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Abstract 
The central thesis of this paper is that the technology of 
intelligent, autonomous machines gives rise to novel fault 
modes that are not seen in other types of automation. As a 
consequence, autonomous systems provide new vectors for 
cyber-attack with the potential consequence of subversion, 
degraded behavior or outright failure of the autonomous 
system. While we can only pursue the analogy so far, 
maladaptive behavior and the other symptoms of these fault 
modes in some cases may resemble those found in humans. 
The term “psychopathology” is applied to fault modes of the 
human mind, but as yet we have no equivalent area of study 
for intelligent, autonomous machines. This area requires 
further study in order to document and explain the 
symptoms of unique faults in intelligent systems, whether 
they occur in nominal conditions or as a result of an outside, 
purposeful attack. By analyzing algorithms, architectures 
and what can go wrong with autonomous machines, we may 
a) gain insight into mechanisms of intelligence; b) learn 
how to design out, work around or otherwise mitigate these 
new failure modes; c) identify potential new cyber-security 
risks; d) increase the trustworthiness of machine 
intelligence. Vigilance and attention management 
mechanisms are identified as specific areas of risk. 

 Introduction   
Psychopathology is the study of mental illness, mental 
distress, and abnormal or maladaptive behavior. It is the 
study of fault modes of the human mind. As yet, we have 
no equivalent area of study for intelligent, autonomous 
machines. Software engineering techniques for reliable 
systems are applicable (as they are to all complex software 
artifacts), but insufficient. The topic of this paper is the 
proposition that the technology of intelligent, autonomous 
systems gives rise to novel fault modes that are not seen in 
other types of automation. These fault modes arise from 
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the nature of the algorithms and how they perform in real-
world situations (including human interaction) with 
uncertain data. As a consequence, autonomous systems 
may provide new vectors for cyber-attack that could lead 
to subversion, degraded behavior or outright system 
failure. 

This paper arose from a bit of fun the author was having 
by examining examples of “robots run amok” in popular 
literature and media. HAL 9000, of the movie “2001: A 
Space Odyssey” is a canonical example. These cases are 
often described in anthropomorphic terms related to human 
psychopathology, and this became the genesis of the idea 
for a psychopathology of intelligent machines. Although 
the analogy will stretch only so far, the search for 
intelligent machine near-equivalents of certain human 
mental disorders has already yielded a few insights that are 
described herein. The over-riding question is whether 
something like the behavior of these fictional malevolent 
machines could actually occur. In many cases, the answer 
is “probably not” but in a few, the answer is “probably 
yes.” If so, can we identify plausible mechanisms that 
explain the nature of the amok machines’ failures, given 
present artificial intelligence technology and what we can 
reasonably project on the horizon?  

This possibility suggests that there are fault modes for 
autonomous systems that remain unexplored and their 
implications unknown. The purpose of this paper is to raise 
that question explicitly, and to do so in the context of fault 
modes as potential vulnerabilities to attack, exploitation 
and subversion. 

We stand to gain certain benefits by analyzing the 
unique fault modes of autonomous systems. Such studies 
might provide insight into aspects of machine intelligence 
just as studies of human mental disorders have historically 
provided insight into the functioning of the brain. With the 
human mind, psychologists seek explanations for mental 
disorders from biological sources (relatively rare), innate 
biases, and faulty inference. Such failures of the human 
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mind are often based in experience and learned behavior, 
including interpersonal communication and relationships 
with social and group effects. These are well documented. 
In contrast, with autonomous systems we must seek 
explanations for anomalous, maladaptive behavior in 
hardware (probably rare), software algorithms, logic, 
knowledge and situational uncertainty. Also guided by the 
study of human mental disorders, we should look for 
sources of machine intelligence fault modes in experience 
(episodic memory) and machine learning, including 
human-machine interaction and other aspects of social and 
affective computing. 

 Some of these autonomous system faults may occur in 
the course of day-to-day nominal operations and be easily 
“cured.” Of greater concern, it is possible that some 
psychopathologies of machine intelligence could be 
induced in a new form of cyber-attack, thereby creating 
new risks with potentially very serious consequences. We 
have the opportunity, now, to focus research on how to 
design out, work around or otherwise mitigate the failure 
modes we discover. It is best if this is accomplished sooner 
rather than later due to the potential adverse consequences. 
Ultimately, the real payoff for AI research and 
development of autonomy applications is the opportunity 
to increase the trustworthiness of machine intelligence. 
Today, this is cited as a chief obstacle to greater 
deployment of autonomous systems (Dahm 2010). 

