
Cross-Domain Transfer of Constraints for Inductive ProcessModeling

Will Bridewell
Computational Learning Laboratory, CSLI,

Stanford University, Stanford, CA 94305 USA
willb@csli.stanford.edu

Ljup čo Todorovski
University of Ljubljana, Faculty of Administration

Gosarjeva 5, SI-1000 Ljubljana, Slovenia
ljupco.todorovski@fu.uni-lj.si

Abstract

In this paper, we discuss a mechanism for transfer learn-
ing in the context of inductive process modeling. We be-
gin by describing the dual role of knowledge as a source
of model components and structural constraints. Next,
we review the task of inductive process modeling and
emphasize the effect of domain knowledge on the learn-
ing component. We then describe the performance and
learning elements of the transfer task, define the form
of that resulting knowledge, and introduce an evalua-
tion methodology for the experiments. The reported re-
sults show the effect of cross-domain transfer within the
larger field of ecology. We conclude by outlining future
research in this area.

Introduction
Research in transfer learning (Choiet al. 2007; Tayloret al.
2007; Thrun 1996) promises mechanisms that let induction
systems improve with experience even as they operate across
different domains. The wide variety of learning approaches
joined with the limited research and lexical ambiguity of this
area demands that authors provide a clear definition of both
the base induction task and the transfer task. In our case, the
learning system builds models from components that meet
explicit constraints. Within this context we have success-
fully transferred induced constraints across similar problems
where the entities within an ecosystem are biologically iden-
tical but their environments differ (Bridewell & Todorovksi
2007), and we have determined that this approach can pro-
duce scientifically plausible domain knowledge (Bridewell
& Todorovski 2007). We now demonstrate that the proposed
methodology for transfer learning leads to knowledge that
crosses subfields of ecology (i.e., domains) where both the
agents and the environments differ.

The reported approach induces first-order constraints for
use by an inductive process modeler (Bridewellet al. 2008).
As we describe in the next section, these programs construct
quantitative models of dynamic systems from background
knowledge and time series. The particular implementation
that we employ exhaustively searches a finite space in which
some solutions more accurately explain the data than others.
Prior work in this area has used constraints to limit search
to a reduced set of plausible model structures (Todorovski
et al. 2005), but the knowledge in those studies came from

domain experts. To capture similar knowledge via an intel-
ligent system, we view constraint induction as a supervised
learning problem. From a high level, the system marks mod-
els produced by a generator as accurate or inaccurate expla-
nations of a particular set of observations and learns rules
that discriminate between those classes.

Previous applications of this approach suggest that it can
substantially reduce the learning costs for the process mod-
eler without a corresponding reduction in model accuracy
(Bridewell & Todorovksi 2007). In that study, the program
modeled a two species predator–prey ecosystem, analyzed
the models that it considered, and learned constraints that
reduced the computational requirements of an inductive pro-
cess modeler by an order of magnitude. Moreover, those
constraints reflected common domain knowledge, which
suggested that we could use the method to discover plausi-
ble modeling assumptions and scientific theory. To test this
conjecture, we induced constraints while explaining the dy-
namics of the Ross Sea ecosystem, which we describe later
with the experiments, and identified rules that correspond to
previously known or currently debated relationships in the
area of aquatic ecosystems (Bridewell & Todorovski 2007).

The next section describes inductive process modeling,
and the following one details our approach to constraint in-
duction and transference. In both cases, we emphasize the
general strategies as opposed to the technical details, which
are published in other articles. After this, we introduce mea-
sures for evaluating the effectiveness of transfer and describe
experiments that indicate the plausibility of cross-domain
transfer. To conclude, we explore the implications of our
findings and the future directions that they suggest.

Inductive Process Modeling
Scientists use models to both explain and predict an ob-
served system’s behavior. In the biological sciences, those
models commonly refer to processes that govern system dy-
namics and the entities altered by those processes. Ordi-
nary differential equations offer one way to represent these
mechanisms and to develop predictive models, but they fail
to make contact with the process knowledge shared among
scientists. In response, we developed a language forquan-
titative process modelsthat ties the explanatory aspects of a
model (i.e., the processes) to the mathematical formulation
that enables effective simulation.

