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Abstract 

Supply Chain Management (SCM) is a complex process 
which includes a number of interrelated activities such as: 
negotiating with suppliers for raw materials, competing for 
customer orders, managing inventory, scheduling 
production, and delivering goods to customers. In this 
paper we present a number of strategies to be examined in 
the domain of SCM. We introduce a multi-agent system 
which we used to evaluate the proposed methods. We 
tested the system in the Trading Agent Competition SCM 
game, which offers a realistic simulated environment for 
studying SCM strategies. Although we introduce a number 
of strategies, we concentrate on the ones for predicting 
winning bidding customer prices to support a successful 
performance on the customer side of the supply chain. 

1 Introduction   

In today's highly dynamic, time-constrained 

environments, developing efficient decision support 

systems is a key challenge. In particular, in the domain of 

SCM, which deals with the planning and coordination of 

the activities of organizations from getting raw materials, 

manufacturing goods to delivering them to customers, 

supporting dynamic strategies is a major but unresolved 

issue. All entities in the supply chain are highly connected 

and interdependent. Being successful in one area of the 

supply chain does not necessarily guarantee the 

improvement of the overall performance. Thus, there is 

the need for a mechanism to separate different tasks and 

explore them both independently and in relation to each 

other. We implemented such a mechanism in our multi-

agent decision support system which we tested in the 

TAC SCM game (Collins et al. 2006).  Using a multi-

agent approach, we built a number of TAC SCM agents 

and allowed them to compete against each other in order 

to compare the performance of each proposed algorithm. 

Although we discuss a number of strategies in the paper, 

we mainly concentrate on those that deal with the 

problem of predicting customer offer prices that could 

result in customer orders (winning bidding prices).  

The TAC SCM participants take different approaches 

in deciding the price to be offered to customers in 
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response to their requests for quotes (RFQs) (Pardoe and 

Stone 2006, Benish, Andrews, and Sadeh 2006, He et al. 

2006, Kontogounis et al. 2006, Ketter et al. 2004, Keller, 

Dugay, and Precup 2004, Dahlgren and Wurman 2004). 

In this paper we propose two different approaches for 

predicting winning bidding prices. The first is to predict 

such prices based on the RFQ details and current market 

situation. The second one is to predict the competitors’ 

bidding prices and bid just below the minimum predicted 

value. To the best of our knowledge, the second proposed 

strategy has not yet been explored within the TAC 

community. We used the Neural Networks learning 

technique to complete both tasks. 
 The rest of the paper is organized as follows. First, we 
introduce our multi-agent system Socrates and describe a 
number of algorithms for the SCM implemented in the 
system. The experiment settings are provided next 
followed by a discussion of the results obtained. The 
paper closes with the conclusions and a discussion of 
future work.   

2 The Design of Socrates  

For our SCM system we chose a multi-agent approach 
which allows us to break down the whole system into 
separate building blocks, each concentrating on a 
particular part of the supply chain. By replacing one 
building block with another and by combining them in 
different ways, we create various versions of our own 
system in order to check how different strategies 
influence the overall system’s performance. The system 
includes the following agents: Manager, Demand Agent, 
Supply Agent, Inventory Agent, Production Agent, and 
Delivery Agent. The Manager agent is responsible for the 
communication with the TAC server as well as managing 
all other agents. The Demand Agent decides which 
customer RFQs to answer and with what price. The remit 
of the Supply Agent is the procurement of low cost 
components on time from suppliers. The Inventory Agent 
manages the component and PCs stocks in order to satisfy 
the needs of the Production and Delivery agents while at 
the same time minimising holding costs. The Production 
Agent is responsible for scheduling current production 
and projecting production for the future. Finally, the 
Delivery Agent deals with delivering PCs to customers 
according to their orders and on time to prevent penalties.  
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Number of Units 
Model name 

Input Layer Hidden Layer 
Attributes Price range 

Short fixed 

NN 

5 3 current date, penalty per unit, reserve price, latest reported lowest 

order price, boolean indicator of whether an offer became an order 

Fixed 

Full fixed 

NN 

13 7 current date, quantity, due lead time, penalty per unit, reserve price, 

lowest order price reported for the last 3 days, highest order price 

reported for the last 3 days, order level=[order number/RFQ 

number], boolean indicator of whether an offer became an order 

Fixed 

Full dynamic 

NN 

13 7 current date, quantity, due lead time, penalty per unit, reserve price, 

lowest order price reported for the last 3 days, highest order price 

reported for the last 3 days, order level=[order number/RFQ 

number], boolean indicator of whether an offer became an order 

Varied 

 
Table 1. Models for predicting own winning bidding prices. 

