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Abstract

The WiFi-based indoor localization problem (WILP)
aims to detect the location of a client device given the
signals received from various access points. WILP is a
complex and very important task for many AI and ubiq-
uitous computing applications. A major approach to
solving this task is through machine learning, where up-
to-date labeled training data are required in a large scale
indoor environment. In this paper, we identify WILP as
a transfer learning problem, because the WiFi data are
highly dependent on contextual changes. We show that
WILP can be modeled as a transfer learning problem for
regression modeling, where we identify several impor-
tant cases of knowledge transfer that range from trans-
ferring the localization models over time, across space
and across client devices. We also share our working
experience in WILP and transfer learning research in a
realistic problem solving setting, and discuss a data set
we have made public for advancing this research.

Introduction

Accurately locating a mobile device in an indoor environ-
ment is an important task in many AI and ubiquitous com-
puting applications. Examples can be found ranging from
activity recognition, robotics to various user-assisted tech-
nologies such as home-based healthcare1. With the increas-
ing availability of 802.11b/g WiFi network in various cities
and urban centers, indoor localization is increasingly fea-
sible for indoor location detection based on wireless signal
strength values (Bahl, Balachandran, & Padmanabhan 2000;
Letchner, Fox, & LaMarca 2005; Ferris, Hähnel, & Fox
2006). The WiFi based indoor localization problem (WILP)
is also a difficult task because the WiFi data are very noisy
and highly dependent upon environment due to multi-path
and shadow fading effects in indoor environment. The
data distribution is constantly changing depending on var-
ious factors, such as human movement, temperature and hu-
midity changes, (Yin, Yang, & Ni 2005). When applying

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1http://en.wikipedia.org/wiki/Activityrecognition

machine-learning based approaches, it is very costly to col-
lect and label the training data in the form of (RSS val-
ues, Location Label) pairs in a large scale building, be-
cause humans need to take a mobile device and walk through
the building to collect the RSS values and mark down
the ground truth locations (Ferris, Fox, & Lawrence 2007;
Panet al. a). When the signal distribution changes, such pro-
cesses have to be repeated again. Many previous machine-
learning-based localization models assume that (1) in an of-
fline phase, a lot of labeled training data are available to
learn a localization model; (2) the learned localization model
is static over time, across space or across devices. Thus
it can be used to accurately locate a mobile device online
without any adaptation.

However, these assumptions may not hold in many real-
world WILPs for several reasons. First, the data distribu-
tion may be a function of time, leaving it difficult to apply
a trained model to a new scenario at a different time period.
Secondly, the data distribution may be a function of space,
making it expensive to collect the training data at all loca-
tions in a large scale building. Finally, the data distribution
may be a function of client device, making the model trained
for one type of device (say Cisco) to be invalid when ap-
plied to another device (say Intel). To explain these reasons
clearly, we show the observations as follows:

• We first consider changing data distribution over time. In
a complex indoor building, the environment is always dy-
namic in nature, caused by unpredictable movements of
people, radio interference and signal propagation. Thus,
the distributions of RSS values at training and application
periods may be significantly different. For example, as
shown in Figure 1, the distributions between WiFi signals
received at two different time periods can be very differ-
ent even at a fixed location and by a same device.

• We then consider changing data distribution across space.
Since to collect the labeled training data is a very ex-
pensive process, especially when the indoor building is
at large scale, it is nice that if we can only collect the la-
beled data from a subarea of a building and unlabeled data
from the remaining area. However, in this case, the distri-
butions between labeled data and unlabeled data may be
very different.
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(b) Time Period 2

Figure 1: Variations of signal-strength histograms in two
time periods at the same location from one access point

• Finally, we consider changing data distribution across de-
vices. For example, as shown in Figure 2, the distribu-
tions between WiFi signals collected by two different de-
vices can be quite different even at a fixed location and at
a same time.
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Figure 2: Variations of signal-strength histograms over two
different devices at the same location from one access point.