1

Table 1 shows a process model for a predator–prey re-
lation between foxes and rabbits. The three processes ex-
plain the change in concentrations of the two species through
time. Therabbit growthprocess states that a fixed environ-
mental capacity limits the reproduction of rabbits. In com-
parison, thefox deathprocess refers to an unlimited expo-
nential mortality function for the fox population. Finally,
the predation process, which controls the interspecies in-
teraction, states that the prey population decreases and the
predator population increases proportionally with the size of
both populations. Given an initial density for each species in
an ecosystem, one can transform the process model into the
underlying system of two differential equations and simu-
late the model to produce trajectories that reflect population
dynamics over time.

The processes from Table 1 instantiate more general
forms, calledgeneric processes, that could apply to any eco-
logical system. These generic processes, along with generic
entities, form the background knowledge for an inductive
process modeler. As an example, consider

generic process holling1:
variablesS1{prey}, S2{predator};
parametersar[0.01, 10], ef [0.001, 0.8];
equations

d[S1, t, 1] = −1 ∗ ar ∗ S1 ∗ S2;
d[S2, t, 1] = ef ∗ ar ∗ S1 ∗ S2;

which is the general form of the predation process from the
example model. Notice that we replaced the parameters with
continuous ranges and the entities (i.e., foxes and rabbits)
with typed identifiers. We can now describe the general task
of inductive process modeling as:
• Given: Observations for a set of continuous variables

as they change over time;
• Given:A set of entities that the model may include;
• Given: Generic processes that specify causal relations

among entities;
• Given: Constraints that determine plausible relations

among processes and entities;
• Find: A specificprocess modelthat explains the ob-

served data and predicts unseen data accurately.
A program that carries out this task requires a performance
element to produce trajectories for analysis and compari-
son. In our research, we convert the models to systems of
equations and use a numerical solver (Cohen & Hindmarsh
1996) to generate the trajectories. The learning element can
take several forms, for detailed examples see Bridewell et al.
(2008) and Todorovski et al. (2005), but they all search for
the model whose simulated trajectories match those from the
training data. In this paper, we describe a naive approach to
the learning task that highlights the role that structural con-
straints play when constructing models.

The generate-and-test strategy is a straightforward
method for implementing an inductive process modeler.
Taking this perspective, the test procedure simulates the be-
havior of the candidate model and reports its accuracy with
respect to observed trajectories. The generator binds the en-
tities to the generic processes to create a finite set of model
components. In the absence of structural constraints, this

Table 1: A process model of a predator–prey interaction be-
tween foxes and rabbits. The notationd[X, t, 1] indicates the
first derivative ofX with respect to timet. For lack of room,
we expressrabbits.population(i.e., thepopulationproperty
of therabbitsentity) asrabbitsand likewise with fox.

model Predation;
entitiesrabbits{prey}, foxes{predator};
process rabbitgrowth;
equations
d[rabbits, t, 1] = 1.81 ∗ rabbits ∗ (1 − 0.0003 ∗ rabbits);

process foxdeath;
equations
d[foxes, t, 1] = −1 ∗ 1.04 ∗ foxes;

process predationholling 1;
equations
d[rabbits, t, 1] = −1 ∗ 0.03 ∗ rabbits ∗ foxes;
d[foxes, t, 1] = 0.30 ∗ 0.03 ∗ rabbits ∗ foxes;

procedure enumerates all combinations of the components,
presenting each subset for evaluation.1 This scenario leads
to a search space whose size grows exponentially with the
number of processes. To make this strategy feasible for com-
plex domains, one must add structural constraints, such as
which entities may participate in a process and which pro-
cesses are mutually exclusive.

