
Transfer in Reinforcement Learning via Markov Logic Networks

Lisa Torrey, Jude Shavlik, Sriraam Natarajan, Pavan Kuppili, Trevor Walker
Computer Sciences Department

University of Wisconsin-Madison

Abstract

We propose the use of statistical relational learning, and
in particular the formalism of Markov Logic Networks,
for transfer in reinforcement learning. Our goal is to ex-
tract relational knowledge from a source task and use it
to speed up learning in a related target task. We do so
by learning a Markov Logic Network that describes the
source-task Q-function, and then using it for decision
making in the early learning stages of the target task.
Through experiments in the RoboCup simulated-soccer
domain, we show that this approach can provide a sub-
stantial performance benefit in the target task.

Introduction
Human learners appear to have inherent ways to transfer
knowledge between tasks. That is, we recognize and ap-
ply relevant knowledge from previous learning experiences
when we encounter new tasks. The more related a new task
is to our previous experience, the more quickly we can mas-
ter it.

Common machine learning algorithms, in contrast, usu-
ally address isolated tasks. Transfer learning research at-
tempts to develop methods to transfer knowledge learned in
a source task and use it to speed up learning in a related tar-
get task. Algorithms that enable knowledge transfer repre-
sent progress towards making machine learning as effective
as human learning.

One area in which transfer is often desirable is reinforce-
ment learning (RL), since standard RL algorithms can re-
quire long training times in complex domains. One exam-
ple of a complex RL domain is the simulated soccer project
RoboCup (Noda et al. 1998), which we use for experiments
in this work. Our work focuses on relational transfer in do-
mains like RoboCup, where the source-task knowledge in-
cludes first-order logical information. Here we propose the
use of statistical relational learning for transfer in RL.

Statistical relational learning (SRL) is a type of machine
learning designed to operate in domains that have both un-
certainty and rich relational structure. It focuses on combin-
ing the two powerful paradigms of first-order logic, which
generalizes among the objects in a domain, and probability

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

theory, which handles uncertainty. One recent and popular
SRL formalism is the Markov Logic Network (MLN), in-
troduced by Richardson and Domingos (2005), which inter-
prets first-order statements as soft constraints with weights.
This framework can allow us to express source-task knowl-
edge with relational structure while still accounting for non-
deterministic events.

Our approach is to learn an MLN that describes the
source-task Q-function and then use this function for deci-
sion making in the early learning stages of the target task.
Doing so provides an initial bias towards behavior that is
likely to be successful, and avoids the slow process of ran-
dom exploration that traditionally occurs at the beginning
of RL. This method takes advantage of the relational struc-
ture of a domain by generalizing across objects even if the
RL algorithm itself does not, as is the case in domains like
RoboCup where fully relational RL is not yet achieved. It
can therefore allow generalization to new tasks more easily,
since it captures knowledge about logical variables rather
than constants.

With experiments in RoboCup, we show that transfer in
RL via Markov Logic Networks can provide a substantial
head start in a target task.

Reinforcement Learning in RoboCup
In reinforcement learning (Sutton and Barto 1998), an agent
navigates through an environment trying to earn rewards or
avoid penalties. The environment’s state is described by a
set of features, and the agent takes actions to cause the state
to change.

In one common form called Q-learning (Watkins 1989),
the agent learns a Q-function to estimate the value of tak-
ing an action from a state. An agent’s policy is typically to
take the action with the highest Q-value in the current state,
except for occasional exploratory actions. After taking the
action and receiving some reward (possibly zero), the agent
updates its Q-value estimates for the current state.

Stone and Sutton (2001) introduced RoboCup as an RL
domain that is challenging because of its large, continu-
ous state space and non-deterministic action effects. The
RoboCup project has the overall goal of producing robotic
soccer teams that compete on the human level, but it also
has a software simulator for research purposes. Since the
full game of soccer is quite complex, researchers have devel-

49

Figure 1: Snapshot of a 3-on-2 BreakAway game. The at-
tacking players have possession of the ball and are maneu-
vering against the defending team towards the goal.

oped several simpler games within the RoboCup simulator.
See Figure 1 for a snapshot of one of these games.

