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Abstract

Logic Programming can be broadly defined as “using logic 
to deduce computational steps from existing propositions” 
(although this is somewhat controversial). The focus of 
this paper is on the development of this idea. 
Consequently, it does not treat any other associated topics 
related to Logic Programming such as constraints, 
abduction, etc.
    The idea has a long development that went through 
many twists in which important questions turned out to 
have surprising answers including the following:

 Is computation reducible to logic?
 Are the laws of thought consistent?

This paper describes what went wrong at various points,
what was done about it, and what it might mean for the 
future of Logic Programming.

Church’s Foundation of Logic
Arguably, Church’s Foundation of Logic was the first 
Logic Programming language [Church 1932, 1933].1 It 
attempted to avoid the known logical paradoxes by using 
partial functions and disallowing proof by contradiction.
The system was very powerful and flexible. Unfortunately, 
it was so powerful that it was inconsistent [Kleene and 
Rosser 1935] and consequently the logic was removed 
leaving only the functional lambda calculus [Church 1941].

What went wrong:
A logical system that was developed by Church to be a 
new foundation for logic turned out to have inconsistencies 
that could not be removed.
What was done about it:
 Logic was removed from the system leaving the 

functional lambda calculus, which has been very 
successful

 Much later a successor system Direct Logic [Hewitt 
2008a] was developed that overcame these
problems of Church’s Foundation of Logic.

Advice Taker
McCarthy [1958] proposed the Logicist Programme for 
Artificial Intelligence which included the Advice Taker 
with the following main features:

1. There is a method of representing expressions in the 
computer. These expressions are defined recursively as 

                                                
1 Of course this was back when computers were humans!

follows: A class of entities called terms is defined and a 
term is an expression. A sequence of expressions is an 
expression. These expressions are represented in the 
machine by list structures [Newell and Simon 1957].

2. Certain of these expressions may be regarded as 
declarative sentences in a certain logical system which 
will be analogous to a universal Post canonical system. 
The particular system chosen will depend on 
programming considerations but will probably have a 
single rule of inference which will combine substitution 
for variables with modus ponens. The purpose of the 
combination is to avoid choking the machine with special 
cases of general propositions already deduced.

3. There is an immediate deduction routine which when 
given a set of premises will deduce a set of immediate 
conclusions. Initially, the immediate deduction routine 
will simply write down all one-step consequences of the 
premises. Later, this may be elaborated so that the routine 
will produce some other conclusions which may be of 
interest. However, this routine will not use semantic 
heuristics; i.e., heuristics which depend on the subject 
matter under discussion.

4. The intelligence, if any, of the advice taker will not be 
embodied in the immediate deduction routine. This 
intelligence will be embodied in the procedures which 
choose the lists of premises to which the immediate 
deduction routine is to be applied.

5. The program is intended to operate cyclically as follows. 
The immediate deduction routine is applied to a list of 
premises and a list of individuals. Some of the conclusions 
have the form of imperative sentences. These are obeyed. 
Included in the set of imperatives which may be obeyed is 
the routine which deduces and obeys.

What went wrong:
 The imperative sentences deduced by the Advice 

Taker could have impasses in the following forms:
o lapses in which no imperative sentences were 

deduced
o conflicts in which inconsistent sentences were 

deduced.
 The immediate deduction routine of the Advice Taker

was extremely inefficient
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What was done about it:
 McCarthy, et. al., developed Lisp (one of the world’s 

most influential programming languages) in order 
to implement ideas in the Advice Taker and other 
AI systems.

 McCarthy changed the focus of his research to solving 
epistemological problems of Artificial Intelligence

 The Soar architecture was developed to deal with 
impasses [Laird, Newell, and Rosenbloom 1987].

