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Abstract

Studies of bidding languages for combinatorial auctions have
highlighted tradeoffs between expressiveness and complexity
of representation and computation of standard auction func-
tions. When goods aremultiattribute, the cost of support-
ing multi-unit offers is especially acute, since the underly-
ing good space is itself exponential in the number of attribute
dimensions. We investigate tradeoffs among expressiveness,
operational cost, and economic efficiency for a class of multi-
attribute double-auction markets. To enable polynomial-time
clearing and information feedback operations, we restrict the
bidding language to a form of multiattribute OR-of-XOR ex-
pressions. We then consider the implications for this lan-
guage restriction in environments where bidders’ preferences
lie within a strictly larger class, that of complement-free valu-
ations. Using a family of multi-unit multiattribute valuations
derived from a supply chain manufacturing scenario, we show
that an iterative bidding protocol can often overcome the lim-
itations of this language restriction. We further introduce a
metric characterizing the degree to which valuations violate
the substitutes condition, theoretically known to guarantee ef-
ficiency, and present experimental evidence that the actual ef-
ficiency loss is proportional to this degree of substitutes vio-
lation.

Introduction
Multiattribute auctionsmediate the trade of goods defined
by a set of underlying features, orattributes. Bids express
offers to buy or sellconfigurationsdefined by specific at-
tribute vectors, and the auction process dynamically deter-
mines both the transaction prices and the configurations of
the resulting trades. The majority of research into multiat-
tribute auctions addresses the single-good procurement set-
ting, in which a single buyer negotiates the purchase of a
good from among a group of potential suppliers (Branco,
1997; Che, 1997; Parkes and Kalagnanam, 2005; Bichler,
Kaukal, and Segev, 1999; Sunderam and Parkes, 2003). In
the spirit of financial exchanges, two-sided markets for mul-
tiattribute goods offer the opportunity for enhanced effi-
ciency, price dissemination, and trade liquidity.

In order to mediate the trade of multiple goods simulta-
neously, it is often beneficial to consider preferences cover-
ing combinations of such goods. For example, if an agent
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may value good A and B together for$10, but have no value
for either good in isolation, an auction will typically need
to support the expression of preferences over the space of
combined allocations in order to produce efficient outcomes.
Auctions that admit offers specifying such combinations are
calledcombinatorial.

The exponentially sized offer specifications induced by
combinatorial valuations present a particularly hard alloca-
tion problem, both in the expression of agent valuations (Se-
gal, 2005) and in the algorithmic problem of computing op-
timal allocations (Sandholm, 2005; Sandholm et al., 2002).
For certain subclasses of multi-unit valuations, however, the
computation of efficient outcomes is made tractable. No-
tably, for valuations satisfying thegross substitutescondi-
tion, it is well known that a Walrasian equilibrium exists,
and a market-based algorithm admitting offers only on indi-
vidual goods can provide a fully polynomial approximation
scheme for the computation of efficient allocations. In the
Section “Allocation with Complement-Free Valuations”, we
review gross substitutes and its relation to syntactically de-
fined bidder valuation classes.

Since a configuration in multiattribute negotiation corre-
sponds to a unique type of good, the class of multi-unit val-
uations for multiattribute goods is equivalent to the class of
combinatorial valuations. The problem of multi-unit multi-
attribute allocation therefore inherits the hardness results de-
rived for combinatorial auctions, but moreover applied to a
cardinality of goods that is itself exponential in the number
of attributes. The translation of combinatorial auction al-
gorithms to multiattribute domains thus presents a new and
challenging problem, as such algorithms typically assume
(at least for practical purposes) a predefined and modest-
sized set of goods.

In the Section “Call Market Implementation”, we present
a two-sided multiattribute auction admitting polynomial-
time clearing given a restricted bidding language. We
extend a previously developed clearing algorithm with a
polynomial-time information feedback algorithm, enabling
the implementation of market-based algorithms. Our mech-
anism thus extends some of the efficiency results of com-
binatorial auctions to multiattribute domains. We provide
evidence that the inclusion of information feedback to our
auction design successfully compensates for the lack of ex-
pressive power of our bidding language.
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Theoretical work is largely silent on the efficiency of
market-based algorithms given valuations violating gross
substitutes. In the Section “Multiattribute Valuations”, we
present natural ways in which complement-free valuations
may violate the gross substitutes condition, invalidating the
efficiency guarantee of market-based approaches. In an
effort to quantify the expected performance limits of our
mechanism against a larger class of valuations, we intro-
duce a new metric on bidder valuations, based on the sever-
ity by which valuations violate gross substitutes. We apply
this metric to a family of valuations, derived from a sup-
ply chain manufacturing scenario, and present simulation
results demonstrating a correlation between our metric and
expected market efficiency.

Auction Preliminaries
Auctions mediate the trade of goods among a set of self-
interested participants, oragents, as a function of agent mes-
sages, orbids. In amultiattributeauction, goods are defined
by vectors ofattributes,a = (a1, . . . , am), aj ∈ Aj . A con-
figuration,x ∈ X, is a particular attribute vector, where each
configuration can be thought of as a unique type of good.

