
From Transfer to Scaling: Lessons Learned in Understanding Novel
Reinforcement Learning Algorithms

Soumi Ray and Tim Oates
Department of Computer Science and Electrical Engineering

University of Maryland Baltimore County
1000 Hilltop Circle, Baltimore, MD 21250

Abstract
A major drawback of reinforcement learning (RL) is the
slow learning rate. We are interested in speeding up RL. We
first approached this problem with transfer learning where
we have two domains. We developed a method to trans-
fer knowledge from a completely trained RL domain to a
partially trained related domain (where we want to speed
up learning) and this helped increase the learning rate suf-
ficiently. While trying to come up with a theoretical justi-
fication we found that our method of transfer of knowledge
was actually scaling the Q-values, which was the main rea-
son for the effects seen. We then scaled the Q-values with
an appropriate scalar value in the RL domain after partial
learning and saw similar results. Empirical results in a vari-
ety of grid worlds and a multi-agent block loading domain
that is exceptionally difficult to solve using standard rein-
forcement learning algorithms show significant speedups in
learning using scaling.

Introduction
In keeping with the theme of this workshop - What went
wrong, and why? - this paper is about a failure, something
that went wrong, with a method for knowledge transfer in
reinforcement learning (RL). The method took experience
in one RL domain and used that experience to speed Q-
learning in a second, related domain, and did so very ef-
fectively. The failure occurred when we were unable to ex-
plain just why the method worked so well. Frustrated by
attempts to develop a theoretical justification, we turned to
empirical exploration of the method, and discovered that it
worked not due to transfer of knowledge from one domain
to another. Rather, it worked because it changed the scale
of the Q-values in the target domain. Surprisingly, running
Q-learning in the target domain and multiplying all the Q-
values by an appropriate scalar at the appropriate time had
the same effect. This paper tells the story of the develop-
ment of the transfer method, our failed attempts to explain
why it worked, and how this lead to our discovery of a much
simpler, and ultimately more powerful and useful method
for speeding up Q-learning.

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The remainder of this paper is organized as follows. The
next section provides background information on Q-learning
and some related work. The following sections describe the
background, our earlier approach, our new method, the test
domains, and the empirical results in detail. This is fol-
lowed by an analysis section. The final section concludes
and points to a wide variety of possibilities for future work.

Background
Given a set of states S, a set of actions A, and scalar rewards
r ∈ < that depend on which action a ∈ A is taken in which
state s ∈ S, the goal of many RL algorithms is to learn a pol-
icy, a mapping from states to actions, that maximizes future
rewards. If the learner has access to transition probabilities
(i.e., p(st+1 = s′|st = s, at = a)) and reward probabilities
(i.e., p(rt = r|st = s, at = a)) then the algorithms can take
advantage of this model. If these probabilities are unknown,
then a model-free algorithm, such as Q-learning, is required.

The Q-learning algorithm learns an action value function,
which is the expected sum of discounted future rewards for
taking action a in state s and behaving optimally thereafter
(Watkins 1989). This action value function is often repre-
sented in a Q-table of the form Q(s, a), which is updated
during learning according to the following rule:

Q(st, at) = Q(st, at) + α[r(st, at) +
γ max Q(st+1, at+1)−Q(st, at)].

In the above equation, γ ∈ [0, 1] is the discount factor which
controls the relative importance of near-term and long-term
rewards, α is the learning rate, and r(s, a) is the reward for
taking action a in state s. Over time, Q(s, a) approaches
Q∗(s, a), the optimal action value function, from which an
optimal policy can be derived by choosing the action a for
state s that maximizes Q∗(s, a). If the greedy action is cho-
sen with probability 1 − ε during learning, the algorithm is
said to be ε greedy (Sutton and Barto 1998).

Almost all prior work in transfer in the context of RL
has required manual intervention at some point to effect the
transfer. In some cases it is assumed that the state and ac-
tions spaces of the source and target domains are identi-
cal (Carroll, Peterson, and Owens 2001; Pickett and Barto
2002), or that the transition dynamics are the same and the
reward structure differs (Mehta et al. 2005). In others, the

18



user is responsible for mapping features from the source do-
main to the target (Torrey et al. 2005), or for specifying a
function that maps values from the source state and actions
spaces to those of the target (Taylor and Stone 2005).