Uniform Proof Procedures based on Resolution
John Alan Robinson [1965] developed a deduction method 
called resolution which was proposed as a uniform proof 
procedure for proving theorems that converted everything 
to clausal form and then used a method analogous to 
modus ponens to attempt to obtain a proof by contradiction 
by adding the clausal form of the negation of the theorem
to be proved.
   The first use of Resolution was in computer programs to 
prove mathematical theorems and in the synthesis of 
simple sequential programs from logical specifications
[Wos 1965; Green 1969; Waldinger and Lee 1969; 
Anderson and 1970; 1971, etc.]. In the resolution uniform 
proof procedure theorem proving paradigm, the use of 
procedural knowledge was considered to be “cheating” 
[Green 1969].
What went wrong:
 Converting all information to clausal form is 

problematic because it hides the underlying 
structure of the information.

 Using resolution as the only rule of inference is 
problematical because it hides the underlying 
structure of proofs

 It proved to be impossible to develop efficient enough 
uniform proof procedures for practical domains.2

 Using proof by contradiction is problematical because 
the axiomatizations of all practical domains of 
knowledge are inconsistent in practice.  And proof 
by contradiction is not a sound rule of inference for 
inconsistent systems.

What was done about it:
 The Procedural Embedding of Knowledge paradigm

[Hewitt 1971] was developed as an alternative to 
Resolution Uniform Proof Procedure paradigm.

 Strongly paraconsistent logic (such as Direct Logic 
[Hewitt 2008a]) was developed to isolate 
inconsistencies during reasoning. (See section 
below on the future of Logic Programming.)

                                                
2 In other words, taking a first order axiomatization of a large 
practical domain, converting it to clausal form, and then using a 
uniform resolution proof procedure was found to be so wildly 
inefficient that answers to questions of interest could not be found 
even though they were logically entailed.

Planner
The two major paradigms for constructing semantic
software systems were procedural and logical. The 
procedural paradigm was epitomized by Lisp [McCarthy 
et. al. 1962] which featured recursive procedures that 
operated on list structures. The logical paradigm was 
epitomized by uniform resolution theorem provers 
[Robinson 1965].
    Planner [Hewitt 1969] was a kind of hybrid between the 
procedural and logical paradigms. It featured a procedural 
interpretation of logical sentences in that an implication of 
the form (P implies Q) can be procedurally interpreted in 
the following ways [Hewitt 1969]:
 Forward chaining 

oWhen assert P, assert Q
oWhen assert not Q, assert not P

 Backward chaining 
oWhen goal Q, goal P
oWhen goal not P, goal not Q

Planner was the first programming language based on the 
pattern-directed invocation of procedural plans from 
assertions and goals. The development of Planner was 
inspired by the work of Karl Popper [1935, 1963], Frederic 
Fitch [1952], George Polya [1954], Allen Newell and 
Herbert Simon [1956], John McCarthy [1958, et. al. 1962], 
and Marvin Minsky [1968]. It was a rejection of the 
resolution uniform proof procedure paradigm.
    A subset called Micro-Planner was implemented by 
Gerry Sussman, Eugene Charniak and Terry Winograd. 
Micro-Planner was used in Winograd's natural-language 
understanding program SHRDLU [Winograd 1971], 
Eugene Charniak's story understanding work, work on 
legal reasoning [McCarty 1977], and some other projects. 
This generated a great deal of excitement in the field of AI. 
Being a hybrid language, Micro Planner had two different 
syntaxes. So it lacked a certain degree of elegance. In fact, 
after Hewitt's lecture at IJCAI'71, Allen Newell rose from 
the audience to remark on the lack of elegance in the 
language!
    Computers were expensive. They had only a single slow 
processor and their memories were very small by 
comparison with today. So Planner adopted the then 
common expedient of using backtracking [Golomb and 
Baumert 1965]. In this way it was possible to economize 
on the use of time and storage by working on and storing 
only one possibility at a time in exploring alternatives.
   Peter Landin had introduced a powerful control structure 
using his J (for Jump) operator that could perform a 
nonlocal goto into the middle of a procedure invocation 
[Landin 1965]. In fact the J operator enabled a program to 
jump back into the middle of a procedure invocation even 
after it had already returned! Drew McDermott and Gerry 
Sussman called Landin's concept “Hairy Control Structure” 
and used it in the form of a nonlocal goto for the Conniver 
programming language [McDermott and Sussman 1972].
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Pat Hayes [1974] remarked:
   Their [Sussman and McDermott] solution, to give the
user access to the implementation primitives of 
Planner, is however, something of a retrograde step 
(what are Conniver's semantics?), although 
pragmatically useful and important in the short term. A 
better solution is to give the user access to a meaningful 
set of primitive control abilities in an explicit 
representational scheme concerned with deductive 
control.

