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Abstract 

We have developed computer environments that support learning 
by teaching and the use of self regulated learning (SRL) skills 
through interactions with virtual agents.  More specifically, stu-
dents teach a computer agent, Betty, and can monitor her progress 
by asking her questions and getting her to take quizzes. The sys-
tem provides SRL support via dialog-embedded prompts by Bet-
ty, the teachable agent, and Mr. Davis, the mentor agent. Our 
primary goals have been to support learning in complex science 
domains and facilitate development of metacognitive skills. More 
recently, we have also employed sequence analysis schemes and 
hidden Markov model (HMM) methods for assigning context to 
and deriving aggregated student behavior sequences from activity 
data. These techniques allow us to go beyond analyses of individ-
ual behaviors, instead examining how these behaviors cohere in 
larger patterns. We discuss the information derived from these 
models, and draw inferences on students’ use of self-regulated 
learning strategies. 

 Introduction   

We have developed computer-based learning environments 
that use the learning by teaching paradigm to help middle 
school students develop higher-order cognitive skills when 
learning in science and math domains (Biswas, et al., 2005; 
Leelawong and Biswas, 2008). To teach, one must gain a 
good understanding of the domain knowledge and then 
structure the knowledge in a form that they can present to 
others (Bargh and Schul, 1980). Preparing to teach is a 
self-directed and open-ended activity where one explores, 
integrates, and structures knowledge first for oneself, and 
then for others. Biswas, Schwartz, & Bransford (2001) 
have reported that students preparing to teach felt that the 
responsibility to teach encouraged them to gain deeper un-
derstanding of the materials. Beyond preparing to teach, 
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actual teaching taps into the three critical aspects of learn-
ing interactions – structuring, taking responsibility, and re-
flecting. With respect to structuring, teaching peers gives 
students opportunities to organize their knowledge and ar-
ticulate it via explanations, which facilitates self-
monitoring and revision of that knowledge. Moreover, in-
teractions with the pupil (e.g., questions) can prompt addi-
tional reflective knowledge-building for the teacher (Ros-
coe and Chi, 2007). For taking responsibility, teaching is 
frequently open-ended and self-directed, and teachers need 
to take the responsibility of deciding which content is most 
relevant (Artzt and Armor-Thomas, 1999). Finally, for 
reflection, effective teaching requires the explicit moni-
toring of how well ideas are understood and used. Studies 
have shown that tutors and teachers often reflect on their 
interactions with students during and after the teaching 
process in order to better prepare for future learning ses-
sions (Chi, et al., 2001).   

We have designed a teachable agent (TA) system called 
Betty’s Brain, where students teach a computer agent using 

Figure 0:  Betty's Brain System with Query Window 
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a well-structured visual representation (Biswas, et al, 2005; 
Leelawong and Biswas, 2008).  Using their agent’s per-
formance (which is a function of how well it is taught) as a 
motivation, students learn for themselves so that they can 
remediate the agent’s knowledge, and, in this process, they 
learn better on their own. For this reason our learning-by-
teaching environments are well-suited to helping students 
become more knowledgeable of and responsible for their 
own cognition and reasoning. As a result, the students are 
likely to develop problem solving and monitoring skills 
that go beyond the learning of specific domain content; ra-
ther they provide the much larger framework that guide 
students on how to learn and how to prepare for future 
learning (Schwartz and Martin, 2004). We have hypothe-
sized that working with Teachable Agents helps students 
better understand domain knowledge, and engage in a vari-
ety of productive learning strategies that promote organiz-
ing and reasoning with this knowledge. Furthermore, the 
activities involved in the teaching process helps the stu-
dents monitor their own learning as they teach their agent. 

This paper discusses the results of a study we conducted 
in 5th grade science classrooms, where students taught their 
agent about entities and their relationships in a river eco-
system. One of our goals was to determine if teaching an 
agent produced better learning performance than students 
who learnt for themselves. A second goal was to check if 
metacognitive prompts by the TA and Mentor agents 
helped the student develop metacognitive strategies that 
they applied to their learning. Given these goals, this paper 
focuses on analyses of students’ behaviors as they teach 
Betty by creating their concept maps. Such analyses are 
important because they shed light on students’ underlying 
learning processes, and what kind of strategies they are 
bringing to this task (Roscoe and Chi, 2007).  