To illustrate the generator and the effects of constraints,
consider the foxes and rabbits from the earlier example and
entertain the idea that we cannot state which species is the
predator. Suppose that there are 2 generic processes for
growth (e.g., exponential and logistic functions) and 2 for
loss, all of which could apply to both species. Also assume
that there are 5 generic processes for predation. Then, ruling
out cannibalism, there are 18 model components. Limiting
each component to a single appearance per model leads to
218 − 1 = 262, 143 structures. However, this scenario lets
rabbits eat wolves, which suggests that several candidates
are implausible. A constraint that rules out this odd situa-
tion eliminates all but213 − 1 = 8, 191 of the structures.
By incorporating other restrictions from population dynam-
ics (i.e., that a model contains one process for prey growth,
one for predator loss, and one for predation), we reduce the
space to 20 plausible candidates.2

Whereas the generic processes expand the scope of the
search space to capture the relevant relationships among en-
tities, the constraints restrict it to a smaller set of plausible
structures. To gather the components, one can either manu-
ally search the domain literature for equations and other rep-
resentations of processes or modify techniques for feature
construction (Utgoff 1986) and equation discovery (Washio
& Motoda 1998). In contrast, collecting constraints requires
extensive collaboration with domain experts (Atanasovaet

1This description leaves out the interwoven parameter estima-
tion routine, which takes the form of a nested gradient-descent
search through a continuous, multidimensional space.

2A plausible model contains one of two growth processes for
rabbits, one of two loss processes for foxes, and one of five for
predation. This gives2 ∗ 2 ∗ 5 = 20 total models.

2

Table 2: The domain-general relationships that can appear
in a constraint. Each predicate also has an explicit negation.

includesprocess(modelid, genericprocess)
includesprocesstype(modelid, processtype)
includesentity instance(modelid, entity instance)
includesentity(modelid, genericentity)
includesprocessentity instance(modelid,
genericprocess, entityinstance)

includesprocessentity(modelid, genericprocess,
genericentity)

includesprocesstype entity instance(modelid,
processtype, entityinstance)

includesprocesstype entity(modelid, processtype,
genericentity)

al. 2006) due to their implicit nature. The next section in-
troduces a method for automated constraint acquisition.

Learning Modeling Constraints
We treat the task of inducing modeling constraints as a su-
pervised learning problem. The examples are descriptions
of the process model structures that state which processes
and entities appear and how they relate. An example’s la-
bel relates to its predictive accuracy: positive examples are
accurate models that closely match observed trajectories,
whereas negative examples are inaccurate models. Applying
a supervised learning algorithm to this data set yields rules
that relate a model’s structural properties to its quantitative
accuracy. For instance, using this approach we can learn
rules that define an accurate predation model as one with
exactly three processes: one for growth, one for loss, and
one for the interaction. A system can compile these rules
into modeling constraints that can substantially reduce the
search space explored by an inductive process modeler.

In earlier papers (Bridewell & Todorovksi 2007;
Bridewell & Todorovski 2007), we introduced an approach
to constraint induction that employs tools from inductive
logic programming (Lavrač & Džeroski 1994). This re-
search rests on two central ideas: (1) one can learn rules
that classify structures as accurate or inaccurate for a par-
ticular problem and (2) these rules transfer across problems
and possibly across domains. In this section, we describe the
performance and learning elements of the transfer task with
an emphasis on the generality of the approach.

To cast constraint induction into the supervised learn-
ing mold, we define a set of relational features, listed in
Table 2, that may appear in the constraints and that rely
on predicates which describe a quantitative process model.
These features refer to the generic processes and entities
that a model instantiates, the particular entities that appear,
and the type of a generic process, which defines a higher-
level grouping of the components. We also prepare data
sets, which contain logical descriptions of structures con-
sidered during model induction. For instance, the pred-
icate processinstance(3, 14, exponentialgrowth) declares

that Process 14 in Model 3 instantiates the generic pro-
cessexponentialgrowth. This will make the ground fact
includesprocess(3, exponentialgrowth)true.