   However, there was the germ of a good idea in Conniver; 
namely, using co-routines to computationally shift focus to 
another branch of investigation while keeping alive the one 
that has been left. Scott Fahlman used this capability of 
Conniver to good effect in his planning system for robot 
construction tasks [Fahlman 1973] to introduce a set of 
higher-level control/communications operations for its 
domain. However, the ability to jump back into the middle 
of procedure invocations didn’t seem to be what was 
needed to solve the difficulties in communication that were 
a root cause of the control structure difficulties. Conniver 
was also useful in that it provoked further research into 
control structures for Planner-like languages.
    In 1972 Alan Kay visited MIT and gave an inspiring 
lecture that explained some of his ideas for Smalltalk-72,
building on the message-passing of Planner and Simula 
[Dahl and Nygaard 1967] as well as the Logo work of 
Seymour Papert with the “little person” model of 
computation used for teaching children to program (cf. 
[Whalley 2006]). However, the message passing of 
Smalltalk-72 was quite complex [Ingalls 1983]. Also, as
presented by Kay, Smalltalk-72 (like Simula before it) was 
based on co-routines rather than true concurrency.
    The Actor model [Hewitt, Bishop, and Steiger 1973] 
was a new model of computation that differed from 
previous models of computation in that it was inspired by 
the laws of physics. It took some time to develop 
programming methodologies for the Actor model. Hewitt 
reported

... we have found that we can do without the 
paraphernalia of "hairy control structure" (such as 
possibility lists, non-local gotos, and assignments of 
values to the internal variables of other procedures 
in CONNIVER.)... The conventions of ordinary 
message-passing seem to provide a better structured, 
more intuitive foundation for constructing the 
communication systems needed for expert problem-
solving modules to cooperate effectively.

What went wrong:
1. Although pragmatically useful at the time it was 

developed, backtracking proved to be too rigid and 
uncontrollable.

2. Planner had a single global data base which was not 
modular or scalable.

3. Although pragmatically useful for interfacing with the 
underlying Lisp system, the syntax of Planner was 
not a pretty sight.

What was done about it:
1. Concurrency based on message passing was 

developed as an alternative to backtracking.
2. QA-4 [Rulifson, Derksen, and Waldinger 1973] 

developed a hierarchical context system to 
modularize the data base.  Contexts were later 
generalized into viewpoints in the Scientific 
Community Metaphor. The idea is fundamental to 
the strongly paraconsistent theories of Direct Logic
[Hewitt 2008a]. (See section below on the future of 
Logic Programming.)

3. Prolog [Kowalski 1974, Colmerauer and Roussel 
1996] was basically a subset of Planner that 
restricted programs to clausal form using backward 
chaining and consequently had a simpler more 
uniform syntax. (But Prolog did not include the 
forward chaining of Planner.)

Japanese Fifth Generation Project (ICOT)
Beginning in the 1970’s, Japan became dominant in the 
DRAM market (and consequently most of the integrated 
circuit industry). This was accomplished with the help of 
the Japanese VLSI project that was funded and coordinated 
in good part by the Japanese government Ministry of 
International Trade and Industry (MITI) [Sigurdson 1986]. 
MITI hoped to enlarge this victory by taking over the 
computer industry with a new Fifth Generation Computing 
System Project (named ICOT). However, Japan had come 
under criticism for “copying” the US. One of the MITI 
goals for ICOT was to show that Japan could innovate new 
computer technology and not just copy the Americans.
    According to Kowalski [2004],

The announcement of the FGCS [Fifth Generation 
Computing Systems] Project in 1981 triggered 
reactions all over the world. 
…
   Logic Programming was virtually unknown in 
mainstream Computing at the time, and most of its 
research activity was in Europe. So it came as a big 
shock - nowhere more so than in North America -
when it eventually became obvious that logic 
programming was to play a central, unifying role in 
the FGCS Project.