An allocation, g ∈ G, is a multiset of such goods, that
is, a set possibly containing more than one of each type. A
multiset of goods can be formally defined as a pairing of an
underlyingsetof goods, and afunctionmapping that set to
the positive integers:

g = (N,m)|N ⊆ X ∧Q : N 7→ ZZ+,

where for anyx, Q(x) defines the quantity ofx. We use
Qg(x) to denote the quantity of goodx for allocationg.

Bids define one or moreoffers to buy or sell goods. An
offer pairs an allocation and areserve price,(g, p), where
g ∈ G andp ∈ <+. For a buy offer, the reserve price in-
dicates the maximum payment a buyer is willing to make in
exchange for the set of goods comprising allocationg. Sim-
ilarly, the reserve price of a sell offer defines the minimum
payment a seller is willing to receive to provide allocationg.

A bid, b ∈ B, defines a set of offers (often implicitly)
which collectively define an agent’s reserve price over the
space of allocations. We use the termvaluationto designate
any mapping from the space of allocations to the positive
real numbers:v : G 7→ <+, hence a bid defines a valuation.
For ease of explication, we use the functionr : G×B 7→ <+

to indicate the reserve price of a bid for a given allocation.
The bidding languageof an auction defines the syntax of
allowable bids, thereby defining the spaceB of expressible
bids.

We divide agents into buyersC = {1, . . . , i, . . . , c} and
sellersS = {c + 1, . . . , j, . . . , c + s}.1 Each bidder has a
single bid,bi for buyeri andbj for sellerj. Upon receiving
a new or revised bid, the auction determines whether the bid
is admissiblegiven its current state. If admissible, the bid is

1This assumption precludes settings in which agents wish to
simultaneously buy and sell goods. We could accommodate such
agents to some extent by allowing them to bid under separate buyer
and seller identities.

added to theorder book,Ω, of the auction, comprising the
collection of all active buy and sell bids:

Ω = {Ωb,Ωs} = {{b1, b2, . . . , bc}, {bc+1, . . . , bc+s}}.

When an auction determines the allocations and payments
of participants, the process is referred to asclearing. In a
clear operation, the auction computes aglobal allocation
{Θb,Θs} comprising an assignment of individual alloca-
tions and associated payments:

{{θb
1, θ

b
2, . . . , θ

b
c}, {θs

c+1, . . . , θ
s
c+s}},

where θb
i = (gi, pi) defines an allocationgi supplied to

buyeri in exchange for paymentpi, andθs
j = (gj , pj) de-

fines an allocation ofgj supplied by sellerj, who receives
paymentpj .

A global allocation isfeasibleif the set of goods allocated
to buyers is contained in the set of goods supplied by sellers,
and the net payments are non-negative.

feasible(Θb,Θs) ⇐⇒{
∀x ∈ X,

∑
i∈C Qgi(x) ≤

∑
j∈S Qgj (x)∑

(gi,pi)∈Θb pi −
∑

(gj ,pj)∈Θs pj ≥ 0

A global allocation isacceptableif individual payments
meet the reserve price constraints expressed in the bids of
buyers and sellers.

acceptable(Θb,Θs|Ω) ⇐⇒{
∀(gi, pi) ∈ Θb, r(gi, bi) ≥ pi

∀(gj , pj) ∈ Θs, r(gj , bj) ≤ pj

We can now formalize the clear operation as computing
a feasible and acceptable global allocation based on the or-
der book. There typically will be multiple global allocations
which are both feasible and acceptable. The auction selects
one such allocation based on itsclearing policy, which de-
fines the timing and implementation of the clear operation
as a function of the auction state.

We assume agents have preferences over alternative al-
location and payment outcomes which can be represented
with quasilinearutility functions, meaning that utility is lin-
ear in payments. Buyeri then has quasilinear utility func-
tion ui(g, p) = vi(g) + p, where valuationvi defines the
net change in buyer utility when supplied with a given al-
location, andp defines the net payments made to the buyer.
Similarly, sellerj has utility functionuj(g, p) = −vj(g)+p,
where valuationvj is interpreted as a cost function for sup-
plying allocations.

The bidder allocations and payments determine the real-
ized utilities of all agents. If a clear operation maximizes the
sum of all realized agent utilities, that is, theglobal surplus,
we call the auctionefficient. An obstacle in determining an
efficient global allocation is that the auction must compute
agent allocations without direct observation of the agent val-
uations. An intermediate goal of the auction process is there-
fore to elicit agent preference information. This elicitation
happens by way of the agent bids. In signifying willing
deals, bids place bounds on the agent valuations.
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In a direct revelationmechanism, each agent submits at
most a single bid, in the form of a valuation, without re-
ceiving any information about the bids of other agents. To
the extent that bids accurately reflect valuations, a direct-
revelation auction can use bids as proxies for underlying
valuations, and maximize the objective function for the val-
uations expressed through bids. The extent to which bids
do not accurately reflect agent valuations may induce sub-
optimal global allocations, as the optimization procedure is
performed over an inaccurate objective function. A bid-
ding language which is syntactically unable to fully convey
agent valuations may therefore induce natural efficiency lim-
itations in a direct-revelation mechanism. Importantly, the
computational complexity of identifying an efficient global
allocation increases with the expressiveness of the bidding
language. This creates a natural tension between computa-
tional complexity and auction efficiency in many settings.

