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Abstract

This paper introduces the single-entity-centered setting for
transfer across two relational domains. In this setting, tar-
get domain data contains information about only a single en-
tity. We present the SR2LR algorithm that finds an effective
mapping of the source model to the target domain in this set-
ting and demonstsrate its effectiveness in three relational do-
mains. Our experiments additionally show that the most ac-
curate model for the source domain is not always the best
model to use for transfer.

Introduction

Much of the work in transfer learning assumes that the
source and target domains are described in terms of iden-
tical feature sets. However, sometimes knowledge needs to
be transferred across domains that use different representa-
tions. In such cases, it is necessary to first map, or translate,
the source model to the representation used in the target do-
main, before it can be further revised to improve its accuracy.

Addressing the mapping problem is especially important
when using statistical relational learning (SRL) (Getoor &
Taskar 2007) to perform transfer across relational domains.
In a relational domain, there are a set of entities that par-
ticipate in a variety of relationships. For example, in a do-
main describing an academic institution, e.g. (Richardson &
Domingos 2006), the entities may be people, publications,
and courses, whereas the relations may be advised-by,
taught-by, written-by. In addition to relations of sev-
eral entities, there may be unary relations that describe a
single entity, such as is-student or is-professor. Sev-
eral aspects of learning from relational data contribute to the
complexity of the problem. In particular, a training instance
is usually very large because the relations among entities
may make it impossible to break an instance into smaller
independent pieces. To emphasize this fact, we will call re-
lational training instances mega-examples. Thus, in an aca-
demic domain, a mega-example may describe an entire area
of study, such as AI. Moreover, individual mega-examples
usually vary in size, e.g. the number of people, publications
and courses and the relations among them in an AI program
is unlikely to be identical to that in a Systems program.
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The problem of finding a mapping, or a correspondence,
between the relations in the source and target domains arises
when these domains contain different sets of relations, such
as when transferring knowledge learned in an academic do-
main to a domain about movies. We addressed this problem
in our previous work (Mihalkova, Huynh, & Mooney 2007)
where we presented TAMAR, an algorithm that transfers rela-
tional knowledge by first mapping and then revising it. The
best way of mapping the source model is found by evalu-
ating all valid mappings to the target data. It is therefore
essential that TAMAR be provided with a full relational in-
stance about the target domain. In cases when only partial
data is available, TAMAR is likely to perform suboptimally.

In contrast to our previous work, here we present an ap-
proach to mapping source knowledge when minimal target-
domain data is available. In particular, our approach
addresses the single-entity-centered setting in which the
learner is provided with information concerning only a sin-
gle entity. To develop an intuition for how scarce this in-
formation is, consider the example in Fig. 1. It is centered
around one entity in the domain, Bob, and thus all facts in-
volve Bob. We assume that all true facts about Bob are
listed; any fact about Bob that is not listed is false, e.g.
is-professor(Bob) is false. However, no information
about the other entities in the domain is provided or as-
sumed, e.g. we do not know anything more about Ann apart
from her relation to Bob. Fig. 2 contrasts the present paper
to our previous work in terms of the amount of target do-
main data assumed to be available. Naturally, when target
domain data is that limited, the source and target tasks need
to be sufficiently related for transfer to be effective.

Like in our previous work, we consider transferring a
Markov logic network (MLN) (Richardson & Domingos
2006) from a source domain to a target domain. An MLN
consists of a set of first-order clauses, each of which has an
attached weight. Roughly speaking, the weight of a clause
determines how much more likely is a situation in which the
clause is satisfied over a situation in which it is not satisfied.

Learning an MLN from scratch in the single-entity-
centered setting is infeasible. For example, when learning to
predict the advisedBy relation, one useful clause may be
that if a student co-wrote a paper with a professor, then the
student is advised by the professor. Our target data, however,
does not contain examples of professors or of other people
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is-student(Bob),
written-by(Paper1, Bob), written-by(Paper2, Bob)

advised-by(Bob, Ann)

Figure 1: Example target data provided to the learner.
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Figure 2: Target data available in previous versus current work.
The nodes in this graph represent the entities in the domain and the
edges represent the relations in which these entities participate. In
our previous work we assumed that the information from the entire
graph is available to the learner. In the present paper, we assume
that only the bold relations are known.