    ICOT, partly influenced by Logic Programming 
enthusiasts, tried to go all the way with Logic 

6



Programming. Kowalski later recalled “Having advocated 
LP [Logic Programming] as a unifying foundation for 
computing, I was delighted with the LP focus of the FGCS 
project.” [Fuchi, Kowalski, Ueda, Kahn, Chikayama, and 
Tick 1993] By making Logic Programming (which was 
mainly being developed outside the US) the foundation, 
MITI hoped that the Japanese computer industry could 
leapfrog the US.
   This meant that ICOT had to deal with concurrency and 
consequently developed concurrent programming 
languages based on clauses that were loosely related to 
logic [Shapiro 1989]. However, it proved difficult to 
implement clause invocation in these languages as 
efficiently as procedure invocation in object-oriented 
programming languages. Simula-67 originated a 
hierarchical class structure for objects so that message 
handling procedures (methods) and object instance 
variables could be inherited by subclasses. Ole-Johan Dahl 
[1967] invented a powerful compiler technology using 
dispatch tables that enabled message handling procedures
in subclasses of objects to be efficiently invoked. The 
combination of efficient inheritance-based procedure 
invocation together with class libraries and browsers 
(pioneered in Smalltalk) was better than the slower pattern-
directed clause invocation of the FGCS programming 
languages. Consequently, the ICOT programming 
languages never took off and instead concurrent object-
oriented message-passing languages like Java and C# 
became the mainstream.
    The greater efficiency of object-oriented programming 
languages was especially ironic because:

Even if it made sense for MITI to boldly seek a vast 
step forward in computer technology, the particular 
approach MITI ultimately authorized was widely 
criticized in corporate Japan. If the central focus of 
the Fifth Generation was Artificial Intelligence, the 
emphasis on great speed in making inferential steps 
seemed unnecessary. [Saxonhouse 2001]

“The [ICOT] project aimed to leapfrog over IBM, and to a 
new era of advanced knowledge processing applications”
[Sergot 2004] But the MITI strategy backfired because the 
software wasn’t good enough (as explained above) and so 
the Japanese companies refused to productize the ICOT 
hardware.

What went wrong:
The way that it used Logic Programming was a principle 
contributing cause to the failure of ICOT because Logic 
Programming proved not to be competitive with object-
oriented programming. 
What was done about it:
 Japanese companies refused to productize the ICOT 

architecture.
 ICOT languished and then suffered a lingering death. 

Computation is not Subsumed by Deduction
Kowalski developed the thesis that “computation could be 
subsumed by deduction” [Kowalski 1988a] which he states 
was first proposed by Hayes [1973] in the form 
“Computation = controlled deduction.” [Kowalski 1979]. 
This thesis was also implicit in one interpretation of 
Cordell Green’s earlier work. [Green 1969]
    But computation in general cannot be subsumed by 
deduction and computation in general is not controlled 
deduction. Hewitt and Agha [1991] argued that 
mathematical models of concurrency did not determine 
particular concurrent computations:

The Actor Model makes use of arbitration for 
determining which message is next in the arrival 
order of an Actor that is sent multiple messages 
concurrently. For example Arbiters can be used in 
the implementation of the arrival order of messages 
sent to an Actor which are subject to indeterminacy 
in their arrival order. Since arrival orders are in 
general indeterminate, they cannot be deduced from 
prior information by mathematical logic alone. 
Therefore mathematical logic cannot implement 
concurrent computation in open systems.

    Instead of deducing the outcomes of arbitration, we 
await outcomes. Indeterminacy in arbiters produces 
indeterminacy in concurrent comptation. The reason that 
we await outcomes is that we have no alternative because 
of indeterminacy.
    According to Hewitt [2007]:

“What does the mathematical theory of Actors have to 
say about this? A closed system is defined to be one 
which does not communicate with the outside. Actor 
model theory provides the means to characterize all the 
possible computations of a closed Actor system in 
terms of the Representation Theorem [Hewitt 2006]: 
The denotation DenoteS of an Actor system S
represents all the possible behaviors of S as

DenoteS = ⊔iω ProgressionS
i(⊥S)

where ProgressionS is an approximation function that 
takes a set of approximate behaviors to their next stage 
and ⊥S is the initial behavior of S.”