In iterative auctions, agents revise their bids over time
based on summary information provided by the auction
about the current auction state. Summary information is typ-
ically derived from the clearing algorithm given the current
auction state, informing agents of their current hypotheti-
cal allocations as well asprice quotesindicating the mini-
mum or maximum prices to buy or sell allocations (Wurman,
Wellman, and Walsh, 2001). Iterative mechanisms support
the implementation of market-based algorithms, which can
augment the range of bidder valuations admitting efficiency
for a given bidding language.

Allocation with
Complement-Free Valuations

Before devoting attention to multi-unit multiattribute allo-
cation, it is instructive to revisit complexity results for the
more simple setting of combinatorial allocation. We re-
strict attention tocomplement-freebidder valuations. Non-
complementarity assumptions are common in Economics,
including diminishing marginal utilities for consumers and
decreasing returns to scale for producers (Mas-Colell, Whin-
ston, and Green, 1995).

The class of complement-free buyer valuations contains
all valuations which are notsuperadditiveover configura-
tions.

Definition 1 A buyer valuation is complement-free (CF) if
for any two allocationsga andgb,

v(ga) + v(gb) ≥ v(ga ∪ gb).

A seller valuation (cost function) is complement-free it is
not subadditive over configurations, that is, the direction of
the above inequality is reversed for sellers.

It is known that no polynomial clearing algorithm can
guarantee better than a 2-approximation for the general class
CF (Dobzinski, Nisan, and Schapira, 2005). In the following
subsections, we present subclasses ofCF of increasing com-
plexity (Lehmann, Lehmann, and Nisan, 2006), providing
known efficiency bounds for polynomial-time allocation.2

2In the multiattribute setting, unique goods correspond to the
configurations. We borrow both notation and analytical complexity

Syntactic Valuation Classes
Syntactic valuations are built fromatomic valuationsand
operators on those valuations.

Definition 2 The atomic valuation(x, p) gives the valuep
to any allocation containing a unit of configurationx, and
value zero to all other allocations.

Next, define the operatorsOR andXORover valuations as
follows:

Definition 3 Letv1 andv2 be two valuations defined on the
spaceG of allocations. The valuationsv1 + v2 (OR) and
v1 ⊕ v2 (XOR) are defined by:

(v1 + v2)(g) = max
x⊆g

(v1(x) + v2(g \ x)),

(v1 ⊕ v2)(g) = max(v1(g), v2(g)).

Informally, the valuation(v1 + v2)(g) divides up allo-
cation g among valuationsv1 and v2 such that the sum
of the resulting valuations is maximized. The valuation
(v1⊕v2)(g) gives the entire allocation tov1 orv2, depending
on which valuesg higher.

Subclasses of complement-free valuations are derived by
placing restrictions on how theORandXORoperators may
be combined. ClassOS valuations are created using only
the OR operator over atomic valuations, and allow for the
expression of additive valuations. ClassXSvaluations are
created by applying theXOR operator over atomic valua-
tions, and allow for the expression of substitute valuations.
Any valuation composed ofORandXOR(applied in an ar-
bitrary order) falls into classXOS, and is expressible by ap-
plying theXORoperator overOSvaluations. The best ap-
proximation factor that can be guaranteed forXOSvalua-
tions in polynomial time is known to be bounded above by
2, and bounded below by43 (Dobzinski, Nisan, and Schapira,
2005).

OXSValuations
Applying theOR operator overXSvaluations yields valua-
tions of classOXS.

Definition 4 A valuation is OXS if expressible through the
application of OR operators over XS valuations.

For example, as a buy bid, the valuation

(x1, p1) + ((x2, p2)⊕ (x3, p3))

expresses the willingness to buy eitherx1 at a price ofp1,
and independently expresses a willingness to buy eitherx2

at a price ofp2, or x3 at a price ofp3 (but not both), giving
the following acceptable allocations:

{(x1, p2), (x2, p2), (x3, p3), ({x1, x3}, p1 + p3),
({x1, x2}, p1 + p2)}.

If all valuations are of classOXS, the clearing problem
can be formulated as a polynomial-time bipartite matching
problem given classOXSbids.

results from Lehmann et al. in this section, with notation amended
slightly for multiattribute domains.
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Gross Substitutes
To define valuations exhibiting gross substitutability, we first
define an agent demand correspondence with respect to valu-
ations and prices. The following definitions are with respect
to buyers.

Definition 5 Given valuationv and vector of configuration
prices~p = (px1 , px2 , . . . , pxn

), the demand correspondence
d(v|~p) maps to the set of allocations which maximizev(g)−∑

x∈g px.