Learning by Teaching: The Betty’s Brain System 

The Betty’s Brain system is illustrated in Figure 1. The 
teaching process is implemented as three primary activi-
ties: (i) teach: Students explicitly teach Betty using a con-
cept map representation (Novak, 1998) that includes con-
cept names, which appear as boxes, and links between 
concepts that appear as arrows. The links can be of two 
types: (a) descriptive, and (b) causal. Students teach Betty 
new concepts and links using the Teach Concept and 
Teach Link buttons. They can also delete and modify their 
concepts and links using the Delete and Edit buttons; (ii) 
query: Students use a template to ask Betty questions and 
find out how she answers them based on what she has been 
taught; and (iii) quiz: Students observe Betty’s perform-
ance on a set of predefined questions that are presumably 
assigned by a Mentor agent. The questions are typically 
organized into sets of quizzes.  

Once taught, Betty uses qualitative reasoning methods to 
reason through chains of links (Forbus, 1984; Biswas, et 
al., 2005) to answer questions, and, if asked, explain her 
reasoning using text and animation schemes. Betty also 
provides feedback that reflects the students’ teaching be-

haviors. The goal is to get the students to adopt more meta-
cognitive strategies in their learning tasks (Tan, Biswas, 
and Schwartz, 2006, Wagster, et al., 2007; Jeong and Bis-
was, 2008). Students reflect on Betty’s answers and her 
explanations, and revise their own knowledge as they make 
changes to the concept maps to teach Betty better. Further 
details of the Betty’s Brain system and earlier experiments 
that we have conducted with this system are summarized in 
(Biswas, et al., 2005; Leelawong and Biswas, 2008). Next 
we discuss the self regulated learning support provided to 
students as they learn about river ecosystems.  

Metacognitive Support in Betty’s Brain 
Cognitive science researchers have established that meta-
cognition and self-regulation are important components in 
developing effective learners in the classroom and beyond 
(Bransford, Brown, and Cocking, 2000; Zimmerman, 
2001). Pintrich (2002) differentiates between two aspects 
of metacognition for learners: (i) metacognitive knowledge 
that includes knowledge of general strategies and when 
they apply, as well as knowledge of one’s own abilities, 
and (ii) metacognitive control and self regulatory proc-
esses that learners use to monitor and regulate their cogni-
tion and learning. We believe the TA environments when 
combined with adequate scaffolding and feedback can pro-
vide appropriate educational opportunities for students to 
develop both metacognitive knowledge and control, and 
thereby, improve their subsequent learning. 

We have adopted a self-regulated learning (SRL) frame-
work that describes a set of comprehensive skills that start 
with setting goals for learning new materials and applying 
them to problem solving tasks, deliberating about strategies 
to enable this learning, monitoring one’s learning progress, 
and then revising one’s knowledge, beliefs, and strategies 
as new materials and strategies are learnt (Azevedo, 2005; 
Schraw, Kauffman, & Lehman, 2002; Winne and Hadwin, 
2008; Zimmerman, 2001). In conjunction with these higher 
level cognitive activities, social interactions and motivation 
also play an important role in the self-regulation process 
(Zimmerman, 20010). We believe that two interacting fac-
tors of our TA implementations are particularly supportive 
of self regulation. The first is the visual shared representa-
tion that the students use to teach their agents. The second 
factor, shared responsibility, targets the positive effects of 
social interactions to learning. This manifests in the form 
of a joint effort where the student has the responsibility for 
teaching the TA (the TA knows no more and no less than 
what the student teaches it), whereas the TA assumes re-
sponsibility for answering questions and taking tests.  

Betty’s persona in the SRL version incorporates meta-
cognitive awareness that she conveys to the students at ap-
propriate times to help the student develop and apply 
monitoring and self regulation strategies (Wagster, et al, 
2007; Schwartz, et al., 2009). We have identified a number 
of recurrent interactive action sequences, where metacog-
nitive feedback might be useful for students. When the sys-
tem detects such patterns, Betty provides suggestions on 
strategies the students may employ to improve their own 
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understanding of the subject matter. For example, at times, 
when students add concepts and links, Betty remarks that 
the relation between two connected concepts does not 
make sense to her. At other times, Betty spontaneously re-
sponds by demonstrating reasoning with “chains of links.” 
In some ways, this helps the students become more famil-
iar with the reasoning processes that Betty uses to derive 
her answers, especially indirect effects, something that the 
students may not be very familiar with. Even more, this 
may be a cue for students to reflect on what they have 
taught, check if Betty derives the right answers, and go 
read the resources again, if they are not sure. Some of the 
other triggering patterns related to goal setting, self as-
sessment and monitoring are illustrated in Table 1. Betty’s 
responses combine motivational and self-regulation cues, 
whereas the Mentor, Mr. Davis’ responses focus primarily 
on self regulation strategies. Mr. Davis’ responses are 
linked to the students’ activity patterns. For example, if the 
student gets Betty to repeatedly take the quiz and not read 
the resources, the Mentor agent reminds Betty and her stu-
dent teacher the importance of reading resources, and 
checking ones understanding after learning (teaching) new 
material. 
Table 1. Some Interactive Action Patterns with Betty’s and 
the Mentor’s responses 

Regulation 

Goal 

Pattern  

Description 
Betty Response 

Mr. Davis’ Re-

sponse 

 

MONITOR-

ING 

THROUGH 

EXPLANA-

TION 

Multiple re-

quests for 

Betty to give 

an answer 

but no re-

quest for ex-

planation 

Let’s see, you 

have asked me a 

lot of questions, 

but you have not 

asked for my ex-

planations lately. 