 

3 Predictive Strategies for Setting Customer 

Offer Prices 

Although we implemented a number of strategies in the 

scope of each agent, we mainly concentrate on the ones 

for the Demand Agent. In particular, we propose two 

strategies for determining bidding prices which may result 

in customer orders (winning bidding prices) – in the TAC 

SCM game, customers award an order to the 

manufacturer which offers the lowest price among all 

competitors. The first strategy is to predict the probability 

of the winning price for each RFQ to be within a 

particular price range. We then set our offer price to the 

average of the price interval with the highest predicted 

probability. The second strategy is to predict the 

competitors’ bidding prices and bid just below the 

minimum predicted value.  
 We applied the Neural Networks learning technique for 
both strategies using the Back-propagation algorithm to 
train them on the data from the log-files of previously 
played games. According to the first strategy, 16 
ensembles of feed-forward neural networks (NN), one for 
each PC type, predict probabilities of winning a customer 
order for the specified PC type depending on the offer 
price set. Each ensemble is responsible for a particular 
price interval and outputs the probability of the price 
within this interval being accepted by a customer. We 
developed and tested 3 different NN architectures, which 
are summarized in Table 1. Inputs were normalized using 
the corresponding minimum and maximum allowed 
values for each input. For setting minimum and maximum 
values of the price units, we took two different 
approaches. Two of our NN models have these values 
fixed and set to the minimum and maximum values 
observed in the games. The third NN model sets these 
values dynamically for each RFQ separately. More 
specifically, the minimum value is determined as the 
discounted latest lowest order price stated in the price 
report for the respective PC type: [LowestOrderPrice - 
200]. The maximum value is set to [ReservePrice + 50].  

 For our second strategy, we built two kinds of NNs for 
every competitor, each predicting the competitor’s offer 
price for the given RFQ. For the first type of NNs 
(Identical NN Competitor Bid Price Predictors), we used 
the same set of inputs for each competitor which includes 
13 attributes, namely: PC type, current date, lead time, 
quantity, reserve price, penalty, the lowest and the highest 
market price reported during the last 3 days, and current 
demand level. For the second type of NNs (Individual NN 
Competitor Bid Price Predictors), we used a separate set 
of inputs, depending on the parameters that each 
competitor considers while deciding on its bidding prices. 
To test the latter type of NNs, we set up all the 
competitors so that the information on the parameters they 
use for setting their offer prices is known. However, we 
make no assumptions on how these parameters are used 
by competitors; the predictors have to evolve the models 
of the competitors’ behavior.  

4 Experiments 

In order to determine how separate algorithms contribute 
to the overall performance of the SCM system designed 
for the TAC SCM game, we created a number of Socrates 
agents, each following different strategies. In order to 
compare the algorithms’ performance in the context of the 
same market settings, we allow different versions of the 
agent to compete against each other, rather than against 
the agents developed by other TAC SCM participants. By 
running experiments we aim not only to develop the most 
successful strategy for the agent to compete in the TAC 
SCM game, but also to check the following hypotheses: 
1. The agent that plans its scheduling in advance 

performs better than the one that does not. 
2. The agent that tracks the supplier market performs 

better than the one that does not. 
3. The agent that bids only on profitable customer RFQs 

performs better than the one that does not estimate 
potential profit of these RFQs. 

4. The agent that tries to predict winning bidding prices 
for customer RFQs performs better than the one that 
does not. 
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5. The agent that tries to predict its competitors’ bidding 
prices performs better than the one that tries to predict 
winning bidding prices based only on bidding history. 

6. The model for predicting one’s winning bidding prices 
that considers more attributes from the environment 
performs better than the one with a few inputs. 

7. Dynamic restriction of the allowed price range for 
normalizing price inputs in the model for predicting 
one’s winning bidding prices improves the 
performance of the model. 

8. The agent that knows which parameters its 
competitors use for deciding on bids performs better 
than the agent that does not have such knowledge. 

9. The Competitor Predicting models perform better for 
competitors that follow the determined bidding 
strategy than for competitors that bid randomly. 

10. The Identical NN Competitor Bid Price Predictor 
model performs better than the Individual NN 
Competitor Bid Price Predictor model in the 
circumstances when a competitor bids randomly. 

