyers, 200 sellers (8 groups of 50 traders total) 

 Game length of 4000 days (usually terminated earlier) 

 Day length of 20 rounds 

 Round length of 1000 milliseconds 
 

All experiments were run with a total of 5 specialists.  To 

simulate a realistic tournament environment, publicly 

available binaries from the 2007 CAT Tournament
2
 were 

used as specialist adversaries, specifically CrocodileAgent, 

jackaroo, PersianCat, and TaxTec.   

 

5.2 Fee Adjustments 

Following the discussion in the previous section, fees 

were randomly adjusted in one of three ways:  
 

i) increase a fee by a factor of 2 

 ii) decrease a fee by a factor of 2 

 iii) retain an existing fee 
 

The likelihood of all outcomes was set to the same 

frequency (1/3), although it relied heavily on Java’s 

implementation of the generating random values of type 

Double.  Our fee-adjustment algorithm ensured that the 

profit fee would not surpass 100% (per the specification of 

the CAT protocol) and set an arbitrary amount for a fee 

when it was being increased from 0, since increasing 0 by a 

factor of two again results in 0. 

Finally, a special “stabilization” algorithm was 

implemented for a subset of the experiments.  Specifically, 

the algorithm maximized the specialist’s chances of 

                                                 
2
 Binaries of 2007 CAT Tournament specialists were 

obtained from http://www.sics.se/tac/showagents.php 

regaining traders if the number of subscribed traders 

reached 0.  In this case, all fees were immediately reduced 

to 0 and maintained at that level until at least 10% of the 

trader pool was again subscribed to the specialist.    
 

Algorithm for Non-Stabilizing Fee Increases: 
funct IncreaseFee(fee): 

 if (increase_fee) 

  if (fee > 0) 

   fee = fee * 2.0; 

   if (fee > 1.0 && isProfitFee(fee)) 

    fee = 1.0; 

else 

   if (fee.type = = profitFee) 

    fee = 0.1; 

 else 

  fee = 1.0; 
 

5.3 Experiments 

A number of experiments were run and a large amount of 

data was collected.  We separate the results we deemed 

most interesting into the following categories: largest 

increases in traders, largest decreases in traders, and largest 

discrepancy in trader strategies.  
 

 I.  Largest Increases in Trader Count 
 Unsurprisingly, some of the largest increases in trader 

count came during the first day of a stabilization sequence 

when all fees were reset to 0.  The increase in traders 

ranged from 9 to 24 traders.  The traders that immediately 

subscribed to the stabilizing specialist represented all of the 

bidding strategies fairly equally, although the total number 

of recently-joined sellers was often higher than the total 

number of recently-joined buyers. 

  More surprisingly, a continued state of stabilization 

did not yield a constant increase in traders.  In one case it 

took 356 trading days before the stabilizing specialist had 

regained 10 percent of the total trader pool (although it had 

regained 9% of the trader pool in 191 days).  This result, 

presented in Figure 4, conveyed that once traders had 

settled upon a particular specialist a significant decrease in 

fees of another specialist was not sufficient in tearing the 

traders away from their host, and only action taken by the 

host specialist resulted in traders looking for another 

specialist. 

 
  Figure 4: Stabilization sequence which lasted 356 days 
 

II.   Largest Decreases in Trader Count 

Analogous to the largest increases, the most significant 

decreases in trader count occurred when multiple fees 
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increased simultaneously, sometimes bringing the 

specialist’s trader count to zero and initiating a 

stabilization sequence. 

  Interestingly, an increase in multiple fees almost 

always resulted in a significant decrease in trader count 

regardless of whether other fees had decreased or 

remained the same.  Additionally, the data suggested that 

trader count decreased when multiple fees increase 

regardless of the actual amount by which the fees rose.  

For example, three fees doubling from 1.0 to 2.0 during 

one day resulted in a decrease in trader count with the 

same magnitude as that of three fees doubling from 16 to 

32.  A small link appeared to exist between a decrease in 

the registration and information fees and a decrease in 

the buyers using GD bidding and sellers using RE 

bidding. 

 

III. Largest Discrepancy in Bidding Strategies 

After modifying the provided CAT source code, we were 

able to identify the bidding strategies of all traders 

placing bids through our specialist.  This allowed us to 

analyze the distribution of strategies at any point during 

the CAT competition and yielded some interesting 

results.  Here we note that this information is not 

available during the actual competition when bids are 

masked, so the results we have gathered should be used 

only to identify general properties of the bidding 

strategies. 