The reward function of a markov decision process can
be modified preserving the policy via reward shaping to re-
duce learning time (Ng, Harada, and Russell 1999). Rules
can be defined to choose the reward function and the ini-
tial Q-values to speedup learning (Matignon, Laurent, and
Fort-Piat 2006). Learners have also utilized other agents’
experience by imitating their behavior to speedup learning
(Behnke and Bennewitz 2005).

Using scaling we get similar and sometimes better speed
up in learning compared to the methods described above.
There is no prior work that we are aware of related to the
concept of scaling that is available in the literature.

An Early Approach: Transfer
Our early approach was to use transfer learning for speed-
ing up the learning in RL. The transfer learning problem we
attack is as follows. Given two domains, D1 and D2, with
corresponding state spaces S1 and S2 and action spaces A1

and A2, our goal is to transfer a policy learned in D1 (the
source domain) to D2 (the target domain) so as to speed
up learning in D2 when compared to learning in D2 from
scratch. Note that there is no model of either D1 or D2, and
there is no a priori knowledge of how to map states in S1 to
states in S2 or actions in A1 to actions in A2. Rather, knowl-
edge about how to map states and actions to effect transfer
must be gleaned from experience in the two domains, which
we assume is available.

Our approach is to learn an optimal action value function,
Q1, in D1 using standard Q-learning, learn a sub-optimal ac-
tion value function, Q2, in D2 using standard Q-learning but
severely limiting the number of interactions with the envi-
ronment, use features of the Q-tables to map Q-values from
Q1 to Q2, and then train to completion in D2. Figure 1
shows a simple grid world. The domain is a 5× 5 grid with
four actions: North, South, East and West. The start state
is state 1. The goal state in the source domain is state 5,
and the goal state in the target domain is state 25. In the
source domain (Figure 2) we have trained for 100 iterations
(trips from the start state to the goal state) to simulate com-
plete learning, and in the target domain (Figure 3) we have
trained for 20 iterations to simulate partial learning.

Note from Figures 2 and 3 that in both the source and
target domains the Q-values peak near the respective goals.
Going East from state 4 in the source domain has the high-
est Q-value, as does going South from state 20 in the target
domain. Likewise, there are valleys in the Q-table corre-
sponding to state/action pairs that take the learner away from
the goal in both domains. Our approach tries to exploit this
structural similarity to develop transfer learning methods in
more complex domains.

Figure 4 shows the results of transferring knowledge from
a 16× 16 grid as the source domain to a 32× 32 grid as the
target domain. The x-axis plots the number of iterations and
the y-axis plots the corresponding number of steps needed

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

start
source
goal

target
goal

Figure 1: 5× 5 Grid World:Partial training.

Figure 2: 5 × 5 Grid World:Complete training (Source Do-
main).

for each iteration. We carried out a wide range of experi-
ments and found that there is a significant gain and efficiency
in the learning process with transfer of knowledge.

While trying to figure out the underlying mechanism we
came up with the concept of scaling. We looked into the pol-
icy just before and just after transfer. What we found is that
there was not much difference in the policy before and af-
ter transfer. So transfer was not doing anything to make the
policy better, i.e transfer did not change the optimal actions
in many states. All it was doing was scaling all the Q-values
by some constant factor. So instead of transfer learning after
partial iterations in the target domain we scale the Q-values
with some manually chosen scaling factor after partial train-
ing. We found that this performs the same or sometimes
better than transfer learning. In the next section we describe
the method of scaling.

Method
We are interested in trying to speed up learning in a domain
using scaling, which works as follows: partial learning is
performed to learn a sub-optimal action value function, Q,
in the domain using standard Q-learning for a few iterations.
The Q-values of Q are then multiplied by a constant fac-
tor to scale them. Then learning continues using the scaled

19



Figure 3: 5×5 Grid World:Partial training (Target Domain).