In M -on-N BreakAway (Torrey et al. 2005), the objective
of the M reinforcement learners called attackers is to score
a goal against N − 1 hand-coded defenders and a goalie.
The game ends when they succeed, when an opponent takes
the ball, when the ball goes out of bounds, or after a time
limit of 10 seconds. The learners receive a +1 reward if they
score a goal and 0 reward otherwise. The attacker who has
the ball may choose to move (ahead, away, left, or right with
respect to the goal center), pass to a teammate, or shoot (at
the left, right, or center part of the goal).

RoboCup tasks are inherently multi-agent games, but a
standard simplification is to have only one learning agent.
This agent controls the attacker currently in possession of
the ball, switching its “consciousness” between attackers as
the ball is passed. Attackers without the ball follow simple
hand-coded policies that position them to receive passes.

Table 1 shows the state features for BreakAway, which
mainly consist of distances and angles between players and
the goal. They are represented in logical notation, though
our RL algorithm uses the grounded versions of these pred-
icates in a fixed-length feature vector. Capitalized atoms in-
dicate typed variables, while constants and predicates are
uncapitalized. The attackers (labeled a0, a1, etc.) are or-
dered by their distance to the agent in possession of the ball
(a0), as are the non-goalie defenders (d0, d1, etc.).

Our RL implementation uses a SARSA(λ) variant of Q-
learning (Sutton 1988) and employs a support vector ma-
chine for function approximation (Maclin et al. 2005). We
relearn the Q-function after every batch of 25 games. The
exploration rate begins at 2.5% and decays exponentially
over time. Stone and Sutton (2001) found that discretizing
the continuous features into Boolean interval features called
tiles is useful for learning in RoboCup; following this ap-
proach we create 32 tiles per feature.

Agents in the games of 2-on-1 and 3-on-2 BreakAway
take between 1000 and 3000 training episodes to reach a
performance asymptote in our system. These games are sim-
ilar, but their differences in the numbers of attackers and
defenders cause substantial differences in their optimal poli-
cies, particularly since there is an entirely new type of player
in 3-on-2 (the non-goalie defender). Despite the differences,
the tasks do have the same objective and can be expected to
require some similar strategic aspects.

Table 1: The features that describe a BreakAway state.

distBetween(a0, Player)
distBetween(a0, GoalPart)
distBetween(Attacker, goalCenter)
distBetween(Attacker, ClosestDefender)
distBetween(Attacker, goalie)
angleDefinedBy(topRight, goalCenter, a0)
angleDefinedBy(GoalPart, a0, goalie)
angleDefinedBy(Attacker, a0, ClosestDefender)
angleDefinedBy(Attacker, a0, goalie)
timeLeft

Related Work in Transfer Learning
The goal in transfer learning is to speed up learning in a
target task by transferring knowledge from a related source
task. One straightforward way to do this in reinforcement
learning is to begin performing the target task using the
source-task value functions, after a suitable mapping be-
tween features and actions in the source and target tasks.
Taylor, Stone and Liu (2005) apply this type of transfer
method in the RoboCup domain. Our MLN transfer method
is related to value-function transfer, but it incorporates rela-
tional information into the transferred function, transferring
knowledge about logical variables rather than constants.

Another approach that has been proposed is to follow
source-task policies during the exploration steps of normal
RL in the target task, instead of doing random exploration.
This approach is referred to as policy reuse (Fernandez and
Veloso 2006)). Our MLN transfer method also replaces ran-
dom exploration with source-task policy decisions, but it
does so more aggressively, and it also enhances the source-
task policy with relational knowledge.

Our previous work includes skill transfer (Torrey et al.
2006), in which we use inductive logic programming to learn
rules that indicate when the agent chooses to take source-
task actions. We use those rules as advice in the target task,
placing soft constraints on the solution that can be followed
or ignored according to how successful they are. Taylor
and Stone (2007) also learn a set of rules for taking actions,
and they use different advice-taking mechanisms: for exam-
ple, they give a Q-value bonus to the advised action. Our
MLN transfer method moves away from the advice-taking
paradigm to a more direct use of transferred knowledge.