In addition to describing the models with these features,
the system assigns a target class to each model based on
its quantitative fit. To this end, the program selects perfor-
mance thresholds for the coefficient of determination (r2),
which falls in the [0,1] interval, and labels models that ex-
ceed the threshold asaccurateand those below it asinaccu-
rate. Since several thresholds are possible, we developed a
procedure that selects an appropriate one based on the train-
ing data. The first step sorts the models by their accuracy
and divides them into 10 bins. The next step identifies the
point of maximal performance change between consecutive
models within each bin. If multiple points are close to each
other in terms ofr2, the procedure eliminates all but one.
The final threshold is the one that, based on the training set,
minimizes the number of accurate models (i.e., those that we
want to reserve as candidates) and maximizes the recall rate
of those with the best performance.

With a feature set and a threshold in hand, one can ap-
ply a supervised learning program to induce the constraints.
Given the relational nature of the structural descriptors, we
use Aleph, an inductive logic programming system, (Srini-
vasan 2000) for this step. The resulting rule set can directly
constrain the candidate structures considered by an inductive
process modeler. Within the context of this study, structures
that the rules would classify as inaccurate are removed from
consideration.

Reconsider the example of predator–prey interaction from
the previous section. In this scenario, the approach for con-
straint induction can learn the following two rules, which
describe accurate models, among others.

accurate model(M) :-
includesprocesstype entity(M, loss, predator),
includesprocessentity(M, expgrowth, prey),
includesprocess(M, hassellvarley 2).

accurate model(M) :-
includesprocesstype entity(M, loss, predator),
includesprocessentity(M, expgrowth, prey),
includesprocess(M, hollingtype 3).

Both statements characterize the structure of accurate
predator–prey models. In particular, they state that the
model must comprise three processes: predator loss of any
available kind, some form of prey growth, and one of two
specific interaction processes. These rules have the appear-
ance of constraints, and an inductive process modeler can
use them to reduce the search space to those model struc-
tures that obey them.

Evaluating the Transfer of Constraints
The main hypothesis of this paper is not only that the con-
straints learned using the proposed approach are useful for
solving future modeling problems in the same domain, but
also that they will successfully transfer to other problems
and domains as well. Before testing this hypothesis, we
must determine how to measure the transferred knowledge’s
effectiveness in terms of model accuracy and search time.

3

 0

 0.25

 0.5

 0.75

 1

 1 120 1105

m
od

el
 p

er
fo

rm
an

ce

model index

best performance: 0.94 (no transfer), 0.94 (transfer)

no transfer
transfer

 0

 0.25

 0.5

 0.75

 1

 1 360 3052

m
od

el
 p

er
fo

rm
an

ce

model index

best performance: 0.97 (no transfer), 0.92 (transfer)

no transfer
transfer

Figure 1: Comparing the learning curves of HIPM when applied to the task of modeling plankton change in the Ross Sea in
1997–1998 (left-hand side) and the Bled Lake in 2002 (right-hand side). Each graph shows the comparison of the learning
curve of HIPM applied without constraints (“no transfer” curve) with the learning curve of HIPM using the constraints induced
for the 1996–1997 Ross Sea data (“transfer” curve). The circles denote the best model in the constrained search space.

In previous work (Bridewell & Todorovksi 2007), we
evaluated the learned constraints using measures of recall
and search-space reduction. However, we found that the re-
call rate failed to match the aspects of the problem that we
hoped to capture. Specifically, we are more concerned with
reduced accuracy in the constrained problem. In our experi-
ence, the difference inr2 scores between modeli and model
(i−1) is often negligible, and measures of recall fail to cap-
ture this information. For example, consider a search space
of 100 models. If the top 20 have equivalent accuracy within
some epsilon, but the top 10 violate a set of constraints, then
a measure of recall for the top 10% of models would be mis-
leadingly low. Moreover, given the uncertainty associated
with one’s data, even the thirtieth best model may be satis-
factory. With this in mind, we are less concerned with the
number of accurate models ruled out by the constraints than
with the trade off between accuracy and run time. To this
end, we developed two measures: one that records the loss
in accuracy between the transfer and “no-transfer” cases and
a second that illustrates the reduction in search.