who wrote papers and thus this clause cannot be learned.
Therefore, applying transfer learning to this setting is a nat-
ural approach to take. In fact, it seems to be the approach
taken by people when they relate their previous experiences
to a new environment. Consider, for instance, a situation
in which an actor A, who is intimately familiar with the
workings of the movie business but has never been to col-
lege, first encounters the academic world by meeting a single
representative from academia, professor P. Professor P talks
about the graduate students she advises, the publications she
has written, and the courses she has taught. This informa-
tion, which is entirely centered on a single individual from
academia, will be sufficient for actor A to form a fairly accu-
rate idea of how the academic world works. He may imagine
that advising a student is similar to instructing an actor when
directing a movie, thus drawing an analogy between profes-
sors and movie directors, between actors and students, and
between publications and movies. From this, actor A may
further conclude that professor P’s students are also listed
in the “credits” of some of her publications, thus drawing
conclusions about entities (i.e. the students) of which he has
never seen examples.

Our algorithm is based on the observation that a good
model for the source domain contains two types of clauses—
short-range ones that concern the properties of a single entity
and long-range ones that relate the properties of several enti-
ties. Because possible translations of the short-range clauses
to the target domain can be evaluated on the available target-
domain data, the key is to use the short-range clauses in or-
der to find meaningful correspondences between the rela-
tions in the two domains. These correspondences are then

used to translate the long-range clauses, thus boosting the
performance of the model in the target domain. We call our
new method Short-Range to Long-Range (SR2LR ).

Background

In first-order logic, a predicate represents a relation in the
domain, such as advised-by. Predicates can be viewed as
functions that return true or false in which each argument
has a type. For example, advised-by takes two arguments
of type person, whereas written-by takes an argument of
type paper and an argument of type person. An atom is a
predicate applied to terms, where the terms can be variables
or constants.1 Here, we will call constants entities. A (neg-
ative/positive) literal is an atom that (is/is not) negated. A
literal in which all terms are entities is ground. A fact is a
ground positive literal. A clause is a disjunction of literals.
A clause is ground if all of its literals are ground. The word
grounding refers to a ground literal or clause.

An MLN consists of a set of weighted formulae and pro-
vides a way of softening first-order logic by making situ-
ations in which not all clauses are satisfied less likely but
not impossible (Richardson & Domingos 2006). Let X

be the set of all propositions describing a world (i.e. all
ground literals in the domain), F be the set of all clauses
in the MLN, wi be the weight of clause fi, Gfi

be the set
of all possible groundings of clause fi, and Z be the nor-
malizing partition function. Then the probability of a par-
ticular truth assignment x to X is given by the formula

P (X = x) = 1

Z
exp

(

∑

fi∈F
wi

∑

g∈Gfi
g(x)

)

.

In our previous work (Mihalkova, Huynh, & Mooney
2007) we presented TAMAR, an algorithm that transfers
MLNs by mapping and revising them. We will review MTA-
MAR, the mapping portion of TAMAR, to which we will com-
pare SR2LR . MTAMAR uses the concept of a type-consistent
mapping. In order to map a source clause to the target do-
main, one needs to map each predicate in the clause to a
predicate in the target domain. When mapping a source
predicate to a target predicate, one implicitly defines a map-
ping between the types of the arguments of the two predi-
cates. A mapping is type-consistent if a type in the source
domain is mapped to at most one type in the target domain
over all predicate mappings within a clause. MTAMAR maps
each source clause independently of the others by evaluat-
ing all possible type-consistent mappings with the weighted
pseudo log-likelihood score introduced by Kok and Domin-
gos (2005). This measure assumes that at least one full target
relational example is provided and uses the closed-world as-
sumption to conclude that ground facts not listed as true in
the data are false.

Revising an MLN given only single-entity-centered target
data is infeasible. Therefore, we will not use the revision
portion of TAMAR, and SR2LR does not perform revision.

Our Approach

This section describes the SR2LR algorithm. SR2LR is de-
signed for the case when target-domain data is available only

1We assume the domains contain no logical functions.
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1.1 advised-by(a, b) ⇒ ¬is-professor(a) worked-for → advised-by, is-director → is-professor

1.2 advised-by(a, b) ⇒ ¬is-student(a) worked-for → advised-by, is-director → is-student

2.1 written-by(m, a) ∧ written-by(m, b) ∧ is-professor(b) worked-for → advised-by, is-director → is-professor, in-movie → written-by
⇒ advised-by(a, b)

2.2 written-by(m, a) ∧ written-by(m, b) ∧ is-student(b) worked-for → advised-by, is-director → is-student, in-movie → written-by
⇒ advised-by(a, b)

Table 1: Example mapped clauses with predicate correspondences

in the form of a single-entity-centered example.