Another approach in our previous work involves transfer-
ring relational macros (Torrey et al. 2007). A relational
macro is a finite-state machine representing an action plan
in which decisions are made in first-order logic. We use
inductive logic programming to learn a macro that charac-
terizes successful behavior in the source task, and then use
the macro for decision-making in the early learning stages
of the target task.

Our MLN transfer method is related to macro transfer,
particularly since it uses the same technique of demonstra-
tion in the target task, but it transfers an entire relational
Q-function instead of a single plan. It also offers better-
defined opportunities for refinement of transferred knowl-

50

edge in the target task, since MLNs are more well-known
and researched models than the macro structures we de-
signed. Refinement in the target task is proposed in the
context of incremental relational regression trees by Ramon,
Driessens, and Croonenborghs (2007).

Relational reinforcement learning (RRL) itself can be
considered a related topic (Tadepalli, Givan, and Driessens
2004). In RRL, state descriptions and learned models use
first-order logic, which provides opportunities for transfer-
ring relational concepts. Croonenborghs, Driessens, and
Bruynooghe (2007) learn relational options for use in rela-
tional RL. Fully relational learning has not yet been achieved
in domains as complex as RoboCup; our methods transfer
relational knowledge, but do not yet attempt to do relational
Q-learning in the target task.

Other work involving MLNs in transfer learning includes
Mihalkova and Mooney (2006) and Mihalkova, Huynh and
Mooney (2007). Their work addresses transfer between
classification tasks solved by Markov Logic Networks,
whereas ours creates Markov Logic Networks to transfer be-
tween reinforcement learning tasks.

Statistical relational models have also been used to spec-
ify prior knowledge in RL. Natarajan, Tadepalli and Fern
(2007) create relational hierarchies of prior knowledge to
help an agent learn to assist a user. Our MLN transfer
method applies similar ideas in the transfer setting.

Transferring a Markov Logic Network
A Markov network can be viewed as a set of ground predi-
cates with potential functions that define a probability dis-
tribution over possible worlds. A Markov Logic Net-
work (Richardson and Domingos 2005) is a set of first-order
logic formulas that can be grounded to form a Markov net-
work. Each formula describes a property that may be present
in the world, and has an associated real-valued weight.
Worlds become more probable as they satisfy more high-
weighted formulas.

Given a set of formulas along with positive and negative
examples of worlds, the weights can be learned via gradient
descent (Lowd and Domingos 2007). Then, given a set of ev-
idence about a world–a list of predicates that are known to be
true or false–standard inference in the ground Markov net-
work can determine the probability that the remaining pred-
icates are true or false (Richardson and Domingos 2005).

We use an MLN to define a probability distribution for
the Q-value of an action, conditioned on the state features.
In this scenario, a world corresponds to a state in the RL
environment, and a formula describes some characteristic
that helps determine the Q-value of an action in that state.
For example, assume that there is a discrete set of Q-values
that a RoboCup action can have (high, medium, and low).
In this simplified case, formulas in an MLN representing
the Q-function for BreakAway could look like the following:

levelOfQvalue(move(ahead), high)←−
distBetween(a0, GoalPart) > 10,
angleDefinedBy(GoalPart, a0, goalie) < 30.

The MLN could contain multiple formulas like this for
each action, each with a weight learned via gradient descent
from a training set of source-task states in which all the prop-
erties and Q-values are known. We could then use this MLN
to evaluate action Q-values in a target-task state: we evalu-
ate which properties are present and absent in the state, give
that information as evidence, and infer the probability that
each action’s Q-value is high, medium, or low.

Note that Q-values in RoboCup are continuous rather than
discrete, so we do not actually learn rules classifying them
as high, medium, or low. However, we do discretize the
Q-values into bins, using a procedure described in the next
section to find bins that fit the data.