Please make me 

explain my an-

swers so you will 

know if I really 

understand. 

Without asking Bet-

ty to explain her an-

swers, you may not 

know whether she 

really understands 

the chain of events 

that you have been 

trying to teach her.  

Click on the Ex-

plain button to see 

if she explains her 

answer correctly. 

 

 

SELF-

ASSESS-

MENT 

Repeated 

quiz request 

but no up-

dates have 

been made to 

the map. 

Are you sure I 

understand what 

you taught me?   

Please ask me 

some questions 

to make sure I 

got it right.  I 

won’t take the 

quiz otherwise. 

Thanks for teach-

ing me about riv-

ers! 

You have not taught 

Betty anything new.  

Please, spend some 

time teaching her 

new links and con-

cepts and make sure 

she understands by 

asking her ques-

tions.  Then she can 

take the quiz again. 

If you need help 

learning new things, 

check the resources. 

Experimental Design 

Our participants were 56 students in two 5th grade science 
classrooms, taught by the same teacher. Students were as-
signed to one of three conditions using stratified random 
assignment based on standardized test scores. All students 
created concept maps on river ecosystem concepts and 
causal relations over seven 45-minute sessions. However, 

two of the groups (i) the learning by teaching (LBT) group, 
and (ii) a self-regulated learning by teaching (SRL) group 
were told they were creating their map to teach Betty so 
that she could pass a test on her own later. As they taught 
Betty, they could ask her to answer queries, and take quiz-
zes. Our third group, the intelligent coaching system (ICS) 
group, was told to create the map to learn for themselves. 
They could also query their map, and submit the map for 
quizzes, but in this case, the Mentor, Mr. Davis, answered 
their questions, or told them how well they had fared in the 
quiz. The ICS condition represented our control condition. 
In the SRL version, Betty also generated spontaneous re-
sponses that were driven the interactive patterns described 
in Table 1.  

All students took a pre-test before they worked on the 
system, and a post-test after they had finished their seven 
sessions. The tests contained a set of multiple choice ques-
tions, and some free-response questions (see Biswas and 
Leelawong, 2008 for details). 

Students Learning Performance 
We used two measure of learning performance: (i) Pre-post 
test gains on the multiple choice and free-response ques-
tions, and (ii) gain in concept map scores. The gain in con-
cept map scores was calculated as the difference between 
their final map score and the map score at the end of ses-
sion 1. Table 2 shows the gains in the score by condition. 

Table 2. Pre-post test and concept map score gains 
Conditions Gain Score 

ICS LBT SRL 
Multiple Choice 0.4 (2.4)  1.1 (3.1)  0.4 (1.5)  

Free Response 1.9 (3.0)  4.3 (3.2)  4.8 (4.7)  

Map Concepts 8.1 (2.4)  7.3 (2.7)  10.4 (3.1)  

Map Links 12.2 (3.8)  12.7 (5.3)  16.2 (4.4)  

It is clear that the two groups that taught Betty (LBT & 
SRL) outperformed the ICS group on all measures (Free 
Response, SRL > ICS, p < 0.1; Map Concepts, SRL > ICS, 
p < 0.05, SRL > LBT, p < 0.01; Map Links, SRL > ICS, p 
< 0.05, SRL > LBT, p < 0.1). The SRL condition had bet-
ter scores than the LBT group (the differences were not 
significant), implying that the SRL feedback may have 
helped students in their learning and monitoring tasks. 

Table 3. Gain score correlations 

Gain Score 
Free 

Response 

Map 

Concepts 

Map 

Links 

Multiple Choice  .16 -.07 .13 

Free Response  -- .35
a

 .41
a

 

Map Concepts  -- -- .54
c

 

ap < .05. bp < .01. cp < .001. 
Table 3 shows the correlations between the different gain 

scores. The free response questions, which require students 
to reason about important concepts, such as interdepend-
ence and balance, and also reason in causal chains, e.g., a 
change in the amount of algae would affect macroinverte-
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brates, which would then affect the fish population, 
showed strong correlations with the map scores (all of the 
correlations were significant). On the other hand, the mul-
tiple choice questions, asked about definition or direct 
causal relations. Students could often guess the right an-
swer from the choices provided. Therefore, it is not sur-
prising that the multiple choice scores did not correlate 
well with map scores. 