The above observations may directly cause many tradi-
tional machine-learning-based localization models to fail if
we use the data collected at one time period, in one sub-
area or by one device for training and the data collected
at another time period, in another subarea or by another
device for testing. Therefore, how to reduce the calibra-
tion effort of adapting localization models over time, across
space or across devices are three major problems of WILP.
To solve these problems, we have conducted a series of re-
lated transfer learning research at the Hong Kong University
of Science and Technology. In particular, in this paper we
summarize our work in transferring the localization knowl-
edge across time, space and device. We give an overview
of our approaches in our recent works (Panet al. 2007; b;
Pan, Kwok, & Yang 2008; Zhenget al. 2008b; 2008a) and
the provide some experimental results.

Related Work

WiFi Localization in Indoor Environments

Received-signal-strength (RSS) based indoor localization
and tracking methods have been increasingly popular for
WiFi networks (Bahl, Balachandran, & Padmanabhan 2000;
Letchner, Fox, & LaMarca 2005). The problem of RSS

based indoor localization is to predict locations of a mobile
device based on RSS values. Consider a two-dimensional
indoor localization problem2. A location is represented by
ℓ = (x, y), wherex andy correspond to the x-coordinate
and y-coordinate value, respectively. Assume that there
arem transmitters, such as Access Points (APs), in an in-
door environment, which periodically send out wireless sig-
nals. A mobile device can receive signals sent by each of
the m APs. Thus, the signals received by a mobile de-
vice at a certain location can be represented by a vector
s = (s1, s2, ..., sm)T ∈ R

m. Now the goal of a localiza-
tion system can be stated formally as estimating the loca-
tion ℓi of a mobile device based the signal strength vector
si = (si1, si2, ..., sim)T received by the mobile device. In
general, many localization systems operate in two phases:
anofflineor training phaseand anonline localization phase.
During the offline phase, a radio mapping function is built
from a large amount of signal vectors collected at various
locations. In the online phase, the radio mapping function is
used to locate a mobile device using its real-time signal vec-
tors. Here the locations of APs are not necessarily known.
We call the signal strength vectors with known location in-
formation as labeled data, and those without location infor-
mation as unlabeled data.

Existing approaches to RSS based localization fall into
two main categories: radio-propagation-model-based mod-
els and machine-learning-based models. The methods in
the first category rely on indoor propagation models and the
performance is limited because they cannot handle uncer-
tainty (Bahl, Balachandran, & Padmanabhan 2000). Over
the last few years, various machine learning approaches have
been applied to the indoor localization problem. (Ferris,
Hähnel, & Fox 2006; Nguyen, Jordan, & Sinopoli 2005;
Panet al. 2005). Two major drawbacks of these approaches
are as follows: (1) many of them require a large amount of
labeled data for training the models. (2) many of them have
a common assumption that the static model learned from
training data can be used to accurately estimate locations of
mobile device online.

Recently, a few approaches have been proposed for re-
ducing the calibration effort of learning localization models
offline, but none have addressed the problem of adapting the
models learned in one spatial area to fit another spatial area
across an environment. (Ferris, Fox, & Lawrence 2007) ap-
plied Gaussian-Process-Latent-Variable models (GP-LVMs)
to construct RSS map under an unsupervised learning frame-
work. In this model, an appropriate motion dynamics model
needs to be given. (Panet al. a) proposed to apply mani-
fold regularization (Belkin, Niyogi, & Sindhwani 2006) to
mobile device tracking in a wireless sensor network under a
semi-supervised learning framework. In this model, the la-
beled training data still need to be uniformly collected over
the whole building.

2Localization in a three-dimensional environment can be seen
as an extension.
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Some previous works have also proposed several strate-
gies to adapt localization models over time. The LEASE
system (Krishnanet al. 2004) utilizes different hardware
equipments to solve this problem. LEASE employs a num-
ber of stationary emitters and sniffers to obtain up-to-date
RSS values for updating the maps. The localization accu-
racy can only be guaranteed when these additional hardware
equipments are deployed in high density. (Bahl, Balachan-
dran, & Padmanabhan 2000) proposed to collect training
data in multiple time periods to build models, and then used
a probabilistic approach to decide which model should be
used online according to the real-time RSS values. How-
ever, the calibration effort of such solution is still high.