Learning an MLN from a Source Task
During source-task learning with RL, the agent trains a nor-
mal Q-function after each chunk using data selected from
the episodes played so far. In our support-vector machine
implementation, which we use for learning in the source
task following the experimental methodology of our previ-
ous work (Torrey et al. 2005; 2006; 2007), this data includes
up to 1000 examples of states and Q-values for each action.
We choose a source-task chunk and use its data to learn a
MLN for transfer (referred to henceforth as the MLN Q-
function). The choice of the source-task chunk has an im-
pact; we discuss this effect in a later section.

The first step in our procedure is to separate the Q-values
for an action into bins. The training example Q-values could
have any arbitrary distribution, so we use the hierarchical
clustering algorithm in Table 2 to find good bins. Initially
every training example is its own cluster, and we repeatedly
join clusters whose midpoints are closest until there are no
midpoints closer than ε apart. The final cluster midpoints
serve as the midpoints of the bins.

The value of ε is domain-dependent. For BreakAway,
which has Q-values ranging from approximately 0 to 1, we
use ε = 0.1. This leads to a maximum of about 11 bins, but
there are often less because training examples tend to be dis-
tributed unevenly across the range. We experimented with ε
values ranging from 0.05 to 0.2 and found very minimal dif-
ferences in the results; the approach appears to be robust to
the choice of ε within a reasonably wide range.

Table 2: Our algorithm for creating bins for the Q-values of
action a.

For each training example i for action a
Create cluster ci containing only the Q-value of example i

Let C = sorted list of ci for all i
Let m = min distance between two adjacent cx, cy ∈ C
While m < ε

Join clusters cx and cy into cxy

C ←− C ∪ cxy − {cx, cy}
m←− min distance between two new adjacent c′

x, c′

y ∈ C
C is now the final set of bin midpoints
Place bin dividers halfway between the midpoints
Return bins

51

The next step in our procedure is to learn rules that clas-
sify the training examples into the bins. We learn these
rules with an inductive logic programming system called
Aleph (Srinivasan 2001). The Aleph algorithm selects an
example, builds the most specific clause that entails the ex-
ample, and searches for a clause that covers other examples
while maximizing a provided scoring function.

Scoring functions typically involve precision and recall.
The precision of a rule is the fraction of examples it calls
positive that are truly positive, and the recall is the fraction
of truly positive examples that it correctly calls positive. The
scoring function we use is

F =
2 ∗ Precision ∗Recall

Precision + Recall

because we consider both precision and recall to be impor-
tant. We use both a heuristic and randomized search algo-
rithm to find potential rules.

We also use a system called Gleaner (Goadrich, Oliphant,
and Shavlik 2006) to record rules encountered during the
Aleph search that have high precision over varying levels of
recall. From these we select a final ruleset to use as formu-
las in the MLN with the algorithm in Table 3. To ensure
high coverage and minimal duplication, we sort the rules
by decreasing precision and greedily select them if they im-
prove the F score of the ruleset. (Due to the large number
of rules stored by Gleaner, a non-greedy rule selection ap-
proach would take prohibitively long to run.)

The final rulesets for all the actions become the set of for-
mulas in the MLN Q-function. We typically end up with a
few dozen formulas per bin in our experiments.

The final step in our procedure is to learn weights for these
formulas. We use the scaled conjugate-gradient algorithm
in the Alchemy MLN implementation (Kok et al. 2005) to
learn weights.

Applying an MLN in a Target Task
Given an MLN Q-function, we can estimate the Q-value
of an action in a target-task state with the algorithm in Ta-
ble 4. We begin by performing inference in the MLN to esti-
mate the probability, for each action and bin, that levelOfQ-
value(action, bin) is true. Typically, inference in MLNs is
approximate because exact inference is intractable for most

Table 3: Our algorithm for selecting the final ruleset for a
bin. The F scoring function combines precision and recall.

Let R = all rules encountered during Aleph search
Let S = R sorted by decreasing precision on the training set
Let T = ∅
For each rule r ∈ S

Let U = T ∪ {r}
If F(U) > F(T)
Then T ←− U

Return final ruleset T

Table 4: Our algorithm for calculating the Q-value of action
a in target-task state s using the MLN Q-function.

