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Abstract

The goal of transfer learning algorithms is to utilize
knowledge gained in a source task to speed up learning
in a different but related target task. Recently, several
transfer methods for reinforcement learning have been
proposed. A lot of them require a mapping that relates
features from the source task to those of the target task,
and most of the time it is the task of a domain expert to
hand code these mappings.

This paper proposes a method to learn such a mapping
automatically from interactions with the environment,
using a probability tree to represent the probability that
the optimal action learned in the source task is useful
in the target task. Preliminary experiments show that
our approach can learn a meaningful mapping that can
be used to speed up learning through the execution of
transferred actions during exploration.

Introduction

Inductive transfer or transfer learning is concerned with the
connection between learning in different but related con-
texts. In real life, the beneficial effects of transfer learning
are obvious. Examples include learning to drive a bus after
having learned to drive a car or learning Dutch after having
learned German (except of course for native Dutch speaking
people). In a machine learning context, transfer learning is
concerned with the added benefits that learning one task can
have on a different, but probably related task.

An area where transfer learning is particularly important
is the domain of Reinforcement Learning. In reinforcement
learning (Sutton & Barto 1998), an agent can observe its
world and perform actions in it. The agent’s learning task
is to maximize the reward he obtains. Reinforcement learn-
ing is often approached as a tabula rasa learning technique,
where at the start of the learning task, the agent has no or
little information and is forced to perform random explo-
ration. As a consequence, reinforcement learning in com-
plex domains quickly becomes infeasible or too slow in
practice. Leveraging knowledge could significantly increase
the learning speed and thereby expand the applicability of
reinforcement learning approaches.
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Recently, several approaches have been proposed to trans-
fer knowledge between different reinforcement learning
tasks. Often, a user defined mapping is used to relate the new
task to the task for which a policy was already learned (Tay-
lor, Whiteson, & Stone 2007; Torrey et al. 2006). There has
been some work on learning such a mapping. For example,
in the work by Liu and Stone (Liu & Stone 2006) a graph-
matching algorithm is used to find similarities between state
variables in the source and target task. This approach how-
ever needs a complete and correct transition model for both
tasks. A similar approach is used by (Kuhlmann & Stone
2007) in the context of General Game Playing.

In this paper, transfer learning is achieved by considering
transfer actions, i.e. actions transferred from the source task
to the target task during the exploration phase of the learn-
ing. To decide which action to transfer, the agent learns a
function that predicts for each source action the probabil-
ity that executing the transfered action is at least as good as
executing the action which is best according to the agent’s
current utility function and selects the one with the highest
probability.

The rest of the paper is structured as follows: the next
section introduces the notion of transfer during exploration
and the transfer function. It also describes how the transfer
function can be learned from simple interaction with the en-
vironment without the need for an external oracle to define
a feature mapping. Afterwards we present some preliminary
experiments that serve as a proof of concept. We review
some related work and directions for future work at the end
of the paper.

Using Exploration to Transfer Knowledge

We consider a standard reinforcement learning problem
(Sutton & Barto 1998) where an agent interacts with its en-
vironment. The environment is defined by a set of states
s € S, a number of executable actions a € A, an unknown
state-transition function d(s,a,s’) : S x A x S — [0,1]
that represent the probability that taking action a in state
s will result in a transition to state s’ and a reward func-
tion r(s,a) : S x A — IR. When the reward func-
tion is nondeterministic, we will use the expected rewards
R(s,a) = Es,[r(s,a)]. The state, action, and reward at
time ¢ are denoted s; € S, a; € Aand r; (or R;) € R.

The agent selects which action to execute in a state fol-



lowing a policy function 7(s) : S — A. During exploration
of the environment the agent uses an exploration strategy in-
dicated by 7. that guarantees that each state-action combina-
tion has a non-zero probability of being visited. The utility
of a state-action pair Q™ (s, a) for a policy 7 is defined as
the expected discounted sum of future reward, starting from
state s by selecting action a and following the actions indi-
cated by policy 7 afterwards:

Q"(s,0) = Er gy | Y V' Repilsi =s,a=a| ()
=0

where 7y € [0, 1] is the discount factor.