Definition 6 A valuationv is of class GS if for any price
vectors~p and~q with pi ≤ qi ∀i andg1 ∈ d(v|~p), there exists
g2 ∈ d(v|~q) such that{x ∈ g1|px = qx} ⊂ g2.

Informally, the gross substitutes condition for buyers
states that the demand for a given configuration is nonde-
creasing in the price of any other configuration. For sellers,
the condition changes so that the supply of a given configu-
ration is nonincreasing in the price of other configurations.

Valuations satisfying the gross substitutes condition admit
efficiency throughmarket-based algorithms.Market-based
algorithms derive from the ideas ofgeneral equilibrium the-
ory (Arrow, Block, and Hurwicz, 1959), under which mar-
kets simultaneously maximize efficiency and achieve a per-
fect balance of supply and demand, given profit-maximizing
behavior of market participants. The condition of gross sub-
stitutes has been identified in a number of settings as suffi-
cient to guarantee existence of a Walrasian equilibrium (Ar-
row, Block, and Hurwicz, 1959; Kelso and Crawford, 1982;
Gul and Stacchetti, 1999; Milgrom and Strulovici, 2006).

Market-based algorithms operate by iteratively providing
agents with price quotes, requiring that agents expressde-
mand setsreflecting their optimal consumption or produc-
tion choices at the given prices. Demand sets are expressible
in any bidding language of complexity equal to or greater
than classOS. Prices are adjusted at each iteration based on
the relative supply and demand of each type of good, until
the market reaches equilibrium. Computationally, market-
based algorithms provide a fully polynomial approximation
scheme, with complexity that is polynomial in the number of
bidders, goods, and the inverse of the approximation factor
(Lehmann, Lehmann, and Nisan, 2006).

Call Market Implementation
In this section, we present the bidding language and al-
gorithms supporting our multiattribute call market imple-
mentation, and present complexity results for this mecha-
nism more precisely. Although we present only the discrete
configuration-based bidding language employed in our sim-
ulations, both the clearing and information feedback algo-
rithms presented here admit the more general bid forms de-
scribed by Engel, Wellman, and Lochner (2006).

Bidding Language
As discussed, goods are assumed to be defined by a set ofat-
tributes, where a given instantiation of attributes designates
aconfiguration. The most simple multiattribute bidding unit
expresses a maximum/minimum price at which to trade a
given quantity of a single configuration.

Definition 7 (Multiattribute Point) A multiattribute point
of the form(x, p, q) indicates a willingness to buy up to total
quantityq of configurationx at a unit price no greater than
p (for q > 0). Conversely, negative quantity (q <0) would
indicate a willingness to sell up toq units at a price no less
thanp.

Participants in multiattribute auctions often wish to buy
or sell one of several alternative configurations. This would
happen, for example, if a buyer wishes to procure comput-
ers, and is willing to accept multiple alternatives with re-
spect to attributes such as processor type/speed, memory
type/size/speed, etc., but has a configuration-dependent re-
serve price.

Definition 8 (Multiattribute XR Unit) A multiattributeXR
unit is a triple (configs, prices, quantity) of the form
((x1, x2, . . . , xN ), (p1, p2, . . . , pN ), q), indicating a will-
ingness to trade any combination of configurations
(x1, x2, . . . , xN ) at unit prices(p1, p2, . . . , pN ) up to total
quantity|q|, whereq > 0 indicates a buy offer,q < 0 indi-
cates a sell offer.

An XR unit with positive (negative) quantity expresses a
willingness to accept (provide) any allocation of total quan-
tity not greater than|q|, given that the total payment is not
greater (less) than the sum of the unit prices expressed. For
example, givenXRunit ((x1, x2, x3), (p1, p2, p3), 4), the al-
location{x1, x1, x2} would be acceptable at total payment
not greater thanp1 + p1 + p2.

In a slight abuse of notation, we define ther operator over
anXRunit and a configuration to denote the reserve price for
the given configuration in theXRunit, that is,r(XR, x) =p
selects the unit reserve price for configurationx in the XR
unit. Note that a Multiattribute Point is equivalent to anXR
unit with 1-tuple configurations and prices. To simplify the
syntax of our examples, we use the Multiattribute Point no-
tation when anXR unit defines a reserve price for only a
single configuration.

We use a slightly more expressive bidding language in
the multiattribute call markets implemented here, which is
anORextension of theXRunit.

Definition 9 (Multiattribute OXRBid) A multiattribute
OXRbid is a set of multiattribute XR units,
{XR1, XR2, . . . , XRM}, indicating a willingness to trade
any combination of configurations such that the aggregate
allocation and payments to the bidder can be divided among
the XR units such that each(g, p) pair is consistent with its
respective XR unit.

The bidding language constructs presented here can be
classified within the syntactic framework presented above.
The multiattribute point(x, p, q) expresses the valuation
equivalent to anOR expression over|q| atomic (x, p) val-
uations:

(x, p) + (x, p) + · · ·︸ ︷︷ ︸
total of |q| elements

.