Provide state s to the MLN as evidence
For each bin b ∈ [1, 2, ..., n]

Infer the probability pb that Qa(s) falls into bin b
Find the training example t in bin b most similar to s
Let E[Qa|b] = Qa(t)

Return Qa(s) =
P

b
(pb ∗ E[Qa|b])

networks, but in our case exact inference is possible because
there are no missing features and the Markov blanket of a
query node contains only known evidence nodes.

For each action a, we infer the probability pb that the
Q-value falls into each bin b. We then use these probabilities
as weights in a weighted sum to calculate the Q-value of a:

Qa(s) =
∑

b

(pb ∗ E[Qa|b])

where E[Qa|b] is the expected Q-value given that b is the
correct bin. We estimate this by the Q-value of the train-
ing example in the bin that is most similar to state s. This
method performed slightly better than taking the average Q-
value of all the training examples in the bin, which would be
another reasonable estimate for the expected Q-value.

The similarity measure between two states is calculated
by the algorithm in Table 5. It is the dot product of two vec-
tors that indicate which of the bin clauses the states satisfy.
For each formula, a vector has a +1 entry if the state satisfies
it or a −1 entry if it does not.

To use a transferred MLN in a target task, we use the
demonstration approach that we used when transferring
macros (Torrey et al. 2007). Our target-task learner begins
by using the MLN to evaluate Q-values for a set of episodes,
instead of exploring randomly as an untrained RL agent
would traditionally do. An alternate approach might be to
continue learning the target task with an MLN Q-function,
but this remains a direction for future work, since it requires

Table 5: Our algorithm for measuring similarity between a
target-task state s and a training-example state t in bin b.

For each rule i ∈ [1, 2, ..., r] in the final ruleset for bin b
If rule i is satisfied in state s

Then let vi(s) = +1
Otherwise let vi(s) = −1

If rule i is satisfied in state t
Then let vi(t) = +1
Otherwise let vi(t) = −1

Let Vs = (v1(s), v2(s), ..., vr(s))
Let Vt = (v1(t), vs(t), ..., vr(t))
Return similarity(s, t) = Vs · Vt

52

overcoming considerable challenges in computational com-
plexity.

The demonstration period lasts for 100 games in our sys-
tem, and after each batch of 25 games we re-learn the Q-
function via support-vector regression. After 100 games, we
continue learning the target task with standard RL. This gen-
erates new Q-value examples in the standard way, and we
combine these with the old MLN-generated examples as we
continue re-learning the Q-function after each batch. As the
new examples accumulate, we gradually drop the old exam-
ples by randomly removing them at the rate that new ones
are being added.

The demonstration approach carries a risk for negative
transfer if the source and target tasks are not similar enough.
However, if the user believes that the tasks are similar
enough, the potential benefits could outweigh that risk. The
approach also has the desirable property of making no as-
sumptions about the learning algorithm in the source or tar-
get task.

Since standard RL chooses actions randomly in the early
steps of a new task, a good MLN Q-function can provide a
significant advantage. The performance level of the demon-
strated strategy is unlikely to be as high as the target-task
agent can achieve with further training, unless the tasks are
similar enough to make transfer a trivial problem, but the
hope is that the learner can smoothly improve its perfor-
mance from the level of the demonstration up to its asymp-
tote. If there is limited time and the target task cannot be
trained to its asymptote, then the immediate advantage that
this approach can provide may be even more valuable.

Experimental Results
We present results from MLN transfer experiments in the
RoboCup domain. To test our approach, we learn MLNs
from source tasks in 2-on-1 BreakAway and transfer them to
3-on-2 BreakAway. We learn the source tasks with standard
RL for 3000 games, and then we train the target tasks for
3000 games to show both the initial advantage of the MLNs
and the behavior as training continues.

While performing this evaluation, we discovered that the
results can vary widely depending on the source-task chunk
from which we transfer. Our transfer methods in previous
work, as well as other approaches we have seen, use the last
model learned for the source task. However, we found that
MLN transfer performs significantly better when we use a
model halfway through the source-task learning curve. We
therefore adjusted our method to transfer from a chunk near
the halfway point in the curve. We believe the reason ear-
lier models transfer better is that they contain more general
knowledge, whereas the fully learned models contain more
specific knowledge that is less transferrable.