  For each hypothesis we played 15 games; this appears 
to be enough (in terms of the level of results and their 
standard deviation) to evaluate the hypothesis. To get data 
to train our predictive models we played another 50 
games. The competing agents were designed as follows. 
 For hypothesis 1, 2, and 3: 
 Socrates – tracks the supplier market, chooses the 

lowest suppliers, and sets its reserve prices for 

components accordingly. The agent plans its production 

12 days ahead and sets its offer prices to a random 

value between the lowest and highest market prices 

reported for the respective PC type the day before.  

 Socrates1 – tracks the supplier market, bids on random 

customer RFQs and sets customer offer prices to 

[ReservePrice * (1.0 - random.nextDouble() * 0.2))].  

 Socrates2 – does not track the supplier market, bids on 

random customer RFQs and sets customer offer prices 

to [ReservePrice - penalty/quantity]. 

 Socrates3 – plans production ahead as Socrates does, 

but doesn’t track the supplier market. It bids on random 

customer RFQs with the offer price set to the average 

between the latest lowest and highest reported prices. 

 Socrates4 – the agent is set similarly to Socrates3 with 

the only difference that the agent sets its customer offer 

prices as Socrates1 does, i.e. to [ReservePrice * (1.0 - 

random.nextDouble()*0.2))].  

 Socrates5 – the agent is set similarly to Socrates3 with 

the only difference that the agent sets its customer offer 

prices as Socrates does, i.e. randomly between the 

lowest and highest market prices reported for the 

corresponding PC type on the previous day. 

For hypothesis 4-8 agents differ only in the way they 

set customer offer prices: 

 Socrates – sets prices according to the lowest 

competitor price among those predicted for all the 

competitors for a given RFQ. Both NN models 

described in section 3 are tested simultaneously in order 

to have the same base for comparison of the algorithms. 

Offer price is set according to the Individual NN model.  

 Socrates1 – sets prices according to the predictions of 

the Short Fixed NN model (section 3).  

 Socrates2 – sets prices to [reserve price - 

penalty/quantity].          

 Socrates3 – sets prices to the average between the 

lowest and highest reported.  

 Socrates4 – sets prices according to the predictions of 

the Full Fixed NN model (section 3).  

 Socrates5 – sets prices according to the predictions of 

the Full Dynamic NN model (section 3). 

We fixed all other strategies for all the competing agents 

in order to get a clearer picture of how bidding strategies 

influence the agents’ performance. The agents do not 

track supplier market, schedule production for 12 days in 

advance, consider customer RFQs in profit descending 

order, and deliver produced PCs as soon as they are 

available to satisfy all active orders sorted by due date. 
 For hypothesis 9 and 10, we replaced Socrates5 with an 
agent that sets customer offer prices randomly between 
the lowest reported and reserve prices.  

5 Results 

Our results demonstrate that the agents that track the 

supplier market, plan their production in advance and/or 

pick only profitable customer RFQs, perform better than 

those that do not support these strategies, which proves 

hypotheses 1, 2 and 3. The most successful agent is the 

one that uses all these three strategies. Regarding the 

performance on the Demand part, we discovered that 

rather than following the static strategy of setting 

customer offer prices based only on two parameters, a 

more sophisticated strategy should be implemented. 

The agents designed to check hypothesis 4-8, paid a 

similar rate of component prices and were able to deliver 

customer orders on time, which results in low penalty 

costs. Thus, the scores of the agents depend only on the 

number of orders they get from customers and on the 

profitability of these orders. This allows us to evaluate the 

effectiveness of the bidding strategies (section 3) by 

comparing the agents’ (a) levels of customer offer prices; 

(b) overall scores; and (c) order winning rates (the ratio 

between the number of offers send to the number of 

orders received).  