For both measures, we appeal to learning curves based
upon a worst-case modeling scenario. That is, we assume
that the model generator produces structures in order from
those with the worst eventualr2 scores to those with the best.
The first measure that we report compares the accuracy of
the best models in each case by assessing the percentage of
the total possible performance that is lost under the transfer
condition. We calculate this number as100 ∗ (1 − tbest

ntbest

),
wheretbest is the highestr2 value in the transfer condition
andntbest is the highest one in the no-transfer one.

The second measure that we report compares the index of
the best model from the transfer scenario with its index in
the no-transfer case. The benefit from transfer is calculated
according to the formula(nti−ti)

ntn
, whereti is the index of

the model with highestr2 in the transfer condition (which
is equivalent to the total number of models in that case),nti

is the index of that model in the no-transfer condition, and
ntn is the total number of models in the no-transfer case. As
an example, suppose that the complete space contains 500
models and the constrained space has 100. Also, let the best
model in both cases be the same. In this scenario, the trans-
fer benefit is 0.8, which means that the best model appeared
80% faster with transferred constraints than without.

The next section uses both measures to describe initial re-
sults of our approach on a cross-domain transfer task within
the general area of ecological modeling.

Experimental Results
To evaluate the utility of constraint-based transfer learning
for inductive process modeling, we investigated its effects
on the task of explaining ecosystem dynamics. Models of
population dynamics identify the mechanisms that drive ob-
served changes in species concentrations within an ecosys-
tem. These mechanisms may include processes of nutrient
uptake for plants, grazing for herbivores, and predation for
carnivores as possible examples. For this study, we focused
our attention on the general domain of aquatic ecosystems,
which includes both freshwater and marine (i.e., saltwater)
environments. Although these ecosystem types share more
in common with each other than with terrestrial systems,
they differ substantially in their species composition and in
the presence and the dynamics of the relevant environmental
factors. Whereas our earlier work investigated the limited,
near-transfer condition where the same species were placed
in different controlled environments (Bridewell & Todor-
ovksi 2007), this research expands to cases where both the
agents and the environment differ.

The two ecosystems that we selected differ not only along
the freshwater–saltwater dimension but also in geographi-
cal location. The marine data are from the 1996–1997 and
1997–1998 summer seasons of the Ross Sea (Arrigoet al.
2003), which lies in the Southern Ocean off the coast of
Antarctica. In this scenario, we had observations of five

4

variables, phytoplankton concentration, nitrate concentra-
tion, ice concentration, available light, and water tempera-
ture. To these we added unmeasured variables for the zoo-
plankton and iron concentrations—two properties thought to
affect the phytoplankton bloom. In comparison, the fresh-
water data came from the Bled Lake (Atanasovaet al. 2006)
in Slovenia during the months of 2002 where the lake was
not covered in ice. Observations from this site covered seven
variables: the amount of available light, the water tempera-
ture, and the concentrations of phytoplankton, zooplankton,
nitrate, phosphate, and silica. Importantly, these domains
differed in the particular plankton species, the set of opera-
tive nutrients, and the expressed environmental factors (e.g.,
there is no night during the summer in the Ross Sea).

For the experimental evaluation, we used HIPM (Todor-
ovskiet al. 2005) to exhaustively explore the space of mod-
els that could explain the Ross Sea 1996–1997 and Bled
Lake 2002 data sets and our constraint learning approach to
induce transferable knowledge. In each case we employed
the same generic process library for aquatic ecosystems, but
the instantiated entities differed between the Ross Sea and
Bled Lake. The effect of this is apparent in the total num-
ber of candidate solutions for each domain: 1108 for the
Ross Sea and 3120 for Bled Lake. After both runs of HIPM,
we selected a threshold for constraint induction where the
knowledge minimized the size of the search space and max-
imized the recall rate for the top 50 models in the training
set. We applied the constraints induced at that threshold to
the other domains, which were test sets for the transfer task.