Figure 4: 32 × 32 Grid World. Transfer from a 16 × 16
domain to a 32× 32 domain

Q-values of the new Q-table as the initial values. Surpris-
ingly, in many situations this scaling significantly reduces
the number of iterations required to learn compared to learn-
ing without scaling.

We can summarize our method of scaling in the following
steps:

1. Partial learning is done in the domain.

2. The Q-values of the partially learned domain are scaled,
using a scaling factor decided manually.

3. Finally, learning in the domain is carried out using the
new scaled Q-values.

This method can reduce the number of steps required to
learn in the domain compared to learning without scaling.
Two important aspects of scaling are the scaling factor and
the time of scaling. If the scaling factor and the time of scal-
ing are chosen correctly then we can get great improvements
in the performance of learning in a domain. We have used
grid world domains of different sizes with the starting po-
sition at the top left corner and the goal at the bottom right
corner to run our experiments. We have also run our experi-
ments in a multi-agent block moving domain.

Experiments
Grid World
We consider the domain to be a square grid, on which the
agent can perform any of four actions: moving North, South,
East, and West. In each case the agent will start at the top
left square. The goal will be to reach the bottom right square
in the domain. The rewards are 1 to reach the goal state, -1
to hit the walls and -1 to reach any of the other states. We
perform ε-greedy Q-learning with ε = 0.1. The discount
rate γ is 0.9. There is a 1% probability of action noise, i.e,
with 1% probability the agent takes a random action.

Each iteration of our experiment consists of moving from
the starting state to the goal state in the domain. The Q-
values are updated at each step of an iteration and the new
Q-values are used for the subsequent iteration. The Q-values
are scaled after a small number of iterations of learning. We
then see how many steps are required to go from the starting
state to the goal state with and without scaling. For each ex-
periment we plot the number of iterations on the x-axis and
the corresponding number of steps needed to reach the goal
on the y-axis, and show that our method is more efficient.
In all the figures we show the number of steps required for
each iteration from the point of scaling. All plots are aver-
aged over 10 runs.

We start with a simple 10×10 grid world. Figure 5 shows
the performance of our method (dotted line) in a 10×10 do-
main against no scaling (solid line). We train in the domain
for 5 iterations before scaling. The plot shows the number
of steps needed after 5 iterations for both the cases.

Figures 5 to 7 show the performance of scaling versus no
scaling with the same scaling factor but different times of
scaling. The scaling factor (S) is 3 and scaling is done after
5, 10 and 15 iterations, respectively.

Figure 5: 10×10 Grid World:Scaling after 5 iterations where
S=3.

Figure 5 shows that scaling the Q-values after 5 iterations
of partial learning with a scaling factor of 3 does not im-
prove the performance of learning much. Scaling the Q-
values with a scaling factor of 3 after 10 iterations of par-
tial learning improves the performance of learning a little as
shown in Figure 6. Performance of learning improves a lot

20



with the same scaling factor of 3 but after 15 iterations of
partial learning as seen in Figure 7.

Figure 6: 10 × 10 Grid World:Scaling after 10 iterations
where S=3.

Figure 7: 10 × 10 Grid World:Scaling after 15 iterations
where S=3.

Figures 8 to 10 also show the performance of scaling ver-
sus no scaling with the same scaling factor but different
times of scaling. But here the scaling factors are 8, 6,and
5 and scaling is done after 5, 10 and 15 iterations, respec-
tively. Figure 8 shows that with a large scaling factor, which
is 8 in this case, performance improves a lot after just 5 iter-
ations of partial learning. Scaling hurts in the case where the
scaling factor is 5 and the Q-values are scaled after 15 itera-
tions of partial learning as shown in Figure 10. Scaling is not
a magic bullet, in some cases scaling improves performance
of learning in the domain and in others it hurts.

Until now we have used simple 10 × 10 grids to show
the effects of varying the scaling factor and the number of
iterations of partial training. Figure 11 shows the effect of
scaling in a 50 × 50 domain. The Q-values are scaled by a
scaling factor of 25 after two iterations of training. There is
an almost 50% improvement in learning.