Transfer Learning

Transfer learningaims to solve the problem when the train-
ing data from a source domain and the test data from a
target domain follow different distributions or are repre-
sented in different feature spaces (Caruana 1997). In the
past, transfer learning has been studied in two major con-
texts. The first context can be referred to as instance-
based approach (Daiet al. 2007b; Huanget al. 2007;
Sugiyamaet al. 2008), where different weights are learned
to rank instances in a source domain for using as training
data for the target domain. A second context can be re-
ferred to as feature-based approach (Ando & Zhang 2005;
Argyriou, Evgeniou, & Pontil 2007; Blitzer, McDonald, &
Pereira 2006; Rainaet al. 2007; Daiet al. 2007a), which
tries to find a common feature set among the different do-
mains that can bridge the two for knowledge transfer. These
works includemulti-task learning(Ando & Zhang 2005;
Argyriou, Evgeniou, & Pontil 2007),multi-domain learn-
ing (Blitzer, McDonald, & Pereira 2006; Daiet al. 2007a)
andself-taught learning(Rainaet al. 2007).

Transfer learning techniques have been applied success-
fully in many real world applications, such as learning in
real-time strategy game (Sharmaet al. 2007), text mining
(Raina, Ng, & Koller 2006; Daiet al. 2007a), natural lan-
guage processing (Blitzer, McDonald, & Pereira 2006) and
so on. However, in the area of machine learning based local-
ization, few work on transfer learning has been done before.

Transfer Learning for WILP

Transferring the Localization Models Over Time

Consider transfer learning over time for a two-dimensional
WiFi indoor localization problem. We denote the WiFi sig-
nal data collected at a time period0 asD0 and denote WiFi
signal data collected at another time periodt as Dt. We
assumeD0 to be fully labeled whereasDt to have only a
few labeled examples and some unlabeled ones that can be
easily obtained by randomly walking through the environ-
ment. We collected a lot of labeled data at the time period0

while only collected a few labeled data at the time periodt.
Our goal is to construct a accurate localization model for the
time periodt from D0 andDt. We propose two solutions
to solve this problem according to different situations. If the
user trace information is available3, then a hidden Markov
model based solution is preferred. Otherwise, we adopt a
manifold co-regularization based solution. Below, we give
an overview of our solutions to these problems, where the
detailed descriptions can be found in (Panet al. 2007;
Zhenget al. 2008b).

Transferring HMM Models over Time If the trace in-
formation is available offline and online, then we take it
into account to develop a Transferred Hidden Markov Model
(TrHMM) to solve this problem. Figure 3 illustrates our
idea. We model the prediction problem as a classification
problem of discrete location grids. At time 0, we collect
RSS data with location labels over the whole area. This step
is time consuming, but is done only once. This dataset con-
sists of both the RSS samples at each location and some un-
labelled user traces collected as the user walks around the
environment in arbitrary trajectories. Based on this data, we
train an HMMθ0 = (λ0, A0, π0) for localization at time 0.
Basically,λ0 is the radio map that connects the RSS val-
ues to the locations,A0 is the transition matrix that reflects
the way the user moves, andπ0 is the prior knowledge on the
likelihood of where the user is. Note thatλ0 is changing over
time because signal strength varies.A0 can also be changing
over time because at different time periods, people may have
different activities. For example, at noon, people are more
likely to go to canteen for lunch; and at working hours, peo-
ple are more likely to move within the office area. Therefore,
bothλ0 andA0 need to be adapted toλt andAt for a new
time periodt. π0 is kept unchanged over time, since in real-
ity, the basic human behavior does not change dramatically.
For example, a professor stays at his office each day longer
than his walking in a corridor. We propose a solution in-
volved with regression analysis and Expectation Maximiza-
tion (EM) techniques to adapt the parameters(λ0, A0, π0)
in the time period0 to parameters(λnew

t , At, πt) in the time
periodt. The details of the algorithm can be found in (Zheng
et al. 2008b).

Figure 3: Adapting a localization model from time0 to time
t using TrHMM. The triangles denote reference point loca-
tions in the area.