The additional quantity designation in a multiattribute
point provides compactness over the equivalentORexpres-
sion when valuations are linear in quantity.
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The multiattributeXRunit with quantityq defines the val-
uation equivalent to the following expression over atomic
valuations:

((x1, p1)⊕ · · · ⊕ (xN , pN ))+
((x1, p1)⊕ · · · ⊕ (xN , pN )) + · · ·︸ ︷︷ ︸

total of |q| elements

The multiattributeXRunit is less expressive than the gen-
eral classOXSbecause it defines anORover a set of identical
XORexpressions, thus imposing a constraint that valuations
be linear in quantity, andconfiguration parity, that is, the
quantity offered by a bid is configuration-independent (En-
gel, Wellman, and Lochner, 2006). The multiattributeOXR
bid provides full expressiveness with respect to classOXS.

Clearing
Previous work (Engel, Wellman, and Lochner, 2006) ex-
plored the connection between bidding languages and clear-
ing algorithms for this domain. Here we provide the main
results but present them for only theOXRbidding language
presented above. The result holds for more general condi-
tions on the bidding language as described in the earlier pa-
per.

Clearing the market requires finding the global allocation
that maximizes the total trade surplus, which is theGlobal
Multiattribute Allocation Problem(GMAP). For a certain
class of bids, which includesOXRbids, GMAP can be di-
vided into two discrete steps: identifying optimal bilateral
trades (theMultiattribute Matching Problem,MMP), then
maximizing total surplus as a function of those trades.

In the case ofOXRbids, the multiattribute matching prob-
lem determines the optimal configurationx to trade be-
tween each pair of buy and sellXR units. For buyXR
unit XRb = (configsb, pricesb, qb) and sellXR unit XRs =
(configss, pricess, qs),

MMPx(XRb, XRs) = argmax
x∈X

[r(XRb, x)− r(XRs, x)].

TheMMP surplusis also necessary to compute a solution
to GMAP:

MMPs(XRb, XRs) = max
x∈X

[r(XRb, x)− r(XRs, x)].

Define the setBXas the set of allXRunits contained in the
buyers’OXRbids, and the setSXas the set of allXRunits in
the sellers’OXRbids. Forbi = {XRi,1, XRi,2, . . . , XRi,M}
for buyer i ∈ C and bj = {XRj,1, XRj,2, . . . , XRj,M} for
sellerj ∈ S,

BX =
⋃
i∈C

⋃
XRi,k∈bi

XRi,k,

SX =
⋃
j∈S

⋃
XRj,k∈bj

XRj,k.

In this case, the multiattribute matching problem is per-
formed between each pair inBX× SX. GMAP is then for-
mulated as a network flow algorithm, specifically thetrans-
portation problem, with source nodesSX, sink nodesBX,

and link surplus (equivalently, negative link costs) equal to
the values ofMMPs onBX× SX.

The optimal solution flow along a given link designates a
quantity traded between the traders whose bids contain the
respectiveXRunits, and the configuration to be traded is the
solution toMMPx between theXRunits.

Information Feedback
In addition to reducing the complexity of clearing, the de-
composition ofGMAP into MMP and subsequent network
optimization reduces the complexity of computing quote in-
formation. The single-unit quote defines a limit on the offer
price to trade a single unit of a configuration. TheMMP
process translates this price into a bilateral surplus for each
offer in the order book, and the network flow optimization
determines whether the offer will transact based on these bi-
lateral surpluses. A quote for a given configuration can be
found by first finding the required surplus (i.e., solution to
MMPs) for a new bilateral trade to be included in the effi-
cient set, and then determining the price level for any given
configuration as a function of that surplus. The computed
price will be the quote for a(configuration, trader) pair;
taking the min/max over all sellers/buyers yields the ask/bid
quote for a configuration.

As an example, consider calculating the bid quote forx
given a set ofXRunits comprised of buysBX and sellsSX.
EachXRunit is a node in the network flow graph, with link
surplus defined as above. We first add a dummy node (XRD)
to the graph and connect that node to one of the nodes of
BX (XRi). We must now calculate the link surplus which
increases the value of the optimal network flow. The com-
puted link quote,LQi, is the trade surplus (i.e., solution to
MMPs(XRi, XRD)) which is required for a new bid to trade
with nodeXRi. The link quote for each buy node must be
calculated, producing a link quote for eachXRi ∈ BX. The
bid quote for a given configurationx is then:

max
XRi∈BX

(r(XRi, x)− LQi).

It should be apparent from themax operation that once all
link quotes have been determined, configuration quotes can
be computed with complexity on the order of the number
of XR units. This implies that the complexity of comput-
ing a single configuration quote is invariant to the size of
attribute space when theGMAP-MMPdecomposition is ap-
plicable. Although computing quotes for all configurations
entails complexity that is linear in the number of configura-
tions, a bidder-driven query process for configuration quotes
may still support market-based algorithm efficiency in large
or continuous attribute domains.