We first report on the within domain transfer between the
two data sets from the Ross Sea. The results, presented in
Figure 1, show that the constrained space consisted of 120
candidate structures reduced from the 1108 possible, which
yields a transfer benefit of 0.89. Moreover, the best model
in the transfer case was identical to the one found without
transfer (r2 = 0.94), so there was no performance cost.

Shifting to the cross-domain tasks, our preliminary results
suggest that we can expect knowledge to transfer from ma-
rine to freshwater domains and vice versa. Applying con-
straints learned while modeling the Ross Sea to the Bled
Lake condition, shown in Figure 1, yields results quite simi-
lar to the within-domain case. The best model in the transfer
condition is the 43rd in the no-transfer one, which gives a
transfer benefit of 0.88, and an 8.5 fold reduction in the to-
tal size of the search space. Although the constraints filter
out several of the best models, there is only a 5.2% perfor-
mance loss with absoluter2 scores dropping from 0.97 to
0.92. When we apply constraints from Bled Lake to the Ross
Sea, we get a transfer benefit of 0.98 as illustrated in Fig-
ure 2. Although the “best” model is once again filtered out,
the difference between it and the selected one (number 37 in
the no-transfer case) is negligable. These results suggest the
insensitivity of this approach to the direction of transfer.

Discussion and Closing Remarks
We emphasize again that the results reported in this paper are
preliminary, but their strength bolsters our earlier findings
on within-domain transfer (Bridewell & Todorovksi 2007).
These combined experiments give us reason to believe that

 0

 0.25

 0.5

 0.75

 1

 24 1071

m
od

el
 p

er
fo

rm
an

ce

model index

best performance: 0.98 (no transfer), 0.97 (transfer)

no transfer
transfer

Figure 2: Transferring the constraints from the lake domain,
induced on the Bled Lake data set, to the marine ecosystems
domain (the task of modeling plankton change in the Ross
Sea in 1996–1997).

our approach is a powerful technique for learning transfer-
able knowledge usable by an inductive process modeler. Our
next immediate step involves expanding the analysis to be
both broader, by introducing multiple years of Bled Lake
data, and deeper, by identifying the characteristics of the
constraints that transfer well and by determining the effects
of learning parameters (e.g., the threshold for model classi-
fication) on the sets of constraints.

In addition to the above, we are considering other near
term avenues of research. For instance, when multiple traces
of a system’s dynamics exist, such as the two years from the
Ross Sea, we may be able to induce more general knowl-
edge by combining these traces. One possibility involves
combining the model structures considered in each case into
a single set for constraint induction. Another plausible ap-
proach would have the system retain the intersection of the
induced constraints from each modeling task. Other strate-
gies are also available and experiments along these lines can
ultimately inform us about how to incrementally update con-
straints after each problem. A longer term agenda would
include problems that require transfer across more distant
domains and extension of the entire approach to other areas
of artificial intelligence.

Although other researchers have investigated rule learn-
ing as a means to transfer knowledge (e.g., Taylor &
Stone 2007), there are few examples of constraint induction.
Bessiere et al. (2006) present a system that learns constraint
networks using a version space approach, but these networks
are propositional and the emphasis is on automated pro-
gramming as opposed to constraint transfer. Kemp (2007)
uses hierarchical Bayesian models to perform constraint in-
duction, but he focuses on psychological plausibility more-
so than the development of explicit constraints that carry
over from one task to the next.

In this paper, we highlighted an approach that lets an intel-
ligent system transfer knowledge across learning tasks and
improve its performance with experience. We evaluated the
approach according to a new measure that indicates the ef-

5

fective reduction of the search space and showed how to vi-
sualize this reduction in a manner analogous to a learning
curve. Experiments in applying this method in the context
of inductive process modeling showed a dramatic reduction
in the number of candidates considered with very little de-
crease in overall model fitness. Finally, we note that the form
of the learned knowledge fits well with the generate-and-test
strategy and as a result may generalize readily to other arti-
ficial intelligence systems.