Definition 1 A training example is single-entity-centered
with respect to an entity E if it lists all the true facts involv-
ing E, and only those facts. Facts that involve E but are not
listed are assumed to be false. Facts that do not involve E
have unknown truth values. E is called the central entity.

SR2LR starts by producing all possible type-consistent
mappings of the clauses in the source model. Type-
consistent mappings are defined in the Background section.
As we discussed in that section, a mapping from a source
clause to the target domain implies a correspondence from
the source predicates that appear in the source clause to
a subset of the target predicates. MTAMAR evaluates the
usefulness of this correspondence by measuring the perfor-
mance of the mapped clause in the target domain based on
a probabilistic score. In the single-entity-centered setting,
however, not all mapped clauses can be evaluated in this
way because the target data is incomplete. The key idea of
SR2LR is to find valid source-to-target predicate correspon-
dences by directly evaluating only the clauses whose per-
formance can be measured on the available data and then to
use these correspondences to produce mappings for clauses
whose performance cannot be directly measured in the tar-
get domain. Mapped clauses that can be directly evaluated
are called short-range; the rest are called long-range.

Definition 2 A clause C is short-range with respect to an
entity of type t iff there exists a variable v that appears in
every literal of C and v represents arguments of type t. We
call any such variable v pivotal.

Definition 3 A clause is long-range with respect to E iff it
is not short-range.

As an example, suppose we would like to transfer the
MLN in Fig. 3 using the data in Fig. 1, i.e. transfer from
a toy movie domain to a toy academic domain. Let us
consider one possible type-consistent mapping of the first
clause, given in line 1.1 of Table 1. Note that if we ground
this clause using the substitution a = Bob, b = Ann, we ob-
tain a ground clause whose literals are all known from our
data, thus the clause can be evaluated and hence, it is short-
range. If we use the substitution a = Ann, b = Bob, the
resulting grounding cannot be evaluated because the truth-
value of is-professor(Ann) is unknown. We say that
the first grounding is verifiable, whereas the second is not.

Definition 4 A ground short-range clause is verifiable on
a single-entity-centered example if a pivotal variable is re-
placed by the central entity.

Now consider one possible mapping of the second clause
in Fig. 3, given in line 2.1 of Table 1. According to defini-

0.7 : worked-for(a, b) ⇒ ¬is-director(a)
0.8 : in-movie(m, a) ∧ in-movie(m, b) ∧ is-director(b)

⇒ worked-for(a, b)

Figure 3: Source MLN from toy movie domain

Algorithm 1 SR2LR algorithm

Input:
1: SM: Source Markov logic network
2: TE: Single-entity-centered target data
3: E: Central entity
4: P: Set of predicates in the target domain
5: Θ: Truth threshold for accepting a short-range clause

Output:
6: Result: Markov logic network for the target domain

Procedure:
7: Generate TM, the set of all possible type-consistent mappings

of the clauses in SM. Each mapped clause is given the weight
of its corresponding source clause.

8: Split the clauses in TM into sets S of short-range clauses and L

of long-range clauses.
9: S

′ = filter-short-range(S, Θ)
10: Add all clauses from S

′ to Result

11: L′ = filter-long-range(L, S′)
12: Add all clauses from L′ to Result

13: Let AC be the set of all clauses in Result mapped from source
clause C with weight wC .

14: Set the weight of each a ∈ AC to wC/|AC |.

tions 2 and 3, this clause is long-range. An intuitive inter-
pretation is that this clause concerns relations that go beyond
just a single entity, e.g. about papers written by other people.

Algorithm 1 formally lists the steps SR2LR takes. In
line 9, the short-range mapped clauses are evaluated, as de-
scribed in Algorithm 2. Because of the restricted nature of
the available target data, rather than using a probabilistic
measure, we simply check whether the verifiable ground-
ings of short-range clauses are satisfied on the target data.
Clauses that are satisfied at least Θ proportion of time are
accepted; the rest are rejected. This procedure automatically
rejects clauses that are not informative, as defined next.

Definition 5 A short-range clause is informative with re-
spect to a single-entity-centered example if it has a verifiable
grounding in which at least one ground literal is false.