The computation of link quotes on the network flow graph
is also achievable in polynomial time, using a specialization
of the cycle-canceling algorithm (Ahuja, Magnanti, and Or-
lin, 1993). Given that computation of a link quote requires
perturbing the optimal network flow by quantity of only a
single unit, the cycle-canceling algorithm can be adapted to
a shortest-path algorithm, where an all-pairs shortest-path
algorithm computes all required link quotes with complex-
ity that is polynomial in the number ofXRunits. In practice,
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we require two iterations of the shortest-path algorithm, one
iteration each for bid quotes and ask quotes.

Multiattribute Valuations
The call market presented above supports the direct expres-
sion ofOXSvaluations, with information feedback support-
ing the implementation of market-based algorithms for effi-
ciency underGSvaluations. Unfortunately, many valuations
natural for multiattribute domains fall outside of classOXS.
For example, Bichler and Kalagnanam (2005) cite the com-
mon need to enforcehomogeneityof allocations, meaning
that all configurations in an allocation must have identical
values for one or more attributes. Valuations which place
higher values on homogeneous allocations, or conversely,
heterogeneous allocations, are expressible with anXOSbid-
ding language but not with a language of classOXS.

Our motivation in studying allocation with valuations of
increasing complexity arose when applying our mechanism
to a supply chain manufacturing scenario. In the Trad-
ing Agent Competition Supply Chain Management Game
(Arunachalam and Sadeh, 2005), manufacturers assemble
finished goods from a limited inventory of available com-
ponents. As Example 1 makes clear, the induced seller val-
uations fall outside of classOXS, and may violate the gross
substitutes condition.

Example 1 Consider the case of a PC built from two com-
ponents: cpu and memory. Assume that a seller has one
unit of cpu = fast , one unit ofcpu = slow , one unit each
for memory ∈ {large,medium, small}, and the configu-
rations are assembled in the following manner:

1. configurationx1: {fast , large}
2. configurationx2: {fast ,medium}
3. configurationx3: {slow , small}
4. configurationx4: {slow ,medium}
The production possibilities are then:

{x1, x4}, {x1, x3}, {x2, x3}.
The induced seller valuation is not expressible using an OXS
language. The nearest OXR bid approximations require the
seller to either overstate (bid 1) or understate (bids 2 and 3)
his production capabilities:

(((x1, x2), (p1, p2),−1), ((x3, x4), (p3, p4),−1)) (1)

((x1, p1,−1), ((x3, x4), (p3, p4),−1)) (2)

(((x1, x2), (p1, p2),−1), (x3, p3,−1)) (3)

The valuations from Example 1 are also not in classGS.
Assume that within the above production possibilities, the
seller has a unit cost of 3 for all configurations, with to-
tal cost additive in unit cost. The equivalentXOSvaluation
would be:

((x1, 3)+(x4, 3))⊕((x1, 3)+(x3, 3))⊕((x2, 3)+(x3, 3)).

Prices for configurations are also necessary to evaluate the
gross substitutes condition. Assume the following configu-
ration prices:

p(x1) = 5; p(x2) = 4; p(x3) = 4; p(x4) = 5.

At these prices, the optimal production bundle is(x1, x4)
which yields a surplus of 4. If the price ofx1 drops to zero,
the optimal production bundle becomes(x2, x3), yielding a
surplus of 2. Hence, the supply ofx4 decreases with a de-
crease in the price ofx1, which violates the gross substitutes
condition for sellers.

A New Valuation Metric
Given the ability to implement market-based algorithms, the
question remains as to the efficiency limitations of our mar-
ket design when valuations are not contained inGS. To bet-
ter characterize the settings for which market-based algo-
rithms are appropriate, in this section we define a new met-
ric that assesses the degree to which a valuation violates the
GSconditions.

Gross Substitutes Revisited
As defined above, the gross substitutes condition requires
that the demand for goods be nondecreasing in the prices of
other goods. The motivation behind this condition is that a
price adjustment process will ultimately reach equilibrium
if a price perturbation intended to reduce the demand of
over-demanded goods does not reduce the demand for other
under-demanded goods. Similarly, a price decrease intended
to increase demand for under-demanded goods should not
increase demand for over-demanded goods.

For valuationv satisfying the gross substitutes condition,
the demand correspondence condition holds for all price
vectors and perturbations. Formally, given demand corre-
spondenced(v|~p) as defined previously, the set of alloca-
tions maximizing the sumv(g) −

∑
x∈g px, for all vectors

of configuration prices~p = (px1 , px2 , . . . , pxn
) ∈ <n

+, and

all single price perturbations
−→
dp ∈ <n

+, for anyg1 ∈ d(v|~p)
there existsg2 ∈ d(v|~q) such that{x ∈ g1|px = qx} ⊂ g2,

where~q = ~p +
−→
dp.

Gross Substitutes Violations
We hypothesize that thedegreeto which the gross substi-
tutes condition is violated is a more accurate metric on val-
uations in assessing the likely existence of equilibrium and
the efficiency of market-based algorithms.