Figure 2 shows the target-task learning curves from these
experiments. It compares our approach against normal Q-
learning in the target task as well as the two most related
methods: relational-macro transfer (Torrey et al. 2007) and
a version of value-function transfer (Taylor, Stone, and Liu
2005) that we adapted for our batch RL algorithm. Each
curve in the figure is an average of 25 runs and has points
smoothed over the previous 500 games to account for the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 500 1000 1500 2000 2500 3000

P
ro

ba
bi

lit
y

of
 G

oa
l

Training Games

Standard RL
MLN Transfer

Macro Transfer
Value-function Transfer

Figure 2: Probability of scoring a goal in 3-on-2 BreakAway,
with Q-learning and with three transfer approaches that use
2-on-1 BreakAway as the source task.

high variance in the RoboCup domain. The transfer curves
consist of five target-task runs generated from each of five
source-task runs, to account for variance in both stages of
learning.

Our agents in 2-on-1 BreakAway reach a performance
asymptote of scoring in approximately 70% of the episodes.
The MLNs learned from the 2-on-1 source runs, when used
to play new games of 2-on-1 BreakAway, score in approx-
imately 65% of the episodes. In comparison, this self-
transfer score for relational macros is only 50%. The MLN
transfer method therefore describes the source-task behavior
more thoroughly than the macro transfer method does.

However, these additional nuances captured by the MLN
do not lead to better transfer in this case: the performance of
MLN transfer in these experiments is comparable to that of
macro transfer. Both have significantly better early perfor-
mance than standard Q-learning and our implementation of
value-function transfer.

Conclusions and Future Work
We propose an algorithm for transfer in reinforcement learn-
ing via statistical relational learning. We use a Markov
Logic Network to represent the Q-function of the source task
relationally, and we use this transfer knowledge in the target
task to provide a good starting point for training. We moti-
vate the use of MLNs for transfer, outline the methodology
for learning and applying an MLN Q-function, and evaluate
the method on transfer scenarios in the RoboCup domain.

Our results show that MLN transfer can give the learner
a significant head start in the target task. The approach per-
forms well in comparison to our implementation of value-
function transfer, and it performs comparably to relational-
macro transfer.

A potential advantage of MLN transfer over relational-
macro transfer, and a possible reason to choose MLNs over
macros given their comparable performance, is that it pro-
vides better opportunities for theory refinement in the tar-
get task. Instead of using a transferred structure for a fixed
amount of time and then abandoning it, we could revise the
structure as we learn in the target task. Existing work on
revision of MLNs, such as Mihalkova, Huynh and Mooney

53

(2007), could be applied to this problem.
The advantage that MLN transfer has over propositional

value-function transfer is that it makes use of the relational
information present in the domain. It “lifts” the transferred
information to the level of first-order logic, even though re-
inforcement learning in RoboCup is currently propositional.
This makes the transferred knowledge more general and thus
more easily applicable in some target tasks. It also makes the
mapping between source and target tasks implicit rather than
explicit by generalizing over groups of related objects.

Another area for future work is scaling up to fully rela-
tional reinforcement learning in RoboCup. Since an MLN
represents an entire Q-function, it could serve as a func-
tion approximator in RL, or it could approximate a transi-
tion function. Some potential advantages of this approach
are generalization over objects and intelligent exploration
using information about Q-value probability distributions.
The main challenge to overcome in performing relational RL
with MLNs is the computational cost involved.

One insight these experiments provided is that the source-
task chunk from which transfer is performed can have a sig-
nificant impact in some transfer methods. A fully learned
source-task model can transfer less effectively than a par-
tially learned one. We believe this is because the fully
learned models can contain more specific knowledge that
is less transferrable, and therefore cause a form of overfit-
ting from the perspective of transfer learning. It may be that
other approaches should be revisited in light of this obser-
vation. In future work, we hope to develop a way to screen
models and predict which will transfer better.