Figure 12 shows the effect of scaling in a 50× 50 domain
with eligibility traces. There is some improvement in the

Figure 8: 10×10 Grid World:Scaling after 5 iterations where
S=8.

Figure 9: 10 × 10 Grid World:Scaling after 10 iterations
where S=6.

performance of learning in this case also. The value of λ,
which is the decay parameter is 0.9 in this case (Sutton and
Barto 1998). We see here that though eligibility traces im-
prove the general performance of learning we get even better
performance from using scaling with eligibility traces.

Multi-agent Block Moving
In this domain we have two agents. There are two actions
that the agents can take, left and right. The two agents ran-
domly start from a location and have to reach a goal loca-
tion where they can load a block. When both the agents
are in the goal location they load a block and have to move
in synchrony to the start location, otherwise they drop the
block. Both the agents have a bit that can be set and reset.
Each agent can see the other agent’s bit and that is the only
communication available between the two agents. The bit
is set if an agent reaches the goal position. The bit is reset
if they drop the load. The agents get rewards only when a
block is loaded and they move together to the starting loca-
tion (Peshkin and de Jong 2002). It is necessary for both the
agents to simultaneously arrive at compatible communica-
tion and action policies which makes this a very challenging

21



Figure 10: 10 × 10 Grid World:Scaling after 15 iterations
where S=5.

Figure 11: 50 × 50 Grid World:Scaling after 2 iterations
where S=25.

problem.
Figure 13 shows the effect of scaling in a 4-location do-

main. The Q-values are scaled after 3 iterations of learning
with a scaling factor of 3. The solid line shows the no scal-
ing scenario and the dotted line shows the learning curve
with scaling. The scaling line is barely visible in this case as
it runs along the horizontal axis. We see that scaling helps
tremendously in this domain.

Analysis
Time of scaling
The two questions that we will analyze in the following sec-
tion are:

1. When scaling helps and when it hurts.
2. Why scaling helps or hurts in the above cases.

The following observations can be made from the results
of the experiments performed:

1. If the Q-values are scaled with a small scaling factor, per-
formance of learning improves only after substantial iter-
ations of partial training in the 10 × 10 domain. It does
not help with fewer iterations of partial training.

Figure 12: 50 × 50 Grid World:Scaling after 2 iterations
where S=12, Q-learning with eligibility traces.

Figure 13: A 4-location block moving domain

2. If the Q-values are scaled with a large scaling factor per-
formance of learning improves early on with fewer partial
iterations and hurts as the number of partial iterations in-
creases.

3. If the scaling factor is very high it hurts learning even with
fewer partial iterations.

Performance is defined as one over the total number of steps
to completely learn the policy. Figure 14 and Figure 15 show
the plots of performance of learning versus the number of it-
erations of partial training with scaling factors of 3 and 6,
respectively. We see that with a small scaling factor, perfor-
mance increases as the number of iterations of partial train-
ing increases and then decreases. With a sufficiently large
scaling factor, performance increases early on with fewer it-
erations of partial training and then decreases. So this study
implies that it is advisable to scale by large scaling factors
with fewer iterations of partial training and small scaling
factors with relatively more iterations of partial training. A
balance has to be achieved so that the advantages of scal-
ing is utilized without making it hard to make the required
changes. For example, if a large scaling factor is used to
scale the Q-values of a domain with many iterations of par-
tial training then it makes it very hard to change incorrect

22



policies. This will take more steps than the no scaling sce-
nario.

Figure 14: Performance vs number of iterations S = 3.

Figure 15: Performance vs number of iterations S = 6.

Effects of scaling
There are two effects of scaling on the Q-values:

1. Let the difference between the best and the next best
Q-values at the point of scaling for a state be ∆s. In Fig-
ure 16 we plot the 100 states of a 10× 10 grid on the x-axis
and the corresponding ∆s on the y-axis. In this case after
5 iterations of partial training we calculate the ∆s by taking
the difference between the largest and the second largest Q-
values in each state. We see that ∆s is larger for states with
the correct policy and smaller for the states with the incor-
rect policy. So scaling makes it harder to change the correct
policy but comparatively less hard to change the wrong pol-
icy.