For non-negative vectors~p and
−→
dp, again define~q = ~p +

−→
dp. For eachgi ∈ d(v|~p), we define thegross substitutes
violationas follows:

GSV(v, ~p, ~q, gi) =
min

g∈d(v|~q)
| {x ∈ gi|px = qx} \ {x ∈ g|px = qx} | .

Intuitively, this measure counts thenumberof violations
of the gross substitutes condition for a specific initial price
vector and price change. Valuations satisfying the gross sub-
stitutes condition will have a violation count of zero for all
initial prices, demand sets, and perturbations. Valuations
which do not satisfy the gross substitutes condition will have
positive values ofGSV for one or more combinations of
(~p,
−→
dp, g).
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To simplify the exposition, we assumed(v|~p) maps to a
singleg for any ~p, and usex ∈ d(v|~p) to indicate a good
from that demand set.

From any single price vector~p, define the gross substi-
tutes violation of a valuation for that price vector as the av-
erageGSVover all minimal single-price perturbations which
ensure a new demand set:

GSV(v, ~p) =

1
n

n∑
i=1

| {xj ∈ d(v|~p)|px = qx} \ {x ∈ d(v|~q)|px = qx} | .

where:
~q = (p1, . . . , pi + dpi, . . . , pn)

and
dpi = min

dp
s.t.d(v|~p) 6= d(v|(p1, . . . , pi + dp, . . . , pn)).

Next, define theexpectedgross substitutes violation for a
valuation as the expected value ofGSVfor random~p:

EGSV(v) = E[GSV(v, ~p)],
where

∀i pi ∼ U [0, p̄].
Our hypothesis is that for a set of bidders with valuations

drawn from a small range ofEGSVvalues, market-based al-
gorithms will reach a similar degree of efficiency, where the
realized efficiency is decreasing in the averageEGSVvalue.
This result would extend naturally to the case of gross substi-
tutes (equivalently, anEGSVvalue of zero), where market-
based algorithms achieve full efficiency. The intuition be-
hind theEGSVmetric, specifically for using the expected
GSVof a valuation (the average, rather than the maximum
or minimum) is that since the price trajectory of a market-
based algorithm covers only a subset of the full price space,
the average violation factors in the probability of seeing any
specific violation.

Testing theEGSV-Efficiency
Relationship

To evaluate the relationship betweenEGSVvalues and mar-
ket efficiency, we employed a component-based model of
configurations like that presented in Example 1, where val-
uation complexity is determined by the constitution of the
configurations, that is, theconfiguration structure, as well
as by the respective inventory levels and component costs of
sellers.

For example, a valuation defined on a configuration struc-
ture with three alternate configurations will violateGS to
the extent that swapping production from one configura-
tion to another requires additional components that are al-
located to the third configuration. Treating configurations
{x1, x2, x3} as sets of components, assume that switching
production fromx1 to x2 requires additional components
x2 \ x1. If an agent has no additional inventory of the com-
ponents(x2 \ x1) ∩ x3 then the induced valuation will have
aGSVof 1 for some price levels. In this way, variation both
in the composition of configurations and the inventory levels
of agents induces different levels of substitutability in agent
valuations.

Valuation Generation
Our experimental approach to generating a configuration
structure is to generate random configurations until a total
of 20 unique configurations is produced. For each configu-
ration, we probabilistically include any one of eight unique
components in the configuration (i.e., configurations may
have variable numbers of components), while additionally
requiring that any single configuration have at least three
components.

Once we have generated a set of 20 configurations, we
randomly sample costs and inventory to generate a seller val-
uation. Sellers have both component inventories and costs
drawn i.i.d. Seller inventory for each component is drawn
from the discrete uniform distribution[0, 3], while seller
costs per component are drawn from the discrete uniform
distribution[30, 80].

We then test the induced valuation with respect to the
same price distribution from which agent valuations are
drawn. We sample prices, and for each price sample~p, we
computeGSV(v, ~p). To computeGSV(v, ~p), we first com-
pute the optimal production setg∗ = d(v|~p), and sum the
gross substitutes violations over all minimal single prices
changes which ensure a new optimal production set.

We iterate the above process with random price samples
until the standard error of the expected gross substitutes vi-
olation is below.05, producing a single valuation. We gen-
erated a set of 100 valuations for each configuration struc-
ture, recording the costs and inventory, along with theEGSV
value for each such valuation. We generated and tested seller
valuations for 277 configuration structures, yielding a total
of 27700 seller valuations.

Market Simulation
Each problem instance comprises a set of 10 buyers and 10
sellers. For each configuration structure, we first sort the set
of 100 generated seller valuations byEGSVvalues. We de-
fine a unique problem instance for each contiguous set of 10
seller valuations, using the previously generated inventories
and costs for each valuation, and taking the averageEGSV
value of the 10 sellers to classify the problem instance (we
denote this averageEGSVby aGSV). We thus generate 90
problem instances for each configuration structure.