Acknowledgements
This research is supported by DARPA grants HR0011-07-C-
0060 and FA8650-06-C-7606.

References
Croonenborghs, T.; Driessens, K.; and Bruynooghe, M.
2007. Learning relational skills for inductive transfer in
relational reinforcement learning. In 2007 International
Conference on Inductive Logic Programming.
Fernandez, F., and Veloso, M. 2006. Policy reuse for
transfer learning across tasks with different state and action
spaces. In 2006 ICML Workshop on Structural Knowledge
Transfer for Machine Learning.
Goadrich, M.; Oliphant, L.; and Shavlik, J. 2006. Gleaner:
creating ensembles of first-order clauses to improve recall-
precision curves. Machine Learning 64:231–261.
Kok, S.; Singla, P.; Richardson, M.; and Domingos, P.
2005. The Alchemy system for statistical relational AI.
Technical report, University of Washington.
Lowd, D., and Domingos, P. 2007. Efficient weight learn-
ing for markov logic networks. In 2007 Conference on
Knowledge Discovery in Databases.
Maclin, R.; Shavlik, J.; Torrey, L.; and Walker, T. 2005.
Knowledge-based support vector regression for reinforce-
ment learning. In 2005 IJCAI Workshop on Reasoning,
Representation, and Learning in Computer Games.

Mihalkova, L., and Mooney, R. 2006. Transfer learning
with Markov logic networks. In 2006 ICML Workshop on
Structural Knowledge Transfer for Machine Learning.
Mihalkova, L.; Huynh, T.; and Mooney, R. 2007. Mapping
and revising Markov logic networks for transfer learning.
In 2007 AAAI Conference on Artificial Intelligence.
Natarajan, S.; Tadepalli, P.; and Fern, A. 2007. A rela-
tional hierarchical model for decision-theoretic assistance.
In 2007 International Conference on Inductive Logic Pro-
gramming.
Noda, I.; Matsubara, H.; Hiraki, K.; and Frank, I. 1998.
Soccer server: A tool for research on multiagent systems.
Applied Artificial Intelligence 12:233–250.
Ramon, J.; Driessens, K.; and Croonenborghs, T. 2007.
Transfer learning in reinforcement learning problems
through partial policy recycling. In 2007 European Con-
ference on Machine Learning.
Richardson, M., and Domingos, P. 2005. Markov logic
networks. Machine Learning 62:107–136.
Srinivasan, A. 2001. The Aleph manual (available online).
Stone, P., and Sutton, R. 2001. Scaling reinforcement
learning toward RoboCup soccer. In 2001 International
Conference on Machine Learning.
Sutton, R., and Barto, A. 1998. Reinforcement Learning:
An Introduction. MIT Press.
Sutton, R. 1988. Learning to predict by the methods of
temporal differences. Machine Learning 3:9–44.
Tadepalli, P.; Givan, R.; and Driessens, K. 2004. Rela-
tional reinforcement learning: An overview. In 2004 ICML
Workshop on Relational Reinforcement Learning.
Taylor, M., and Stone, P. 2007. Cross-domain transfer for
reinforcement learning. In 2007 International Conference
on Machine Learning.
Taylor, M.; Stone, P.; and Liu, Y. 2005. Value functions for
RL-based behavior transfer: A comparative study. In 2005
AAAI Conference on Artificial Intelligence.
Torrey, L.; Walker, T.; Shavlik, J.; and Maclin, R. 2005.
Using advice to transfer knowledge acquired in one rein-
forcement learning task to another. In 2005 European Con-
ference on Machine Learning.
Torrey, L.; Shavlik, J.; Walker, T.; and Maclin, R. 2006.
Skill acquisition via transfer learning and advice taking. In
2006 European Conference on Machine Learning.
Torrey, L.; Shavlik, J.; Walker, T.; and Maclin, R. 2007.
Relational macros for transfer in reinforcement learning.
In 2007 International Conference on Inductive Logic Pro-
gramming.
Watkins, C. 1989. Learning from delayed rewards. Ph.D.
Dissertation, University of Cambridge.

54