Transfer Actions

To incorporate knowledge transfer into the exploration of
the reinforcement learning agent, the standard exploration
policy 7, of the agent is altered. In our initial efforts, we
decided to emulate e-based exploration to accomplish this
integration. With a given probability of €, the agent will
select and execute a transfer action m(s) instead of the nor-
mal exploration action 7. (s). In lieu of the learning speedup
obtained with guidance from experts in complex reinforce-
ment learning tasks (Driessens & Dzeroski 2004), we expect
these transfer actions to help with learning, under the condi-
tion that the transfer actions are chosen appropriately.
Assume the agent has learned a policy 7, that performs
well on the source task. To decide which transfer action to
perform in a state ¢ of the target problem, we will employ a
transfer function p(s, t) that represents for each source state
s the probability that the best action for s is at least as good
for ¢ as the best action according to the current approxima-
tion of the utility function. This function allows the agent
to select a transfer action according to the policy learned on
the source task, for that state s from the source task that
maps best onto the target state t. Thus, the transfer action
performed in state ¢ (i.e., m¢(¢)) is the action performed by
policy 7, in the state s for which p(s, t) is maximal, i.e.,

mi(t) = m, (argmax p(s, ) @)

with 7 the source task policy.

Note that we assume for simplicity that actions in the
source task are executable in the target task. In the current
setup, if this is not the case, we could generate a negative
reward when the agent tries to execute a non-available ac-
tion, and it would quickly learn that the transfer function
for the state that suggested this action should be low. In fu-
ture work, we will extend our approach so that the transfer
function maps (state,action)-pairs and is thereby able to in-
corporate the relation between actions.

Learning the Transfer Function

The aim of this work is to avoid the need for a human expert
that defines a mapping function between the source and the
target task, but to be able to learn this mapping automati-
cally. In the setup described above, this means we have to
learn the transfer function p(s,t) : S5 x S — [0, 1], where
Sg is the set of states of the source task and S; is the set of

Algorithm 1 Transfer Learning by Exploration

1: initialize the Q-function hypothesis Qo
2: initialize the transfer function ]50

3: e—0

4: repeat {for each episode}

5: Exg <0

6: Exp—0

7:  generate a starting state sg

8 10

9:  repeat {for each step of episode}

0
1

1 if rand() < e; then {select transfer action}
1 a; = ws(argmax p(t, s))
¢
12: t; = argmax p(t, s) {remember transfer state}
¢
13: else {select exploration action}
Qe(s.a)

14: a; = a with prob. 6712&(5@

Zh#a € T
15: end if
16: take action a;, observe r; and s;41
17: 1—1i+1

18:  until s; is terminal
190 g1 <71
20. forj=¢—2to0do

21 qj < Tj T VG4
22: generate example z, = (s, a;, ¢;)
23: Ezg «— Exg U {z,}
24: if @ was selected as transfer action, i.e.
a; = ms(argmax, p(t,s;)) then
25: ifg; > maxaQe(sj, a) then
26: generate example x, = (¢;, s;, ‘transfer’)
27: else
28: generate example x,, = (¢;, s;, ‘no transfer’)
29: end if
30: Exp — ExpU{z,}
31: end if
32:  endfor

33:  Update Q. using E'z¢ to produce Qe+1
34:  Update P, using Fx p to produce }Seﬂ
35: e«—e+1

36: until no more episodes




states from the target task, from interaction with the envi-
ronment.

At the end of every learning episode in the target task,
a number of learning examples for the transfer function can
be generated. For every transfer action a; the agent executed
(in a state s) during the episode, he can compare the quality
of the transfer action with the quality of his current policy
using two different utility values. On the one hand, a Q-
value Qnrc (s, at) can be obtained by backtracking the Q-
values from the end of that episode to the step where a; is
executed. This is comparable to a Monte Carlo estimate of
this Q-value. On the other hand we let the agent learn a Q-

value approximation Q of its current policy using a standard
Q-learning type algorithm with generalization.

The generated learning example for each executed trans-
fer action then consists of the states in both the source and
target task and a label for the example:

“transfer” if Qnrc (s, ar) > maxaQ(s, a) and
“no transfer” otherwise

Using a learning algorithm able to predict class probabili-
ties, the learning agent can generate a generalized probabil-
ity function that approximates the intended transfer function
p by predicting the probability that a new state-state pair will
belong to the class “transfer”.

Note that, in practice, we are not interested in the exact
probability value as defined by the function p. The purpose
of p is to generate a positive effect of the transferred actions
on the learning speed.

An overview of the reinforcement learning algorithm with
transfer by exploration can be found in Algorithm 1. Note
that we used a SARSA temporal difference learner (Rum-
mery & Niranjan 1994) (line 21), but another reinforcement
learning technique could be used instead.