 The agents that predict their own winning bidding 
prices show relatively high results, which supports 
hypothesis 4. The agent that incorporates the Full 
Dynamic NN algorithm performed slightly better, which 
proves our hypothesis 7. We did not find strong evidence 
for our hypothesis 6 however: although the Full Fixed NN 
model provides higher winning rate than the Short Fixed 
Model, the overall score of the agent that applies the first 
model is much lower than the score of the agent that uses 
the second predictive model. The reason for this is that 
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the Full Fixed NN model predicts on average lower price 
values than the Short Fixed Model. 
 As suggested by our hypothesis 5, both the winning 
rate and the overall score of the agent that predicts the 
competitors’ bidding prices indicate that this agent is the 
most successful. The offer prices for all PC types set by 
this agent are on average just bellow those of all other 
agents, which demonstrates the effectiveness of the 
strategy to bid according to the predicted competitors’ 
prices, and the power of NNs as a learning technique for 
solving this particular task. At the same time, the analysis 
of individual cases from the games played reveals that the 
discussed agent sometimes bids lower than it possibly 
should. This can be explained by the following: if the 
agent with the lowest predicted price does not bid for an 
RFQ, then the winning price will be the lowest among the 
ones set by the other agents who actually bid. This 
suggests the need to implement classifiers for each agent, 
in addition to the predictors of bidding prices, which 
would indicate whether the agent is actually going to bid 
for an RFQ, given the predicted price for this RFQ. 

We compare the performance of our two Competitor 

Bid Price Predictor models in terms of the accuracy of 

their predictions. In particular, we calculated the root 

mean square error (RMSE) using the normalised actual 

and predicted price values observed in all games. 

According to the results provided in Table 2, the 

following conclusions can be drawn: (1) the more 

complicated strategy a competitor is taking and the more 

attributes it considers for making its bidding decisions, 

the harder it is to predict its bidding prices; (2) the 

Individual Competitor Bid Price Predictors, that use in 

their models only those attributes which competitors 

consider, perform better than the Identical Competitor Bid 

Price Predictors that use the full set of attributes for all the 

competitors (which proves our hypothesis 8); (3) both 

types of predictors have relatively high prediction error 

for the agent that bids randomly between the lowest 

reported and reserve prices compared to all other agents 

(which supports our hypothesis 9). We did not find the 

evidence for hypothesis 10, as both predictive models 

show similar error rate for the agent that bids randomly. 
 

Algorithm Socr.1 Socr.2 Socr.3 Socr.4 Socr.5 

Socrates5 follows the Full Dynamic NN model 

Individ. NN 0.0194 0.0038 0.0033  0.0141  0.0178  

Identic. NN 0.0203 0.0279  0.0067  0.0243  0.0216 

Soc.5 bids randomly between the lowest reported and reserve prices  

Individ. NN 0.0176 0.0042 0.0053 0.0116  0.0602 

Identic. NN 0.0259 0.0278 0.0085  0.0310  0.0608 

 

Table 2. Prediction RMSE for the Individual and Identical NN 

Competitor Bid Price models. 

6 Conclusions and Future Work 

In this paper we presented a multi-agent system for SCM.  

The multi-agent approach gives the opportunity to break 

the complex domain into simpler building blocks. By 

replacing one building block with another, we built a 

number of SCM agents who followed different strategies. 

We let these agents compete against each other in the 

TAC SCM game, and the results from the games 

demonstrate the contribution of separate strategies into 

the overall success of competing agents. In particular, we 

proved the importance of tracking the supplier market, 

projecting production in advance and estimating potential 

profit of customer RFQs. Our major contribution in this 

paper however is related to the problem of predicting 

customer winning bidding prices. We developed two 

different approaches for solving the task. The first one is 

to predict the prices based on the information perceived 

form the environment. The second one is to predict the 

competitors’ bidding prices. The Neural Network learning 

technique was applied to both tasks. While both 

predictive approaches outperformed other robust 

algorithms presented in the paper, modelling the 

competitors’ strategies showed to be the most powerful 

technique for environments which have a game format 

(i.e. a number of participants compete against each other 

in order to get the best score). We have found, however, 

that the prediction of the competitors’ bidding prices 

themselves is not enough for making optimal decisions on 

offer prices: if the agent with the lowest predicted price 

does not bid for an RFQ, then the winning price will be 

the lowest among the ones set by the other agents who 

actually bid. Thus, in addition to the prediction of the 

agents’ bidding prices for every RFQ, as part of future 

work we are going to implement classifiers that will 

specify whether the agent will actually bid for the RFQ at 

such price level. 

Our experiments also showed that knowledge of the 

features that the competitors are using for making their 

decisions, could improve the predictive models of these 

competitors. As this knowledge is not usually available in 

advance in such domains, our task now is to derive it by 

observing the competitors’ performance and perceiving 

information from the environment.  

In this paper we tested different versions of only one 

agent in order to derive the most successful strategies for 

this agent to follow. To check the robustness of the 

proposed algorithms for predicting customer winning 

bidding prices, games against the agents proposed by 

other TAC SCM participants have to be played 

additionally. 
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