For example, consider the clause is-student(a) ∨
¬advised-by(b, a). This clause has two verifiable ground-
ings corresponding to the substitutions a = Bob, b =
Ann, and a = Bob, b = Bob. It is not infor-
mative because all the literals in its verifiable ground-
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Algorithm 2 filter-short-range(S,Θ)

1: S′ = ∅
2: for each C ∈ S do
3: if C is informative then
4: if The proportion of verifiable groundings of C that are

true is ≥ Θ then
5: Add C to S′

6: end if
7: end if
8: end for
9: Return S′

ings, i.e. is-student(Bob), ¬advised-by(Ann,Bob)
and ¬advised-by(Bob,Bob), are true. To develop an
intuition for the significance of definition 5, consider
one of the verifiable groundings: is-student(Bob) ∨
¬advised-by(Ann,Bob). We can re-write it as
¬is-student(Bob) ⇒ ¬advised-by(Ann,Bob) or as
advised-by(Ann,Bob) ⇒ is-student(Bob). Thus
clauses that are not informative cannot be used to draw in-
ferences, i.e. they are always trivially satisfied because their
preconditions do not hold. Therefore, judgements about
predicate mappings based on clauses that are not informa-
tive are likely to be misleading.

Once the short-range clauses are evaluated, in line 11
of the main algorithm, SR2LR evaluates the long-range
ones, based on the source-to-target predicate correspon-
dences found to be useful for short-range clauses. Algo-
rithm 3 uses the following definitions.

Definition 6 Let CS and CL be short-range and long-range
mapped clauses respectively. If the set of source-to-target
predicate correspondences implied by CS is a subset of
those implied by CL, we say that CS supports CL. The
literals of predicates in CL that also appear in CS are said
to be supported.

Definition 7 A correspondence between source predicate
PS and target predicate PT is supported by exclusion with
respect to a set of mapped short-range clauses S′ if PS and
PT do not appear in any of the source-to-target predicate
correspondences implied by the clauses in S′.

The goal of support by exclusion is to allow for predi-
cates that do not appear in the short-range source clauses to
be mapped. Even though support by exclusion may seem too
risky in the sense that a pair of completely unrelated source
and target predicates may be mapped to each other, in our
experience the type consistency constraint and the require-
ment that neither of the predicates was mapped to any other
predicate were strong enough to safeguard against this.

We now illustrate the operation of Algorithm 1 up to line
13. Table 1 lists some of the possible ways of mapping the
clauses in Fig. 3, along with the source-to-target predicate
correspondences implied by them. Clauses 1.* in are (infor-
mative) short-range, while 2.* are long-range. Let Θ = 1.
All verifiable groundings of clause 1.1 are satisfied by the
target data. Thus, this clause is accepted in the resulting
model and the predicate correspondences found by it are
useful. Clause 1.2 is rejected because not all of its ground-
ings are satisfied by the target data. Thus the set S′ contains

Algorithm 3 filter-long-range(L, S′)

1: L′ = ∅
2: for each LR ∈ L do
3: for each SR ∈ S′ do
4: if SR supports LR then
5: Mark the corresponding literals in LR as “supported”
6: end if
7: end for
8: if All literals in C are supported then
9: Add C to L′

10: else if All unsupported literals are supported by exclusion
wrt S

′ then
11: Add C to L

′

12: end if
13: end for
14: Return L

′

only clause 1.1. Moving on to the long-range clauses, we see
that predicates advised-by and is-professor in clause
2.1 are supported by clause 1.1; written-by is supported
by exclusion, so clause 2.1 is accepted. Clause 2.2 cannot be
accepted because there is no support for is-student(b).

Finally, in lines 13-14 of Algorithm 1 the weight of each
mapped clause MC is divided by the number of mapped
clauses that originated from the same source clause as MC

in order to ensure that none of the source clauses dominates
the resulting model. We found that performing the weight
adjustment led to better performance. These experimental
results are omitted because of space considerations.

Experiments

We compared SR2LR to MTAMAR on the three domains
we used previously (Mihalkova, Huynh, & Mooney 2007):
IMDB, UW-CSE, and WebKb,2 treating each possible or-
dered pair of them as a source and a target. WebKb and
UW-CSE are about academics. IMDB is about movies.
UW-CSE contains the predicates taughtBy, courseLevel, po-
sition, advisedBy, projectMember, phase, tempAdvisedBy,
yearsInProgram, TA ,student, professor, samePerson, same-
Course, sameProject, publication; IMDB the predicates di-
rector, actor, movie, gender, workedUnder, genre, samePer-
son, sameMovie, sameGenre, sameGender; and WebKB the
predicates student, faculty, project, courseTA, courseProf.
Although some predicates have the same names in different
domains, predicate names are not used by either system.