Analyzing Student Activity Patterns 
All student activities in the system were captured in log 
files. We wrote computer programs that coded these activi-
ties into five primary categories: 

1. Editing; this included activities like adding, deleting, 
or changing a concept or link to the students map. 

2. Ask Query 
3. Take Quiz 
4. Read Resources 
5. Check Explanation. 

The program also recorded a number of off-topic activities, 
e.g., a student adding concepts and links that had nothing 
to do with ecosystem domain, and then asking Betty a 
query just to hear her speak. For each relevant activity, the 
program captured additional information related to the ac-
tivity. For example, when the student asked a query, we 
noted the query (i.e., the set of concepts), and Betty’s re-
sponse to the query.  

Three levels of analysis were used for studying the stu-
dents’ behavior patterns. At the first level, we looked for 
correlations between the frequency of students’ activities 
and their learning as measured by gains in free response 
test scores (Roscoe, et al., 2008). These results are briefly 
summarized in the next subsection. Our second level of 
analysis, we looked for related sequences of students’ ac-
tivities, to see if these sequences implied patterns of behav-
ior that could be linked to their use of metacognitive 
strategies that have been reported in the literature (e.g., 
Zimmerman (2001); Winne and Hadwin (2008)). We de-
fined two measures: (i) informedness and (ii) diagnosticity 
that are discussed in a subsequent subsection to character-
ize students’ use of strategies.  

Our third level of analysis was more comprehensive. We 
used statistical learning methods to derive aggregate be-
havior models in the form, of hidden Markov Models 
(HMMs) from students’ entire activity sequences as they 
worked on the system. We briefly describe the HMM ap-
proach and the results in the third section. 

Level 1 Analysis: Frequency of Student Activities. The 
average number of edit, query, quiz, read, and explain 
events by condition are listed in Table 4.  On the whole, 
the LBT group performed many more actions than the ICS 
group (F2,45 = 8.41, p < .001). The other differences were 
not statistically significant.  The LBT group performed 
more edit actions than the ICS and SRL groups (LBT > 
ICS, p < 0.1, LBT > SRL, p < 0.1). The LBT group also 
requested more quizzes than the SRL group (p < .05), but 
when it came to query and explanation actions, the SRL 
group had many more than the ICS and LB groups (que-

ries, SRL > ICS, LBT, all p < .001, and explanations,  SRL 
> ICS, p < .001, SRL > LBT, p < 0.1).  The LBT group on 
the other hand had many more Read events (LBT > SRL, p 
< .002, LBT > ICS, p < .05). 

Table 4.  Frequency of different activities by condition 
Conditions Gain Score 

ICS LBT SRL 
Total Events 179.6 (44.2) 258.7 (64.2) 217.8 (51.8) 

Edit Events 92.6 (26.6) 118.3 (38.9) 92.7 (29.9) 

Query Events 12.2 (9.3) 40.4 (20.6) 67.2 (21.3) 

Explain Events 2.4 (2.6) 7.1 (8.4) 12.5 (8.0) 

Quiz Events 17.5 (8.1) 25.9 (15.5) 15.8 (7.5) 

Read Events 33.8 (18.7) 51.9 (29.3) 23.1 (11.9) 

Off-Topic Events 21.1 (35.5) 15.2 (28.3) 4.5 (7.3) 

Edit events can be linked to map building activities, whe-
reas query, explanation, and quiz events are related to 
monitoring activities. Quiz events are related to checking 
the correctness of one’s map, for a set of queries (provided 
by the Mentor), where Query and Explain events may be 
considered more advanced monitoring activities, since they 
involve formulating one’s own queries, and then checking 
how an answer was generated by tracing through the map. 
Overall, the LBT and SRL groups were much more active 
than the ICS group during their learning tasks, and had 
significantly less Off-topics behavior events. The LBT 
group had the most edit, read, and quiz events, which are 
good learning behaviors, but the SRL group showed more 
evidence of advanced monitoring activities, i.e. Query and 
Explain events.  

Level 2 Analysis: Quality of Student Activities. Al-
though students had access to the same features (e.g., que-
ries and explanations, etc.), not all of them used these fea-
tures effectively. For example, whereas one student might 
use queries to diagnose the effect of revisions to their map 
(good use) or to identify Betty’s incorrect knowledge 
(good use), other students might ask questions simply to 
hear Betty speak (bad use) or to simply confirm what they 
have just taught (unclear use). For this paper, we assume 
students learning activities or events fall into one of two 
states: (1) editing or map building and refining state, and 
(2) diagnosing state. All editing actions put students in the 
map building state, and all other actions (query, explana-
tion, quiz, and read) actions move students into the diag-
nosing state. The simplified student activity model is illus-
trated in Fig. 2. 
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 Each student action is also assigned a score that depends 
on how closely related it is to previously performed ac-
tions. For example, if a student edits a part of the map that 
is related to the query he just asked, the edit action is re-
lated to the previous action, and gets a higher “informed-
ness” score than if the edit action were unrelated to the 
preceding query. In other words, the informedness scores 
for edits is based on “how much information about the do-
main or model was used to make that edit.” Scores range 
from 0-5, and higher scores are better. 