  Our first observation was that traders employing the 

GD and ZIP bidding strategies were generally more 

volatile than traders who were utilizing the RE and ZIC 

bidding strategies.  For example, during a sequence of 

days in which the total count of traders decreased we 

observed that the percentage of total traders utilizing the 

ZIP strategy nearly doubled while the percentage of total 

traders utilizing the GD strategy decreased by nearly a 

factor of 2 (see Figure 5).   

 

Figure 5: Bidding strategy makeup during a sequence of 

decreasing traders 
 

In the same experiment, we also observed the 

representation of each bidding strategy during a 

sequence of days in which the total number of traders 

gradually increased.  Under this scenario, the percentage 

of total traders utilizing the ZIP strategy decreased by a 

factor of 2 while the proportion of traders utilizing the 

GD strategy nearly doubled (see Figure 6).  Although 

the proportion of traders employing the other two 

strategies also changed during the same sequences, the 

changes were not reciprocal of one another when 

comparing the sequences. 

 

 

Figure 6: Bidding strategy makeup during a sequence of 

increasing traders. 

 

5.4 Determining Optimal Actions Using an MDP 

Very early in our testing cycle we observed that CAT 

states possess the Markov Property, suggesting that a 

Markov Decision Process (MDP) framework could be used 

to determine the optimal action for each state.  Thus, we 

attempted to address the decision-making problem 

presented in section 4 with the following MDP definition: 

 

CAT MDP Definition: 

Let < S, A, R, P > represent the MDP decision-making 

problem in the CAT tournament, where 

• S is a CAT state, further decomposed into 4 criterion: 

i) Distribution ::= S1, S2, S3, S4, represents the 

strategies utilized by the subscribed traders in 

decreasing order of popularity. 

ii) Position ::= <FIRST, MIDDLE, LAST>,  refers to 

the specialist’s overall score when compared with 

other specialists’ scores. 

ii) Traders ::= <0-10%, 10-20%, 20-30%, 30%+>, 

represents the percentage of all traders subscribed 

to our specialist. 

iv) Fees ::= <Flat Fees | Profit Fee>, where 

 Flat::=<0, 0–1, 1–20, 20–100, 100–1000, 1000+> 

 Profit ::= <0, 0-0.25, 0.25-0.5, 0.5-0.75, 0.75-1, 1> 
 

• A is a CAT action, represented by the following tuple: 

<f1, f2, f3, f4, f5> where fx ::= <raise, lower, keep> 

represents an action for each of the five fees. 
 

• R is the reward function for each CAT state. Since the 

ultimate goal in CAT is to maximize profit, we 

defined the reward of each state to be the profit 

earned during the most recent day of trading. 
 

• P is the transition probability matrix for every pair of 

states. Matrix values were experimentally obtained. 
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After a number of experiments
3
 we realized that our state 

definition was not sufficient in accurately representing the 

CAT game state.  We based this conclusion on the 

observation that the reward of a given state often varied 

greatly (often by thousands of points), suggesting that our 

states were not sufficiently unique.  It was not immediately 

obvious what additional criteria could be used to better 

identify CAT game states and remains a top priority for 

future work.   

6  Conclusion and Future Work 

We present a number of techniques for classifying traders 

according to their bidding strategies and show that a 

Hidden Markov Model yields the best results.  Our 

experimental data presents a number of conclusions 

regarding fees and how they affect bidding strategies.  

Most notably, we demonstrate that traders utilizing the GD 

and ZIP strategies are more volatile than those employing 

the RE a ZIC strategies.  We also note that multiple fee 

increases generally lead to a loss of traders.  Finally, we 

show evidence supporting the claim that traders are 

hesitant about switching, regardless of their strategies.  

 We also proposed a model for discovering optimal 

action policies while also exploiting the strategy-specific 

properties presented here.  Although our framework 

appears to support the Markov Property (suggesting that 

MDP-related algorithms would do well in determining 

optimal action policies), the criteria we chose were not 

sufficient to uniquely identify CAT game states.  

Establishing which criteria should be used to identify CAT 

states remains an interesting and unsolved problem.   

Additional experiments should also be performed to 

determine if bidding strategies can be further exploited.  

Especially interesting is the interrelationship of the various 

bidding properties and whether or not certain actions affect 

the strategies in a similar fashion. 
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