Preliminary Experiments

We implemented a prototype of the suggested approach to
act as a proof of principle. We decided to use a first or-
der tree learning algorithm TILDE (Blockeel & De Raedt
1998) to learn the transfer function p. The TILDE system
is able to predict class probabilities as required in our setup
(Fierens et al. 2005). To approximate the utility values,
we use the SARSA temporal difference approach (Sutton &
Barto 1998) and an incremental regression tree algorithm
TG (Driessens, Ramon, & Blockeel 2001) to generalise the
utility function. These choices are not specific to the ap-
proach, only to our current implementation.

Experimental Setup

To evaluate our implementation, we ran experiments in a
simple grid based world, depicted in Figure 1. The rooms
are connected with colored doors which the agent (indicated
with the diamond labelled “a”) can only pass if he possesses
a key of the same color as the door (depicted with colored
circles). The primitive actions available to the agent in-
clude four movement actions (up, down, left and right) and
a pickup action that picks up the key located at the agent’s
location (if applicable). The agent can execute at most 500
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Figure 1: Grid based world.

actions per episode and receives a reward of 1 if he exits the
last room and O otherwise. The state representation includes
the dimensions of the different rooms, the locations and col-
ors of the doors, the location and colors of the keys, the keys
the agent possesses, the agent’s location and the goal loca-
tion. The location consists of two coordinates where a coor-
dinate is determined by the relative position in the room and
a certain offset for every room as indicated in Figure 1.

In the source task, the agent had (successfully) learned
how to navigate to the bottom right location in a four by
four grid.

Results

As a first experiment, instead of continuously learning the
transfer function, we learned a single transfer function once
with TILDE (Blockeel & De Raedt 1998) based on learning
examples created during the first 100 learning episodes in
the target task and actions transferred from random source
states. The algorithm was able to learn both the shift in
coordinates between the different rooms and that success-
ful transfer is very unlikely if the agent does not have the
key needed to leave the current room. We then restarted the
agent in the environment with the learned transfer function.

Figure 2 shows the average reward and Figure 3 the num-
ber of actions per episode of a SARSA-learning agent, both
with and without transfer. The numbers are obtained by
freezing the current utility function and following a greedy
test policy for 100 episodes every 50 episodes. We show
results averaged over 10 runs.

Discussion

As shown, the approach with transfer reaches the goal state
in a higher percentage of trials and uses less actions per
episode to reach it. The graph does not show the 100 learn-
ing episodes used to generate the learning examples to learn
the transfer function which is an added cost in our current
implementation and should be taken into account when in-
terpreting the learning speed. In future work, we would like
to employ an online, incremental learning algorithm to learn
the transfer function and to eliminate this extra cost.

Related Work

A lot of transfer learning approaches use a mapping to re-
late the new task to the task for which a policy was already
learned. This mapping relates features from the old task to



Convergence results (reward) grid world
' -6 0-9

1.0 T T T T — T

0.9

o o o
o ~ o

Average reward

o
o

>

0.4% ) - E
N O — — with transfer
4 A — without transfer
0.3 L L L L L L L L L
¢} 100 200 300 400 500 600 700 800 900 1000
Episode

Figure 2: Average reward with and without transfer func-
tion.

features from the new task. How this mapping is then used
to transfer knowledge differs between approaches. Quite of-
ten, the previously learned policy is used to guide explo-
ration in the new task. In the approach of Madden and How-
ley (Madden & Howley 2004), the learner will, after gaining
enough experience in a simple task using a standard tabular
Q-learning algorithm, use a symbolic learner and a proposi-
tional representation of the task to build a generalized policy
based on the learned Q-values. This policy is then used to
aid exploration in a more difficult version of the task. This
is related to our approach, but does not use an explicit repre-
sentation of the transferability of the given policy for a state.

Related to this, Fernandéz and Veloso (Fernindez &
Veloso 2006) re-use the learned policy as one option of a
probabilistic exploration strategy which has a choice over
exploiting its current learned policy, choosing a random ex-
ploration action or exploit the previously learned policy. The
use of a similarity measure between policies allows for the
discovery of classes of similar policies and, as a conse-
quence, a basis (or library) of core policies, which can be
used to study structural aspects of the learning domain. Cur-
rently, the application of this approach is limited to simple
domains such as navigational problems. The authors state
that applying their approach to more complex domains will
require a mapping such as the one we learn in this work.