The sections below provide essential background and an 
initial analysis of the symptoms and sources of selected 
example fault modes of autonomous, intelligent systems. 
In each case, we examine these fault modes with respect to 
vulnerability to cyber-attack. In the conclusion section, we 
discuss directions for future research and parameters of the 
required studies.  

Essential Background 
The technology of autonomous systems extends beyond 
conventional automation and solves application problems 
using materially different algorithms and software system 
architectures. This technology is a result of 
multidisciplinary research primarily in the fields of 
artificial intelligence and robotics, but drawing on many 
other disciplines as well, including psychology, biology, 
mathematics and others. Research on autonomous systems 
spans multiple areas, including (but not limited to) 
algorithms, computing theory, computing hardware and 
software, system architectures, sensing and perception, 
learning, and the acquisition and use of large stores of 
highly interconnected and structured, heterogeneous 
information.  

The key benefit realized from autonomy technology is 
the ability of an autonomous system to explore the 

possibilities for action and decide “what to do next” with 
little or no human involvement, and to do so in 
unstructured situations which may possess significant 
uncertainty. This process is, in practice, indeterminate in 
that we cannot foresee all possible relevant information 
(i.e., features and their relationship to one another) that 
could be a factor in pattern-directed decision-making.  

The autonomous ability to decide on next-steps is the 
core of what enables many valuable applications. “What to 
do next” may include a wide variety of actions, such as: a 
step in problem solving, a change in attention, the creation 
or pursuit of a goal, and many other activities both internal 
to the operation of the system as well as actions in the real 
world (especially in the case of embedded or cyber-
physical systems). Ill-informed efforts to “envelope” or 
otherwise externally constrain the behavior of autonomous 
systems are sacrificing the most important strength of the 
technology – to perform in ways we cannot a priori 
anticipate. 

However, while the technology delivers new capabilities 
to perform work in a wide variety of under-specified and 
dynamic situations, it is also extremely complex to the 
point where conventional software systems test and 
evaluation methods are no longer sufficient to establish nor 
maintain confidence in autonomous systems. It is system 
complexity, arising from specific component technologies 
of autonomy (individually and collectively), that creates 
the prospect of new cyber-security risks.   

Of special importance is computational complexity: a 
measure of the resources required by a given algorithm to 
reach a result. Computational complexity is measured in 
time (e.g., wall clock time) and space (e.g., memory 
storage), and there are multiple other important attributes 
as well. The decision by an autonomous system of “what to 
do next” is the result of an algorithm that can be viewed, 
abstractly, as maximizing a utility function. These 
algorithms, intrinsic to autonomous systems, are typically 
of very high computational complexity; that is, they may 
require exponential amounts of time and/or space.  

Strict utility-based decision-making processes are 
recognized to be impossible in non-trivial domains (for 
people as well as machines). This is a result of the 
potentially infinite courses of action available, and the 
consequent inability to exhaustively analyze all of the near 
infinite number of possible system states; the inability to 
obtain and store all potentially relevant facts; and the 
intrinsically uncertain relationship between chosen actions 
and consequences when the environment has complex 
dynamics including other actors (Brundage 2014).  

Consequently, as a rule, the process of decision-making 
by an autonomous system is intrinsically limited by the 
available information, computational resources, and the 
finite amount of time available to reach a conclusion. This 
is referred to as “bounded rationality” (Simon 1958) and 
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serves as a bedrock principle for research in artificial 
intelligence (AI). The result is that we can only hope to 
approximate optimal decision-making and behavior in an 
intelligent, autonomous system: “Satisficing” is acting in a 
way that leads to satisfactory and sufficient (“good 
enough”) outcomes.  

We conjecture that this heuristic, algorithmic struggle 
for computational resources with limited time and 
information is a principal source of novel fault modes that 
arise in autonomous, intelligent systems. 