3The time stamp of each RSS-value record is available.
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Manifold Co-Regularization based Solution If the trace
information is unavailable offline or online, then we need
to develop another technique to solve this proplem. Ob-
serve that although the data distributions are different in high
dimensional signal space over time, the data should have
a common underlying low-dimensional manifold structure,
which can be interpreted as the physical location space. This
geometric property is the intrinsic knowledge of the localiza-
tion problem in a WiFi environment over time. From Figure
4, we can see that although the data in high dimensional sig-
nal space have different distributions, they correspond to the
same low-dimensional space, the physical space. Thus, if
we have some pairwise constraints between the data in dif-
ferent time periods, we can align the high dimensional data
in different time periods into a common low-dimensional
space, and then learn a localization model that takes both
D0 and Dt into account. As ”A”, ”B” and ”C” shown
in Figure 4, we can simply place a few reference points,
which are additional sensors for recording real-time RSS
values, to construct such pairwise,{SA, S′

A
}, {SB, S′

B
} and

{SC , S′

C
}. In (Panet al. 2007), we develop a new manifold

co-regularization technique to solve this problem. The de-
tails of the algorithm can be found in the paper.

*signal from two access points is shown here
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Figure 4: Correlation between location space and two dif-
ferent signal space

Transferring Localization Models Across Space

We first consider transfer learning across space for a two-
dimensional WiFi indoor localization problem. We denote
the WiFi signal data collected in an areaA asSa and denote
WiFi signal data collected in an areaB asSb. We assume
Sa to be fully labeled whereasSb to have only a few la-
beled examples and some unlabeled ones that can be easily
obtained by quickly walking through the area. The environ-
ment as shown in Figure 5 is one of our test beds, whose size
is about35× 120 m2. In this test bed, we have collected la-
beled data in an area we call AreaA while we only collected
less than 10 labeled data in another area we call AreaB. Our
key observation is that there must be some latent knowledge
or common structure betweenSa andSb, which can be used
for propagating the label information across space, when the
areaA and the areaB being in the same indoor WiFi envi-
ronment. Our goal is to automatically discover someshared
structure or knowledge(which can be referred to asKB)

in the indoor localization domain. We can then incorporate
KB and the dataSa andSb to construct an accurate local-
ization model for the whole space, including both areasA
andB.
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Figure 5: AreaA and AreaB in an Environment.

Specifically, our solution for exploiting the data collected
in a area for building a localization model for the whole
environment through transfer learning consists of two sub-
tasks: (1) Automatically extract the domain knowledge of
an indoor environment from the labeled data collected in a
area; (2) Incorporate the extracted domain knowledge into a
model to propagate the label information to unlabeled data
collected in the rest of the environment, and further construct
the localization model. For the first subtask, we formulate a
quadratically constrained quadratic program (QCQP) opti-
mization problem to discover an underlying semantic mani-
fold of the WiFi signal data. This semantic manifold acts as
a bridge that propagates the common knowledge across dif-
ferent areas. For the second subtask, we exploit the common
knowledge learnt in the first subtask by taking them as some
constraints, and incorporate them to another QCQP opti-
mization problem to estimate labels of the unlabeled data
collected in the rest of the environment and then build a map-
ping function for the whole environment. The details of the
algorithm can be found in (Panet al. b).

Transferring Localization Models Across Devices

Consider transfer learning across devices for a two-
dimensional WiFi indoor localization problem. We denote
the WiFi signal data collected by a deviceA asDa and de-
note WiFi signal data collected by another deviceB asDb.
We assumeDa to be fully labeled whereasDb to have only
a few labeled examples and some unlabeled ones that can
be easily obtained by quickly walking through the environ-
ment. We collected a lot of labeled data by the deviceA
while only collected a few labeled data by the deviceB. Ob-
serve that although the devices may be different from each
other, the learning tasks on these devices are related since
they all try to learn a mapping function from a signal space
to a samelocation space. This motivates us to model the
multi-device localization problem as a multi-task learning
problem (Caruana 1997).
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Many existing multi-task learning methods assume that
the hypotheses learned from the original feature space for
related tasks can be similar. This potentially requires the
data distributions for related tasks to be similar in the high-
dimensional feature space. However, in our multi-device lo-
calization problem, the data distributions are expected to be
quite different from each other. Therefore, we extend the
multi-task learning for multi-device localization problem by
only requiring that the hypotheses learned from alatentfea-
ture space are similar. In other words, we look for appro-
priate feature mappings, by which we can map different de-
vices’ data to a well-defined low-dimensional feature space.
In this latent space, new device can benefit from integrating
the data collected before by other devices to train a local-
ization model. The details of the algorithm can be found in
(Zhenget al. 2008a).