Similarly, the diagnosticity scores provide a measure of 
how “diagnostic” a query, quiz, explanation, or read event 
is in the way it is used with other activities. In other words, 
“how much information does the diagnostic action pro-
vides students about the effect of map additions and revi-
sions on Betty’s “knowledge?” Again scores range from 1-
5, and higher scores are better. 
Table  5. Informedness and Diagnosticity scores by condi-

tion 
Conditions Gain Score 

ICS LBT SRL 
Edit Events 2.7 (0.7) 2.9 (0.8) 2.3 (0.6) 

Query Events 0.9 (0.7) 1.3 (0.4) 1.4 (0.3) 

Explain Events 2.7 (2.9) 4.0 (2.1) 5.3 (1.1) 

Quiz Events 3.9 (1.3) 3.0 (1.7) 3.4 (1.5) 

Read Events 3.6 (0.8) 3.8 (0.9) 3.2 (1.5) 

A few significant group differences were observed. The 
LBT group had a higher read score than the SRL group (p 
< 0.1), whereas the SRL and LBT groups had higher query 
scores than ICS group (SRL > ICS, p < .005, LBT > ICS, p 
< .05), and the SRL group had a higher Explain score in 
comparison to the ICS group (SRL > ICS, p < .01). These 
results again demonstrate that the SRL group used more 
advanced probing and checking actions during their learn-
ing activities than the other two groups. 

Level 3 Analysis: Aggregate Behaviors using hidden 

Markov Models. A hidden Markov model (HMM) defines 

dynamic behavior of a system or process as a transition 

through a sequence of states, with output that corresponds 

to components of the behavior being described. For exam-

ple, a student’s learning behavior may be described in 

terms of a read and organize state followed by check and 

monitor state. In the read and organize state the student be-

havior is described by activities that include reading re-

sources and building the concept map, and the check and 

monitor state is defined by activities, such as asking que-

ries, taking the quiz, and re-reading resources. Mathemati-

cally, a HMM model is defined by three sets of parameters: 

initial probability vector , which indicates the likelihood 

that a student behaviors will start in a particular state, a 

transition probability matrix, A, which captures the likeli-

hood that a student will move on from one state to a subse-

quent state, and output probability matrix, B, which indi-

cates the likelihood of different activities being observed in 

a particular state (Rabiner, 1989). By representing concise 

models of student activity patterns, a HMM has the poten-

tial of providing us with a global aggregated view of how 

students approach their learning tasks (Jeong and Biswas, 

2008). 

We have developed an algorithm that constructs HMMs 

given a set of activity sequences (Li and Biswas, 2002; 

Jeong and Biswas, 2008) that uses the Bayesian informa-

tion criterion (BIC) to trade off simplicity of the model 

against information provided by the model.  In other 

words, we apply the Occam’s razor Principle (simpler is 

better) to find the model that strikes a balance between 

high likelihood and low complexity (Li and Biswas, 2002). 

We extended the processes described in our previous work 

to generate HMM models in 3 steps: (1) Initialization: A 

clustering algorithm was applied to initialize the parame-

ters of the HMM model and come up with a definition of 

the initial model; (2) Model Building: This is the core step, 

where the parameter optimization algorithms and the 

Baum-Welch criterion are applied to derive the optimal 

HMM model for a given set of sequence data; and (3) 

Model Interpretation: Meaning is assigned to the derived 

states of the model, and the behavior description is gener-

ated in terms of the derived states. 

In this part of the study, we divided the students into 

three groups based on the differences in their pre-post test 

gains. Specifically, the free response scores in students' 

posttest were used to group the students into low, mid, and 

high groups. There were 19 students in the low group 

(scores ranged from 2 to 6), 14 students in the mid group 

(scores ranged from 7 to 9), and 16 students in the high 

group (scores ranged from 10 to 18). The max score on the 

test was 20 points. Next, the pre-post gains differences 

were used to divide the students into low_low (LL), 

low_high (LH), and high_high (HH) groups. The LL group 

represented students who scored at or below the median in 

both the pre and the posttest (4 and 8, respectively). The 

LH group represented students who scored at or below the 

median in the pretest, scored at or above the median in the 

posttest, and whose gain in scores was at least 5. The HH 

group represented students who scored at or above the me-

dian in both the pre and the posttest. There were 13 stu-

dents in the HH group, 12 students in the LH  group, and 

19 students in the LL group. 5 students could not be put in-

to one of the three groups; their pre and posttest scores 

were (8,6), (8,5), (6,5), (7,5), and (8,7). 