We used two sets of source MLNs. The first set was
learned using BUSL (Mihalkova & Mooney 2007); the sec-
ond set was learned using a relaxed version of BUSL that
learns models that are less accurate in the source domain but
contain more clauses. The relaxed set of sources was mo-
tivated by the hypothesis that the best-performing model in
the source domain is not necessarily the best model to use
for transfer. We also experimented with using the manu-
ally developed knowledge base provided with UW-CSE as a
source (we call this hand in our experiments). We removed

2UW-CSE is available from http://alchemy.cs.

washington.edu/. IMDB and WebKb are available from
http://www.cs.utexas.edu/users/ml/mlns/
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from UW-CSE busl from UW-CSE relaxed from UW-CSE hand

mTamar SR2LR mTamar SR2LR mTamar SR2LR

director 0.95 0.95 1.00 1.00 0.59 0.61
actor 0.53 0.91 1.00 1.00 0.98 0.95
movie 0.12 0.15 0.22 0.28 0.23 0.31
gender 0.24 0.46 0.33 0.45 0.37 0.54

workedUnder 0.03 0.01 0.04 0.39 0.51 0.94
genre 0.02 0.02 0.03 0.01 0.44 0.54

sameMovie 0.08 0.12 0.09 0.12 0.08 0.12
sameGenre 0.05 0.07 0.06 0.08 0.06 0.07
sameGender 0.11 0.25 0.14 0.58 0.11 0.25

from Webkb busl from Webkb relaxed

mTamar SR2LR mTamar SR2LR

director 0.95 0.99 0.63 0.74
movie 0.22 0.28 0.22 0.28
gender 0.17 0.26 0.17 0.26

samePerson 0.90 0.90 0.90 1.00
sameMovie 0.08 0.12 0.08 0.12
sameGenre 0.05 0.07 0.05 0.07
sameGender 0.11 0.25 0.11 0.25

Table 2: AUC for transfer to IMDB. Bold results are significantly better than the performance of MTAMAR given the same source.

from this knowledge base all clauses that refer to specific
entities in UW-CSE because SR2LR and MTAMAR do not
map entities. We used generative weight-training to learn
weights for the clauses in the knowledge base in the source
domain (Richardson & Domingos 2006). Target training
data in each case consisted of a single-entity-centered ex-
ample, where the central entity was one of the entities of
type person in the domain. In IMDB, the average size of a
training example was 6.26 true ground facts; in UW-CSE it
was 10.40, and in Webkb it was 2.66. The size of the full
mega-example in IMDB was 320 true ground facts; in UW-
CSE 766 true ground facts, and in WebKb 519 true ground
facts. We report average performances over all entities of
type person in each domain.

We evaluated the performance of the mapped MLNs by
performing leave-one-predicate-out inference over them in
the full mega-example, as done in previous work (Kok &
Domingos 2005; Mihalkova, Huynh, & Mooney 2007). For
inference we used MC-SAT (Poon & Domingos 2006). The
results are reported in terms of the area under the precision-
recall curve (AUC). This measure is particularly appropriate
for relational domains because it focuses on how well the
algorithm predicts the few true positives and is not misled
by the large number of true negatives in the data.

We implemented SR2LR as part of the Alchemy pack-
age (Kok et al. 2005), and used the implementation of
MTAMAR available at http://www.cs.utexas.edu/
users/ml/mlns/. We set Θ = 1.

Results

Our experiments address the following questions:

1. In which cases does SR2LR outperform MTAMAR?

2. How does the choice of source model affect performance?

To answer the first question, in Tables 2-4, we report the per-
formance of the systems for predicting each predicate sepa-
rately. We only show the predicates for which MTAMAR per-
forms better than SR2LR or for which SR2LR is significantly
better than MTAMAR. Statistical significance was measured
using a paired t-test at the 95% confidence level. Predicates
for which SR2LR performs at least as well as MTAMAR but
the difference is not significant are omitted to save space.

SR2LR achieves the greatest performance gains in the
UW-CSE → IMDB experiment. This is not surprising be-
cause each predicate in IMDB has a corresponding predicate

in UW-CSE. Thus, this demonstrates that SR2LR is capa-
ble of discovering useful predicate correspondences. When
transferring from a domain with a richer predicate set to one
with fewer predicates, there invariably will be target predi-
cates to which no useful correspondences were found. This
explains the more modest performance gains observed when
transferring to UW-CSE or from WebKb. Because WebKb
has the smallest number of predicates, which seem to have
obvious correspondences to predicates in UW-CSE, it may
seem surprising that we do not observe bigger performance
gains in transfer to WebKb. This behavior can be explained
if we look more closely at the WebKb predicates where per-
formance is especially poor: courseTA(coursename, person)
and courseProf(coursename,person). Their obvious coun-
terparts in UW-CSE are TA(course, person, semester) and
taughtBy(course, person, semester). As we see, the UW-
CSE predicates have arity 3, whereas the WebKb ones have
arity 2. At present, SR2LR maps only predicates with the
same arity to each other; in the future we plan to experiment
with less restrictive clause-mapping techniques.