    Consequently, Logic Programming can represent but not 
in general implement concurrent systems. On the other 
hand, inconsistent theories do not have any classical 
logical models at all. So the tables have turned!
What went wrong:
The thesis that computation is subsumed by deduction
failed because concurrent computation could not be 
implemented.
What was done about it:
A mathematical foundation for concurrent computation 
was developed based on domain theory [Scott and Strachey 
1971, Clinger 1981, Hewitt 2007].
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The Laws of Thought are Inconsistent
Platonic Ideals were to be perfect, unchanging, and eternal.  
Beginning with the Hellenistic mathematician Euclid [circa 
300BC] in Alexandria, theories were intuitively supposed 
to be both consistent and complete. However, using a kind 
of reflection, Gödel [1931] (later generalized by Rosser
[1936]) proved that mathematical theories are incomplete, 
i.e., there are propositions which can neither be proved nor 
disproved. This was accomplished using a kind of 
reflection by showing that in each sufficiently strong 

theory T, there is a paradoxical proposition Paradox
T

which is logically equivalent to its own unprovability, i.e.,

├
T

Paradox
T
.

    Some restrictions are needed around reflection to avoid 
inconsistencies in mathematics (e.g., Liar Paradox, 
Russell’s Paradox, Curry’s Paradox, etc.), Various authors, 
(e.g., [Feferman 1984a, Restall 2006]) have raised
questions about how to do it. 
    The Tarskian framework of stratifying theories into a 
hierarchy of metatheories in which the semantics of each 
theory is formalized in its metatheory [Tarski and Vaught 
1957] is currently standard. However, according to 
Feferman [1984a]:

“…natural language abounds with directly or 
indirectly self-referential yet apparently harmless 
expressions—all of which are excluded from the 
Tarskian framework.”

    Self-referential propositions about cases, documentation, 
and code are common in large software systems. These 
propositions are excluded by the Tarskian framework
substantially limiting its application to Software 
Engineering. To overcome such limitations, Direct Logic3

was developed as an unstratified strongly paraconsistent 
reflective inference systems with the following goals
[Hewitt 2008]:
 Provide a foundation for strongly paraconsistent 

theories in Software Engineering.
 Formalize a notion of “direct” inference for 

strongly paraconsistent theories.
 Support all “natural” deductive inference [Fitch 

1952; Gentzen 1935] in strongly paraconsistent 
theories with the exception of general Proof by 
Contradiction and Disjunction Introduction.4

 Support mutual reflection among code, 
documentation, and use cases of large software 
systems.

 Provide increased safety in reasoning about large 
software systems using strongly paraconsistent 
theories.

                                                
3 Direct Logic is distinct from the Direct Predicate Calculus 
[Ketonen and Weyhrauch 1984].
4 In this respect, Direct Logic differs from Quasi-Classical Logic 
[Besnard and Hunter 1995] for applications in information 
systems, which does include Disjunction Introduction.

In the new system, reflection was restricted to propositions
which are Admissible.5 In this way the classical paradoxes 
of reflection were blocked, i.e., the Liar, Russell, Curry, 
Kleene-Rosser, etc.
    To demonstrate the power of Direct Logic, a 
generalization of the incompleteness theorem was proved 
paraconsistently without using the assumption of 
consistency on which Godel/Rosser had relied for their 
proofs. Then there was a surprising new development:  
since it turns out that the Gödelian paradoxical proposition 

Paradox
T

is self-provable (i.e. ├
T

Paradox
T
), it follows 

that every reflective strongly paraconsistent theory in 
Direct Logic is inconsistent!
    According to Hewitt [2008]:

“This means that the formal concept of TRUTH as 
developed by Tarski, et. al. is out the window. At 
first, TRUTH may seem like a desirable property 
for propositions in theories for large software 
systems. However, because a paraconsistent 
reflective theory T is necessarily inconsistent about 

├
T

Paradox
T
, it is impossible to consistently 

assign truth values to propositions of T. In 
particular it is impossible to consistently assign a 

truth value to the proposition ├
T

Paradox
T
. If the 

proposition is assigned the value TRUE, then (by 
the rules for truth values) it must also be assigned 
FALSE and vice versa. It is not obvious what (if 
anything) is wrong or how to fix it.”