 

The HMM behavior sequence models for LL and HH 

groups are shown in Fig. 3. The best fit models for these 

two models have 7 states each, which are shown as circles 

in the figure. The arrows between the states indicate possi-

ble transitions between states, and the number beside an ar-

row indicates the likelihood of a transition between states 

expressed as a percentage.  For example, in the LL group 

model, the likelihood that a student will move to a state 4 

behavior from a state 3 behavior is 19%, and the likelihood 

for moving to a state 5 behavior is 13%. Self-loops indicate 

the likelihood of continuing to exhibit behaviors in the 
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same state, for example, state 3 has a self-loop likelihood 

of 55%. To reduce clutter in the behavior diagrams, we 

show the more likely transitions as solid lines, and the less 

likely ones as dotted lines. Using the transition probabili-

ties and the likelihood of starting in a state (shown as the 

first number in parentheses by a state in the figure) we 

compute the likelihood of the proportion of the total activi-

ties that are associated with a state. For example, the likeli-

hood that a student in the LL group started in behavior 

state 3 is 18% and 11% of their total activities are associ-

ated with that state.  The color-coded pie charts within a 

state represent the different activities the students per-

formed within the state. The informedness and diagnostic-

ity measures were used to categorize an activity as high or 

low. For example, a query that has a high diagnosticity 

score is ranked high,  Query_H, and a query that has low 

diagnosticity score is ranked low,  Query_L.  

To further analyze student learning behaviors and to dif-

ferentiate among the behaviors of the three groups, we cha-

racterize behavior states into: (1) Uninformed editing – in 

this state the students are primarily making uniformed 

changes to their map, indicating the use of trial and error or 

guessing strategies. Students may spend some time reading 

resources or asking queries, but these activities do not re-

late to their editing activities. It is interesting that all three 

groups were most likely to start their learning activities in 

this state; (2) Reading –students are primarily engaged in 

reading the resources in this state. They may combine read-

ing with some editing of their maps. Reading is considered 

to be a good information seeking behavior; (3) Checking – 

this behavior state combines uninformed editing with ask-

ing queries and taking quizzes, but the activities are not re-

lated. For example, the query a student asks does not relate 

to the part of the map the student is editing, or the part of 

the map the student edits is not related to the quiz ques-

tions that had wrong answers. This behavior state is linked 

to weak monitoring strategies; (4) Combined Probing and 

Editing – this behavior state combines checking, reading, 

and informed editing during their map building actions; (5) 

Probing – this behavior state combines querying, quizzing, 

and editing in a way that the map editing is informed by 

the results of the querying and quizzing functions; and (6) 

Advanced Probing – in this behavior state the combine 

querying and quizzing with the explanation feature, which 

provides a trace or the chain of links that were followed to 

generate an answer to a question. Using this characteriza-

tion, in the LL behavior model shown in Figure 3, states 1 

and 5 represent Uniformed Editing states, state 7 is a read-

ing state, states 2 and 3 represent Checking states, and state 

6 is a Probing state, and state 4 represents the Combined 

Probing and Editing state. In contrast, for the HH group 

behavior model state 3 is the Uninformed editing state, 

states 2 and 7 represent the Reading state, state 1 is the 

Checking state, states 5 and  6 are the Probing states, and 

state 4 is the Advanced probing state. 

Table 6 compares the behaviors across groups. 53% of 

the LL group’s activities are directed to uninformed editing 

and checking, 14% to reading, and 38% to probing behav-

iors. In contrast, the numbers for the LH and HH group are 

32%, 23%, and 32%, and 42%, 29%, and 9%, respectively. 

The LH and HH groups exhibit Advanced probing behav-

iors (use of explanations), which the LL group does not.  
Table 6.  Behavior States by Group with Likelihood of 

starting and proportion of activities. 
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Low-Low 

(LL) 

Low-High 

(LH) 
High-High 

(HH) 
Behaviors 

Start 

% 

Propor-

tion % 

Start % Propor-

tion % 

Start 

% 

Propor-

tion % 

Uninformed 

Editing 
41 32 6 17 7 41 

Reading 0 14 23 23 14 29 

Checking 46 21 63 15 68 1 

Probing 7 17 5 32 5 9 

Probing & 

Editing 
6 16     

Advanced 

Probing 
  3 13 6 20 

A clear difference between the HH group and the other 
two groups is the use of explanations in their learning and 
map building tasks, and this helped them perform better in 
their learning tasks. The LL group’s inability to learn may 
be attributed to their inability to apply advanced probing 
strategies. A second reason may be that they did not spend 
as much time in reading and learning from the resources as 
the other two groups did. In summary, the use of reading 
and Advanced Probing behaviors differentiate the high per-
formers from the low performers. 