To answer the second question, we observe that trans-
fer from the “relaxed” sources can give better results, even
though the “busl” sources perform much better in the source
domains. This demonstrates that the best model in the
source domain is not necessarily the best one for transfer. In
the single-entity-centered scenario, sources that have more
short-range clauses lead to better results.

Related Work

The problem of mapping a source model to a target do-
main has also been addressed by others. For example, the
Structure-Mapping Engine (Falkenhainer, Forbus, & Gen-
tner 1989) uses reasoning by analogy to find correspon-
dences between source and target predicates. In the area
of reinforcement learning, Taylor et al. (2008) present a
method for mapping the feature spaces across tasks by us-
ing samples from runs in the two tasks.

Our work is also related to the problem of transfer learn-
ing within the SRL setting. Guestrin et al. (2003) use a
relational representation as a vehicle to achieving transfer
by learning general rules about the ways objects interact.
Recently, Deshpande et al. (2007) presented a hierarchical
Bayesian approach to transferring knowledge about proba-
bilistic planning rules. Torrey et al. (2007) use SRL tech-
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from IMDB busl from IMDB relaxed

mTamar SR2LR mTamar SR2LR

courseLevel 0.33 0.25 0.24 0.25
position 0.20 0.36 0.05 0.31

advisedBy 0.02 0.02 0.01 0.03
phase 0.20 0.28 0.15 0.28

yearsInProgram 0.03 0.09 0.05 0.09
student 0.87 0.89 0.78 0.95

professor 0.41 0.30 0.32 0.92
samePerson 0.02 0.01 0.01 0.01
sameCourse 0.02 0.02 0.03 0.02
publication 0.02 0.02 0.03 0.02

from Webkb busl from Webkb relaxed

mTamar SR2LR mTamar SR2LR

courseLevel 0.16 0.25 0.16 0.25
phase 0.09 0.12 0.09 0.12

student 0.98 0.95 0.95 0.77
professor 0.93 0.79 0.64 0.41

samePerson 0.52 0.67 0.68 0.94
publication 0.02 0.06 0.04 0.03

Table 3: AUC for transfer to UW-CSE. Bold results are significantly better than the performance of MTAMAR given the same source.

from IMDB busl from IMDB relaxed

mTamar SR2LR mTamar SR2LR

student 0.46 0.67 0.46 0.67
faculty 0.21 0.15 0.21 0.15
project 0.02 0.01 0.03 0.01

from UW-CSE hand from UW-CSE busl from UW-CSE relaxed

mTamar SR2LR mTamar SR2LR mTamar SR2LR

student 0.91 0.80 0.38 0.76 0.98 0.99
faculty 0.35 0.66 0.12 0.24 0.96 0.98

Table 4: AUC for transfer to Webkb. Bold results are significantly better than the performance of MTAMAR given the same source.

niques to learn relational macros in the source task that then
guide the initial stages of learning in the target task.

None of this previous work, however, addresses the
single-entity-centered setting.

Conclusion and Future Work
This paper introduces the single-entity-centered setting of
transfer in which data about only one entity in the target
domain is available. We presented the SR2LR algorithm
which evaluates possible source-to-target predicate corre-
spondences based on short-range clauses in order to also
transfer the knowledge captured in long-range clauses.

The single-entity-centered setting can be viewed as one
extreme on the spectrum of possible available relational
data. On the other end of the spectrum is a full mega-
example. In the future, we plan to study how the relative
performance of SR2LR and MTAMAR changes as data about
an increasing number of entities becomes available. We also
plan to experiment with novel ways of mapping a source
clause to the target domain. At present, we require that a
source predicate be mapped to a single target predicate of
the same arity, and we map the arguments of the predicates
in order. We would like to consider mappings in which dif-
ferent arity predicates are mapped to each other by using
techniques such as merging their arguments, as well as map-
pings in which the arguments are mapped in different orders.
Finally, we would like to explore ways of mapping a con-
junction of two source predicates to a single target predicate
and vice versa, thus performing a sort of transfer-motivated
predicate invention.
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