Of course this is contrary to the traditional view of Tarski. 
E.g., 

I believe everybody agrees that one of the reasons 
which may compel us to reject an empirical theory is 
the proof of its inconsistency: a theory becomes 
untenable if we succeeded in deriving from it two 
contradictory sentences . . . . It seems to me that the 
real reason of our attitude is...: We know (if only 
intuitively) that an inconsistent theory must contain 
false sentences. [Tarski 1944]

On the other hand, Frege [1915] suggested that, in a 
logically perfect language, the word ‘true’ would not 
appear! According to McGee [2006], he argued that “when 
we say that it is true that seawater is salty, we don’t add 
anything to what we say when we say simply that seawater 
is salty, so the notion of truth, in spite of being the central 
notion of [classical] logic, is a singularly ineffectual 
notion.  It is surprising that we would have occasion to use 
such an impotent notion, nevermind that we would regard 
it as valuable and important.”
    Why did Gödel and the logicians who followed him not 
go in this direction? Feferman [2006b] remarked on “the 

                                                
5

A proposition  is Admissible for a theory T if and only if

()  ├
T

(├
T
)
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shadow of Hilbert that loomed over Gödel from the 
beginning to the end of his career.” Also Feferman [2006a] 
conjectured that “Gödel simply found it galling all through 
his life that he never received the recognition from Hilbert 
that he deserved.” Furthermore, Feferman maintained that 
“the challenge remained well into his last decade for 
Gödel to demonstrate decisively, if possible, why it is 
necessary to go beyond Hilbert’s finitism in order to 
prosecute the constructive consistency program.” Indeed 
Gödel saw his task as being “to find a consistency proof for 
arithmetic based on constructively evident though abstract 
principles” [Dowson 1997 pg. 263]. 
     Also Gödel was a committed Platonist, which has an 
interesting bearing on the issue of the status of reflection.  
Gödel invented arithmetization to encode abstract
mathematical propositions as integers. Direct Logic 
provides a similar way to easily formalize and 
paraconsistently prove Gödel’s argument. But it is not 
clear that Direct Logic is fully compatible with Gödel’s 
Platonism.
    With an argument just a step away from inconsistency, 
Gödel (with his abundance of caution [Feferman 1984b, 
Dawson 1997]) could not conceive going in that direction.
In fact, you could argue that he set up his whole
hierarchical framework of metatheories and object theories
to avoid inconsistency. A Platonist of his kind could argue 
that Direct Logic is a mistaken formalism because, in 
Direct Logic, all strongly paraconsistent reflective theories 
are necessarily inconsistent. In this view, the inconsistency 
simply proves the necessity of the hierarchy of 
metatheories and object theories.
    However, reasoning about large software systems is 
made more difficult by attempting to develop such a
hierarchy for the chock full of inconsistencies theories that 
use reflection for code, use cases, and documentation. In 
this context, it is not especially bothersome that theories of 

Direct Logic are inconsistent about├
T

Paradox
T
.

What went wrong:
When formalizing reasoning using reflection for large 
software systems, the reasoning process itself produced 
inconsistencies about certain specialized propositions that 
make assertions about their own unprovability. 
What was done about it:
It was decided to ignore these inconsistencies because:

1. Since Direct Logic is strongly paraconsistent, the 
inconsistencies do no great harm.

2. The existence of these inconsistencies does not 
matter for large software systems, which are 
chock full of other inconsistencies that do matter.