2. The updates for the states with the correct policy are
much smaller compared to the updates with the incorrect
policy. In Figure 17 we plot the first iteration after scaling
on the x-axis and the corresponding magnitude of update of
the Q-values on the y-axis. The updates for the correct poli-
cies (solid line) are much smaller compared to the updates
for the incorrect policies (dotted line). So once a correct

Figure 16: This figure shows ∆s in each of the 100 states in
a 10× 10 grid

policy is reached it is not undone with scaling. On the other
hand, in the no scaling scenario after 5 iterations of training
the update for a state with the correct policy is large and can
change the correct policy to an incorrect policy.

Figure 17: This figure shows the updates in the Q-values in
the first iteration just after scaling

All these features on the Q-values apply more to the Q-
values near the goal. As we move away from the goal these
changes fade. These two observations give insight into how
and why scaling works so well. First, scaling makes it harder
to change a correct policy compared to an incorrect policy.
Second, during the initial iterations once a correct policy is
achieved after scaling it is not undone unlike the no scaling
case. These two features of scaling improve the learning rate
of Q-learning tremendously.

Conclusion
We have developed a new and innovative approach to
speedup learning. We have run our experiments over a wide
range of situations. We started with transfer learning and
this progressed to the idea of scaling.

Trying to come up with a better theoretical understanding
of the transfer process led us to an easier method. Scaling is

23



a better method compared to transfer learning as it does not
require a completely trained source domain. Our approach,
although simple, performs very well in the two classes of
domains we tested. The experiments shown do not give the
optimal time for scaling but they give us an idea for find-
ing a reasonable time for scaling. However, there is ample
scope to broaden our exploration of different situations and
domains where scaling can be of benefit. In particular, we
will try to find optimal conditions for scaling. We also will
continue work to improve our theoretical understanding of
this process, including its advantages and disadvantages in
different contexts.

References
Behnke, S., and Bennewitz, M. 2005. Learning to play
soccer using imitative reinforcement.
Carroll, J.; Peterson, T.; and Owens, N. 2001. Memory-
guided exploration in reinforcement learning. In Interna-
tional Joint Conference on Neural Networks, volume 2.
Matignon, L.; Laurent, G. J.; and Fort-Piat, N. L. 2006.
Improving reinforcement learning speed for robot control.
In Proceedings of the 2006 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems.
Mehta, N.; Natarajan, S.; Tadepalli, P.; and Fern, A. 2005.
Transfer in Variable-Reward Hierarchical Reinforcement
Learning. In Proceedings of the 2005 NIPS Workshop on
Inductive Transfer : 10 Years Later.
Ng, A. Y.; Harada, D.; and Russell, S. 1999. Policy in-
variance under reward transformations: theory and appli-
cation to reward shaping. In Proc. 16th International Conf.
on Machine Learning, 278–287. Morgan Kaufmann, San
Francisco, CA.
Peshkin, L., and de Jong, E. D. 2002. Context-based policy
search: Transfer of experience across problems. In Pro-
ceedings of the ICML-2002 Workshop on Development of
Representations.
Pickett, M., and Barto, A. G. 2002. PolicyBlocks: An Al-
gorithm for Creating Useful Macro-Actions in Reinforce-
ment Learning. In In the proceedings of the 19th Interna-
tional Conference on Machine Learning.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction. Cambridge, MA: MIT Press.
Taylor, M. E., and Stone, P. 2005. Behavior trans-
fer for value-function-based reinforcement learning. In
The Fourth International Joint Conference on Autonomous
Agents and Multiagent Systems. New York, NY: ACM
Press.
Torrey, L.; Walker, T.; Shavlik, J.; and Maclin, R. 2005.
Using advice to transfer knowledge acquired in one re-
inforcement learning task to another. In Proceedings of
the Sixteenth European Conference on Machine Learning
(ECML’05).
Watkins, C. 1989. Learning from delayed rewards. In PhD
Thesis University of Cambridge, England.

24