Experiments and Discussion

ICDM 2007 Data Mining Contest Dataset

Despite intense research in the area of indoor location es-
timation and activity recognition, there has been a lack of
benchmark data with which researchers and practitioners
can compare their solutions. We co-organized the first IEEE
ICDM Data Mining Contest (IEEE ICDM DMC’07) and
published the first such realistic public benchmark data for
indoor location estimation from radio signal strength re-
ceived by a client device from various WiFi APs. We col-
lected the data sets in an academic building in the Hongkong
University of Science and Technology, consisting of an area
of 145.5m × 37.5m. Locations were dispersed into247
grids, each of which has a size of about1.5m × 1.5m. The
main task is discrete classification. Regression versions of
the tasks were also essential to location estimation, and have
been released on the ICDM DMC’07 website4. The bench-
mark data is available (Yang, Pan, & Zheng 2008). The
second task of ICDM DMC’07 focused onTransferring the
Learned Knowledge for Indoor Location Estimation. In this
task, the training data were collected at adifferent time pe-
riod from the test data. To help with the prediction in the
case where the training and test data may be from different
distributions,somelabeled test data which can be used as
benchmarks are provided. The goal is to predict locations of
the test data. The data description details can be found on
the ICDM DMC’07 website.

Experimental Results

We conducted experiments on the ICDM DMC’07 dataset
to evaluate our proposed solutions for transferring localiza-
tion models over time. In addition, we collected new train-
ing and test data from different space or by different devices

4http://www.cse.ust.hk/∼qyang/ICDMDMC07/

in the same building at the Hong Kong University of Sci-
ence and Technology to evaluate our proposed solutions for
transferring localization models across space and across de-
vices, respectively. The new datasets will be published later
as benchmark data as well. Table 1 compares our transfer-
learning-based solutions with traditional machine-learning-
based solutions over time and over space. The numbers
shown in the table are culmulative probabilities at 3-meter
error distance5. We can see that our proposed transfer-
learning-based solutions outperform the localization models
that are static . The task that transferring localizations mod-
els over devices is even more difficult due to the APs de-
tected by different devices at the same location may be very
different. However, our proposed latent multi-task learning
based solution can still reduce the average error predicted
distance of a localization model from 10 meters to around 5
meters with only a few relabeled data. The detailed exper-
imental results have been analyzed in (Panet al. 2007; b;
Zhenget al. 2008b; 2008a).

Over Time Over Time Over Space
(with trace info.)

NoTransF 0.73 0.7 0.65
TransF 0.85 0.8 0.7

Table 1: Comparison of culmulative probabilities (error dis-
tance = 3m) between our transfer-learning-based solutions
and traditional machine-learning-based solutions.

Conclusion and Future Work

In this paper, we study the problem of exploiting transfer
learning algorithms for WILP. We have shown that our pro-
posed transfer-learning-based solutions can transfer local-
ization models over time, across space and across devices,
effectively. In the future, we plan to exploit transfer learn-
ing into other pervasive computing applications, such as ac-
tivity recognition from low-level sensory data (Hu & Yang
2008). In real-world scenarios, acquiring the training data
for activity recognition of a particular user in a particular
environment, with a given set of actions is extremely costly.
Therefore, a natural problem that arises is how to transfer
the useful knowledge of an activity recognition from a per-
son to to another person or from an environment to another
environment. In addition, we also plan to develop a more
general transfer learning method for various realistic prob-
lems. In (Pan, Kwok, & Yang 2008), we have proposed a
novel transfer learning method via dimensionality reduction.
The basic idea behind our method is that we try to extract im-
plicit features by which the distributions of the data in differ-
ent domains are close to each other in the subspace spanned.
Based on the extracted features, we can migrate the labeled
data across domains. We have applied this method to text

5Culmulative probabilities at 3-meter is equivalent to the ac-
curacy of predictions (ranges from 0 to 1), where the predictions
within 3 meters of the ground truth are all counted as correct pre-
dictions, otherwise are counted as incorrect predictions.
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classification and WiFi localization problems and achieve
encouraging results. We will go on our research and make
this method more effective and efficient.
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