We randomly generate buyer valuations for each problem
instance. Each buyer has demand for two units, with full
substitutability among the goods (i.e., each will accept any
combination of two goods at probabilistically generated con-
figuration reserve prices). Buyer reserve prices are drawn
from the discrete uniform distribution[400, 500] for each
configuration.

For each problem instance, we first formulate the alloca-
tion problem as a linear program to determine the maximum
achievable efficiency. We then simulate bidding until quies-
cence, computing the fraction of maximal efficiency at qui-
escence. To quantify the benefit of information feedback,
we took the first iteration of bidding as the direct-revelation
outcome.

Although we believe that the direct expression of
substitutes—as in theOXRbidding language—is indispens-
able for large or continuous attribute domains, we conducted
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the same bidding simulation with a classOS bidding lan-
guage to determine whether the expression of substitutes
provides efficiency advantages in domains with small num-
bers of configurations. Each problem instance thus produces
4 data points (1 for each of(direct , iterative)×(OS, OXR)).

We simulated myopic best response bidding for buyers
and sellers, having buyers and sellers bid their true values
at each iteration on a profit-maximizing set of goods. Given
that the bidding language is not sufficiently expressive to di-
rectly reveal seller valuations, sellers are forced to approx-
imate their valuations with bids. To generate anOS bid,
sellers find the feasible production bundle that maximizes
surplus at current prices (assuming a uniform price for all
configurations when quotes are not available). To generate
an optimalOXRbid, sellers start with the optimalOSbid,
subsequently expanding the bid to a feasibleOXRbid.

Simulation Results
We aggregated the simulation results over all configuration
structures and sorted the data by aGSV value into 10 bins,
computing the sample mean of the achieved fraction of total
efficiency. Figure 1 plots the achieved fraction of maximal
efficiency as a function of aGSV value (with aGSV value
averaged over all samples within a bin), for both direct-
revelation and iterative mechanisms, for both theOS and
OXRbidding languages.

Figure 1: Mean efficiency for average realizedEGSV.

For aGSV values close to zero, the substitutes condition
is nearly satisfied for all valuations, indicating that prices
inducing violations of the substitutes condition occur infre-
quently. For such problem instances, we would expect iter-
ative mechanisms to reach nearly maximal efficiency. Fig-
ure 1 confirms this hypothesis, as both iterative mechanisms
average more than97% efficiency for low aGSV values.

We note that while the directOSmechanism suffers from
relatively lower efficiency across all aGSV values (∼90%),
the directOXRmechanism achieves a high fraction of effi-

ciency for low aGSV values (∼97%). We conjecture that
the majority of lowEGSVvaluations were also in classOXS,
and that givenOXSvaluations, the ability to express substi-
tutability through bids provides a significant efficiency ad-
vantage in direct-revelation mechanisms.

Notable in Figure 1 is that the iterative mechanisms rel-
atively outperform the directOXRmechanism, by a margin
that is increasing in aGSV value. We suspect this reflects
bidder valuations which increasingly deviate from classOXS
with higherEGSVvalues. Despite this increasing valuation
complexity, the iterative mechanisms hold to a high level of
efficiency, falling only to approximately95% as aGSV val-
ues reach1. From this we conclude that information feed-
back is able to compensate for the lack of expressive power
of a classOXSbidding language.

We observe that the iterativeOXR mechanism outper-
forms theOS mechanism over all aGSV values. We hy-
pothesize that the direct expression of substitutes allows
the market-based algorithm to escape local maxima, as
our mechanism does not implement a provably convergent
market-based algorithm forOSbids.

Conclusions
We investigated the problem of multi-unit multiattribute al-
location through call-market auctions. We presented an im-
plemented multiattribute call market supporting polynomial-
time clearing and information feedback operations for a re-
stricted class of bidding language. To our knowledge, this is
the first call market of its kind presented in literature.

We discussed the expected efficiency of our mechanism
from the perspective of known hardness results derived for
combinatorial auction settings, given complement-free bid-
der valuations. We discussed the efficiency of market-based
algorithms, and demonstrated that the information-feedback
functionality of our market design supports efficient alloca-
tions given valuations satisfying the gross substitutes condi-
tion.

Importantly, we demonstrated that the addition of infor-
mation feedback functionality to our call market design suc-
cessfully compensates for the expressive deficiencies im-
posed by a restricted bidding language. The addition of
information feedback support to our previously developed
clearing algorithm thus extends the range of bidder valua-
tions for which our market design is able to support effi-
ciency.

Inspired by a multiattribute supply chain setting, we pre-
sented natural ways in which multiattribute valuations may
violate the gross substitutes condition. Lacking theoretical
results as to the expected efficiency of our market design
for valuations likely to be encountered in practice, we pre-
sented a new metric on bidder valuations, derived from the
ways in which valuations violate the substitutes condition.
We then presented evidence that this metric correlates with
the expected efficiency of market-based algorithms. Also to
our knowledge, this is the first such experiment presenting
evidence of a correlation between the efficiency of market-
based algorithms and the measured gross substitutes viola-
tion of bidder valuations.
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