Torrey et al. (Torrey et al. 2005) use transfer learn-
ing to generate advice to speed up reinforcement learning.
They use a SVM regression approach to approximate the
Q-function of a task. The advice consists of relative infor-
mation about Q-values of different actions as learned in the
original task. The Q-value estimates of the original task are
again translated to the new domain using a human designed
mapping of state-features and actions. The advice is incor-
porated into the new task by adding the information about
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Q-values as soft-constraints to the linear optimization prob-
lem that approximates the Q-function for the next task. In
follow up work (Torrey et al. 2006), the advice is generated
from the original Q-function automatically through the use
of a relational rule learner and extended with user-defined
advice.

Taylor et al. (Taylor, Whiteson, & Stone 2006) use neural
networks to represent policies in an evolutionary algorithm.
After learning on one task, the resulting population of neu-
ral networks is restructured to fit the new task using a human
designed mapping of features and actions between the two
domains. These newly constructed neural networks are then
used as the starting population for a genetic algorithm to op-
timize the policies towards the new task.

Liu and Stone (Liu & Stone 2006) address the problem of
finding mappings between the source and target task. They
apply a specialized version of the structure mapping the-
ory, a psychological and computational theory about anal-
ogy making, to find similarities in the tasks based on similar
patterns in their state transitions. Their algorithm needs as
input almost a full specification of the source and target task
while our approach assumes no prior knowledge.

Kuhlmann and Stone (Kuhlmann & Stone 2007) also
made progress toward the complete automation of a domain
mapping for value function transfer learning. They use a
graph-based approach to identify similar games based on
a canonical form of games in the General Game Playing
(GGP) domain. As they apply their approach in GGP, they
have full descriptions of the tasks available.

Talvitie and Singh (Talvitie & Singh 2007) use an ex-
perts algorithm to select the best policy amongst a number
of given policies. By creating different target task policies
using the source task policy and different mappings, they
can hence find the best mapping. They however need to cre-



ate different mappings by hand and are not able to alter the
resulting policy.

The most related to our work is the work of Taylor et al.
(Taylor, Whiteson, & Stone 2007). Their approach requires
the state variables to be arranged into task-independent clus-
ters which describe different objects in the domain. For
every object in the domain, they learn a classifier that pre-
dicts the index of a particular state variable or action given
a transition (state, action, next_state, reward) in the source
task (minus the target of the classifier). They then apply the
learned classifier to transitions in the target task and consider
the prediction as a similar source action or state variable for
that transition. A winner-takes-all voting scheme is then
used to determine the actual mapping between actions and
state variables. One difference with our approach is that we
do not need the semantic knowledge of state-variable group-
ings. Furthermore, we believe that a lot of useful mappings
cannot be identified by similarities in state transitions only,
as is e.g. the case in our grid based world. Another differ-
ence is that our approach directly learns a mapping between
states which might discover more complicated patterns com-
pared to learning a mapping for every state variable indepen-
dently.

Conclusions

We proposed a first step towards automatically learning a
mapping from states of the source task to states of the target
task for inductive transfer in reinforcement learning prob-
lems without the need for prior knowledge about the tasks.
We suggested a transfer learning approach that performs
transfer through guided exploration and defined a transfer
function that represents the probability that a source state
can be mapped to a target state. We implemented a proof
of principle for the approach using SARSA as a reinforce-
ment learning technique and probability trees as the transfer
function. Preliminary experimental results show that the ap-
proach can yield a significant speedup for the learning pro-
cess in the target task.

Future Work

Besides evaluating our approach in more detail, we would
like to investigate a number of possible extensions of the
proposed approach. One possible direction for further re-
search is incorporating the quality of possible transfer in the
agent’s exploration policy to avoid negative transfer. At the
moment, we employ an e-greedy type approach, which is
certainly suboptimal and does not make use of the learned
probabilities of the transfer function. For example in our ex-
perimental setup, if the agent is not carrying the correct key
to open the next door, p(s, t) will be low for all s € S; and
transferring actions will not be beneficial.

We would also like to substitute the batch learning of the
transfer function as employed in our experiments, by a con-
tinuous, incremental approach.

Another important direction for further research is the in-
corporation of the action description into the transfer func-
tion. This will open the door towards relational reinforce-
ment learning problems where the relations between states
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and actions define the transferability of a learned policy. We
will certainly look into probabilistic relational learning tech-
niques to model the probabilities of the transfer function.
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