Table 7.  Number of students and completion rates by 
group. 

ICS LBT SRL 
Performance 

# Completed 

(#,%) 
# Completed 

(#,%) 
# Completed 

(#,%) 

LL 8 2 (25%) 5 1 (20%) 6 3 (50%) 

LH 2 1 (50%) 4 1 (25%) 6 3 (50%) 

HH 3 1 (33%) 7 5 (71%) 3 3 (100%) 

 
Table 7 lists the number of students in the LL, LH, and 

HH groups by condition. We also list the number of stu-
dents in each group who were able to complete their con-
cept mapping task in the 7 sessions that were allocated to 
them. It is clear that the SRL condition outperformed the 
other two groups, indicating that the students who received 
SRL strategy feedback were able to perform their learning 
tasks better (an overall 60% completion rate versus 31% 
for ICS and 44% for LBT). The LBT group performed 
marginally better than the ICS group. Prior knowledge did 
impact the ability to complete the learning task for the LBT 
and SRL groups, but not for the ICS group.  It does seem 
learning by teaching with SRL and metacognitive strategy 
feedback helped students learn their science content better, 
but the effects of prior knowledge and effectiveness of the 
strategy feedback provided will have to be studied further. 

Discussion and Conclusions 

The Betty’s Brain system is designed to leverage the bene-
fits of learning by teaching and causal reasoning to facili-
tate students’ science learning. We have hypothesized that 
working with Betty is helpful because it supports students’ 

engagement and promotes educationally productive cogni-
tive and metacognitive processes. The results reported 
here, along with prior research, support this hypothesis. 
Students who utilized learning by teaching versions of our 
system (i.e., LBT and SRL versions) constructed better 
concept maps that captured causal relationships between 
entities in a river ecosystem than were students who used 
the non-teaching ICS version of the system. Moreover, 
students’ performance was strongest when we explicitly 
supported their use of self-regulated learning strategies by 
having Betty model and prompt for such behaviors.  

Although assessments of learning outcomes were in 
agreement with our hypotheses, it was also critical to ex-
plore students’ actual behaviors during the teaching and 
learning process. Did students in the LBT and SRL condi-
tions perform well because they were engaged in produc-
tive cognitive and metacognitive behaviors? For this pur-
pose, we developed three levels of analysis: (1) studying 
the frequency of student activities as they worked with the 
system, (2) weighing student actions using diagnosticity 
and informedness measures, and (3) a novel method for 
examining students’ aggregated behaviors using HMMs. 
Frequency analysis clearly indicated that monitoring be-
haviors, such as querying and checking explanations corre-
lated strongly with learning. This was substantiated in the 
level 2 analysis, where the activities were weighed by the 
context of the surrounding actions. The HMM models pro-
vide a more aggregated description of student behaviors.  
We were able to characterize states of the HMM in terms 
of SRL strategies that are reported in the literature. Our 
HMM model derivation process reported in this paper, also 
gives a better sense of the context in which different ac-
tions were used. For example, was an editing action in-
formed by the last query action, or was it unrelated? 

In future work, we hope to refine our analyses further to 
get a better understanding of the different strategies that 
middle school students employ when learning complex 
science topics. We will also continue to study the effects of 
using strategy feedback and guidance to help students be-
come better learners. Another direction that we will pursue 
is the role of self-efficacy and motivation in learning SRL 
strategies. 
Acknowledgments. This work has been supported by 
Dept. of ED IES grant #R305H060089, NSF REESE 
Award #0633856, and NSF IIS Award #0904387. 

References 

Artzt, A. F., Armour-Thomas, E. (199). Cognitive model 
for examining teachers’ instructional practice in mathemat-
ics: A guild for facilitating teacher reflection. In: Educa-
tional Studies in Mathematics. vol. 40, issue 30, pp. 
211−335. 
Azevedo, R. (2005). Using Hypermedia as a Metacognitive 
Tool for Enhancing Student Learning? The Role of Self-
Regulated Learning. In: Educational Psychologist. vol. 40, 
issue 4, pp. 199--209.  Lawrence Erlbaum Associates.  