The Future of Logic Programming
Keith Clark, Alain Colmerauer, Pat Hayes, Robert 
Kowalski, Alan Robinson, Philippe Roussel, etc. deserve a 
lot of credit for promoting the concept of Logic 

Programming and helping to build the Logic Programming 
community. And the traditions of this community should 
not be disrespected. At the same time, the term "logic 
programming" (like "functional programming") is highly 
descriptive and should mean something. Over the course of 
history, the term “functional programming” has grown 
more precise and technical as the field has matured. Logic 
Programming should be on a similar trajectory. 
Accordingly, “Logic Programming” should have a more 
precise characterization, e.g., "the logical deduction of 
computational steps".
    Today we know much more about the strengths and 
limitations of Logic Programming than in the late 1960’s. 
For example, Logic Programming is not computationally 
universal and is strictly less general than the Procedural 
Embedding of Knowledge paradigm [Hewitt 1971]. Logic 
Programming and Functional Programming will both be 
very important for concurrent computation. Although
neither one by itself (or even both together) can do the 
whole job, what can be done is extremely well suited to 
massive concurrency.
    The following fundamental principles to extend Logic 
Programming based on the Scientific Community 
Metaphor were developed to extend Logic Programming
[Kornfeld and Hewitt 1981, Hewitt 2008]:
 Monotonicity: Once something is published it cannot 

be withdrawn. Scientists publish their results so they 
are available to all. Published work is collected and 
indexed in libraries. Scientists who change their 
mind can publish later articles contradicting earlier 
ones. However, they are not allowed to go into the 
libraries and “erase” old publications.

 Concurrency: Scientists can work concurrently, 
overlapping in time and interacting with each other.

 Commutativity: Publications can be read regardless of 
whether they initiate new research or become 
relevant to ongoing research. Scientists who become 
interested in a scientific question typically make an 
effort to find out if the answer has already been 
published. In addition they attempt to keep abreast 
of further developments as they continue their work.

 Sponsorship: Sponsors provide resources for 
computation, i.e., processing, storage, and 
communications. Publication and subscription 
require sponsorship although sometimes costs can 
be offset by advertising.

 Pluralism: Publications include heterogeneous, 
overlapping and possibly conflicting information. 
There is no central arbiter of truth in scientific 
communities.

 Skepticism: Great effort is expended to test and 
validate current information and replace it with 
better information.

 Provenance: The provenance of information is 
carefully tracked and recorded.
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    A major research issue is investigating Strongly 
Paraconsistent Logic Programming using Direct Logic 
[Hewitt 2008a, 2008b] to deal with theories of practical 
domains that are chock full of inconsistencies, e.g.,
domains associated with large software systems.
    In this respect, the Deduction Theorem of logic plays a 
crucial role in relating logical implication to computation.
The Classical Deduction Theorem can be stated as follows:

(├ ())  (├)
which states that  can be proved if and only if  can 
be inferred from . Thus procedures can search for a proof 
of the implication  by simply searching for a proof of 
 from . However, the Classical Deduction Theorem is 
not valid for the strongly paraconsistent theories of Direct 
Logic.
    Consequently for Direct Logic, the Two-Way Deduction 
Theorem [Hewitt 2008c] was developed taking the 
following form:

(├
T 
())      ((├

T
)  (├

T
))

which states that  can be proved in a strongly 
paraconsistent theory T if and only if  can be inferred 
from  and  can be inferred from . In this way, the 
Two-Way Deduction Theorem enables procedures to 
search for strongly paraconsistent proofs of implications in 
Direct Logic.
What went wrong:

1. Pure Logic Programming proved to be too 
restrictive to handle the information processing 
for open systems.

2. The Classical Deduction Theorem (a mainstay 
principle of Logic Programming) was found not 
to be valid for the strongly paraconsistent theories 
of Direct Logic. 

What was done about it:
1. Less restrictive principles were developed based on 

the Scientific Community Metaphor that 
generalized principles of Logic Programming.

2. A replacement for the classical Deduction Theorem 
(the Two-way Deduction Theorem) was 
developed which facilitates Logic Programming 
for strongly paraconsistent theories in Direct 
Logic. 
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