Acknowledgments
This research was supported by Grant No. IIS-0326059
from the National Science Foundation. We thank Pat Lan-
gley, Stuart Borrett, and Tolga Könik for discussions that
influenced the ideas in this paper. We also thank Kevin Ar-
rigo and Gert van Dijken for the use of their data from the
Ross Sea and their expertise in this ecosystem.

References
Arrigo, K.; Worthen, D.; and Robinson, D. H. 2003.
A coupled ocean-ecosystem model of the Ross Sea. Part
2: Iron regulation of phytoplankton taxonomic variability
and primary production.Journal of Geophysical Research
108(C7):3231.

Atanasova, N.; Todorovski, L.; Džeroski, S.; and Kompare,
B. 2006. Constructing a library of domain knowledge for
automated modelling of aquatic ecosystems.Ecological
Modelling194:14–36.

Bessiere, C.; Coletta, R.; Koriche, F.; and O’Sullivan, B.
2006. Acquiring constraint networks using a SAT-based
version space algorithm. InProceedings of the Twenty-
First National Conference on Artificial Intelligence, 23–24.
Boston, MA: AAAI Press.

Bridewell, W., and Todorovksi, L. 2007. Learning declar-
ative bias. InProceedings of the Seventeenth Annual In-
ternational Conference on Inductive Logic Programming,
63–77. Corvallis, OR: Springer.

Bridewell, W., and Todorovski, L. 2007. Extracting con-
straints for process modeling. InProceedings of the Fourth
International Conference on Knowledge Capture, 87–94.
Whistler, BC: ACM Press.

Bridewell, W.; Langley, P.; Todorovski, L.; and Džeroski,
S. 2008. Inductive process modeling.Machine Learning
71:1–32.

Choi, D.; Könik, T.; Nejati, N.; Park, C.; and Langley, P.
2007. Structural transfer of cognitive skills. InProceedings
of the Eighth International Conference on Cognitive Mod-
eling, 115–120. Ann Arbor, MI: Taylor & Francis Group.

Cohen, S., and Hindmarsh, A. 1996. CVODE, a
stiff/nonstiff ODE solver in C. Computers in Physics,
10:138–143.

Jost, C., and Ellner, S. P. 2000. Testing for predator depen-
dence in predator–prey dynamics: A non-parametric ap-
proach.Proceedings of the Royal Society of London Series
B-Biological Sciences267:1611–1620.

Kemp, C. 2007.The acquisition of inductive constraints.
Ph.D. thesis, Massachusetts Institute of Technology, Cam-
bridge, MA.
Lavrač, N., and Džeroski, S. 1994.Inductive Logic Pro-
gramming: Techniques and Applications. New York, NY:
Ellis Horwood.
Srinivasan, A. 2000.The Aleph Manual. Computing Lab-
oratory, Oxford University.
Taylor, M. E.; Stone, P.; and Liu, Y. 2007. Transfer learning
via inter-task mappings for temporal difference learning.
Journal of Machine Learning Research, 8:2125–2167.
Taylor, M. E., and Stone, P. 2007. Cross-domain transfer
for reinforcement learning. InProceedings of the Twenty-
Fourth International Conference on Machine Learning,
879–886. Corvallis, OR: Omnipress.
Thrun, S. 1996.Explanation-based neural network learn-
ing: A lifelong learning approach. Boston, MA: Kluwer
Academic Publishers.
Todorovski, L.; Bridewell, W.; Shiran, O.; and Langley,
P. 2005. Inducing hierarchical process models in dynamic
domains. InProceedings of the Twentieth National Con-
ference on Artificial Intelligence, 892–897. Pittsburgh, PA:
AAAI Press.
Utgoff, P. E. 1986.Machine Learning of Inductive Bias.
Boston, MA: Kluwer Academic Publishers.
Washio, T., and Motoda, H. 1998. Discovering admissi-
ble simultaneous equations of large scale systems. InPro-
ceedings of the Fifteenth National Conference on Artificial
Intelligence, 189–196. Madison, WI: AAAI Press.

6