38



Bargh, J.A., Schul, Y. On the cognitive benefits of teach-
ing. Journal of Educational Psychology, 72 (5). 593-604. 
(1980) 
Biswas, G., Schwartz, D., Bransford, J., et al. (2001). 
Technology support for complex problem solving: From 
SAD environments to AI. In: K.D. Forbus and P.J. Fel-
tovich (Eds.), Smart Machines in Education. AAAI Press, 
pp. 71-98. Menlo Park, CA. 
Biswas, G., Leelawong, K., Schwartz, D., Vye, N. (2005). 
Learning by Teaching: A New Agent Paradigm for Educa-
tional Software. In:  Applied Artificial Intelligence. AAI, 
vol. 19, pp. 363-392. 
Bransford, J.D., A.L. Brown, R.R. Cocking, eds. (2000) 
How People Learn, expanded edition, National Academy 
Press: Washington, D.C.  
Chi, M.T.H., Siler, S. A., Jeong, H., Yamauchi, T., Haus-
mann, R. G (2001) Learning from Human Tutoring. In: 
Cognitive Science. vol. 25, issue 4, pp. 471--533. (2001) 

Forbus, K., Qualitative Process Theory, Artificial Intelli-
gence, vol. 24, pp. 85-168. (1984) 
Jeong, H., Biswas, G. (2008) Mining Student Behavior 
Models in Learning-by-Teaching Environments, First In-
ternational Conference on Educational Data Mining, Mon-
treal, R. S. Baker, T. Barnes, T., I.E. Beck, (eds.), pp. 127-
136, Montreal, Quebec, Canada, June 20-21. 
Leelawong, K., Biswas, G. (2008) Designing Learning by 
Teaching Systems: The Betty’s Brain System. In Interna-
tional Journal of Artificial Intelligence in Education.  
Li, C., Biswas, G. (2002) A Bayesian Approach for Learn-
ing Hidden Markov Models from Data. Special issue on 
Markov Chain and Hidden Markov Models, Scientific Pro-
gramming, vol. 10, pp. 201-219. 
Novak, J.D (1998) Learning, Creating, and Using Knowl-
edge: Concept Maps as Facilitative Tools in Schools and 
Corporations. Lawrence Erlbaum Associations, Mahwah, 
NJ.  
Pintrich, P. (2002) The Role of Metacognitive Knowledge 
in Learning, Teaching, and Assessing, Theory into Prac-
tice: Revising Bloom’s Taxonomy, 41(4), 219-225. 
Rabiner L. R. (1989) A Tutorial on Hidden Markov Mod-
els and Selected Applications in Speech Recognition. In: 
Proc. IEEE. vol. 77, issue 2.  
Roscoe, R. D., Chi, M (2007) Understanding tutor learn-
ing: Knowledge-building and knowledge-telling in peer tu-
tors’ explanations and questions. In: Review of Educa-
tional Research. vol. issue. 4, pp. 534-574. 
Roscoe, D., Wagster, J., and Biswas, G. (2008) Using 
Teachable Agent Feedback to Support Effective Learning 
by Teaching,, Cognitive Science Conference, Washington, 
DC, July. 
Schraw, G., Kauffman, D.F., Lehman, S. (2002) Self-
regulated Learning Theory, In L. Nadel (ed.) The Encyclo-
pedia of Cognitive Science, pp. 1063-1073, London: Na-
ture Publishing Company.  
Schwartz, D.L., Chase, C., Chin, C., Oppezzo, M., Kwong, 
H., Okita, S., Biswas, G., Roscoe, R.D., Jeong, H., Wag-

ster, J.D. (2009)). Interactive Metacognition: Monitoring 
and Regulating a Teachable Agent, Handbook of Metacog-
nition in Education, Hacker, D.J., Dunlosky, J., Graesser, 
A.C., Routledge Press. 
Tan, J., Biswas, G., Schwartz, D. (2006) Feedback for 
Metacognitive Support in Learning by Teaching Environ-
ments, The 28th Annual Meeting of the Cognitive Science 
Society, Vancouver, Canada, pp. 828-833. 
Wagster, J., Tan, J., Wu, Y., Biswas, G., Schwartz, D 
(2007) Do Learning by Teaching Environments with 
Metacognitive Support Help Students Develop Better 
Learning Behaviors? In: The 29th Annual Meeting of the 
Cognitive Science Society, Nashville, Tennessee, pp. 695-
700.   
Winne, P., Hadwin, A. (2008). The weave of motivation 
and self-regualted learning. In D. Schunk & B. Zimmer-
man (Eds.), Motivation and self-regualted learning: The-
ory, research, and applications (pp. 297-314). NY: Taylor 
& Francis.  
Zimmerman, B. Theories of self-regulated learning and 
academic achievement: An overview and analysis. In & B. 
Zimmerman & D. Schunk (Eds.), Self-regulated learning 
and academic achievement: Theoretical perspectives (pp. 
1-37). Mawah, NJ: Erlbaum. (2001) 
 
 
 

39