Fault Modes 
What could possibly go wrong? That is the question asked 
by every researcher, developer, decision-maker, and user 
of an intelligent system. There exists the familiar panoply 
of software and system faults shared by all complex 
computational systems. Those are not our focus here. Our 
interest is in what new types of faults might exist by virtue 
of the nature of the algorithms in intelligent systems, or 
their application in certain circumstances, or as a result of 
malicious manipulation. Do such fault modes exist? 

The purpose of this section is to stimulate thought, 
discussion, and ideally, to convince you that the answer is 
likely to be “yes.” The existence of these fault modes 
arises directly from the limitations imposed on autonomy 
technology by computational complexity, as discussed in 
the previous section. Such faults are today typically 
conceptualized in terms of constraints on algorithms rather 
than cyber-security vulnerabilities; this paper aims to raise 
awareness of that gap in our understanding.  

The systems test and evaluation community has 
recognized that something is really different about 
autonomous systems, specifically, the near infinite number 
of potential system states in an intelligent, autonomous 
system renders much of existing test and evaluation 
methodology insufficient (or at worse, ineffective) for 
producing high confidence assertions of performance and 
reliability (Dahm 2010). The ideas presented here ideally 
ought to lead to enhanced test and evaluation processes, 
but we leave that to be discussed elsewhere. 

In the search for novel fault modes, we are guided by 
our (admittedly imperfect) analogy to human 
psychopathology and certain philosophical considerations. 
If the computational mechanisms of intelligence are 
independent of the physical medium that supports such 
computations, then what is true of one type of intelligent 
system may also be true of another type. This is implied by 
the philosophical formulation of machine-state 
functionalism (Putnam 1979) upon which much of 
artificial intelligence and cognitive science research is 
predicated.  

The subsections below describe potential fault modes 
that may arise in an example set of functional areas 
common to many intelligent, autonomous systems. In each 
case, we would like to understand the symptomology of 
faults and the underlying causes. Only then can we 
investigate vulnerabilities, methods of detection, isolation 
and repair. Without presenting tutorial information best 
found elsewhere, we consider potential fault modes arising 
in the processes of: 

1. Goals and Goal Generation 
2. Inference and Reasoning 
3. Planning and Execution Control 
4. Knowledge and Belief 
5. Learning 

Goals and Goal Generation 
Goals are the primal initiator of behavior in a deliberative 
autonomous system (in contrast to a reactive autonomous 
system, for example, one based on a subsumption 
architecture (Brooks 1988) which is driven more directly 
by sensory data; many autonomous systems are hybrids of 
deliberative and reactive components. In deliberative 
systems, a goal state may be completely specified, only 
partially specified, or may be in the form of a general 
preference or constraint model with “goodness” evaluated 
according to certain formulae. A wide variety of 
preference/constraint models exist, some applicable only to 
deterministic domains and others to probabilistic domains 
or where preferences must be explicitly elicted (Gelain et. 
al. 2009; Dalla Pozza 2011). 

Some examples of candidate psychopathological fault 
modes related to goals that are shared with people, but not 
other non-intelligent machines, are: Disorders of Attention, 
Goal Conflict, Indifference, and Self-Motivated Behavior. 
We examine each of these in turn.  

Disorders of Attention. The pursuit of goals, including 
goal generation, goal selection, and deliberative planning, 
all require allocation of system resources. In each of these 
functions, decisions are made about how to use 
computational resources. These decision-making processes 
can be viewed fundamentally as attention management 
mechanisms (Helgason, Nivel and Thorisson 2012). 

Goal generation functions (triggered by external or 
internal information) are fundamentally vigilance 
mechanisms because they can divert attention. Diverting 
attention diverts the management of scarce system 
resources. In most cases, this is appropriate and exactly 
what the designers of intelligent systems intend 
(Coddington 2007; Hawes 2011). 

With respect to cyber-security, however, this suggests 
that attacking vigilance mechanisms has the potential to 
divert attention and resources away from what an 
autonomous system “ought” to concentrating upon. 
Misappropriation or diversion of scarce computing 
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resources is a potential critical vulnerability of autonomous 
systems that may appear as a consequence of other types of 
faults.  

Goal Conflict. The resolution of conflicting 
requirements for achieving different goals is a fundamental 
component of all AI planning and scheduling algorithms. 
There are many such planning algorithms, and equally 
many ways to resolve goal conflicts. It is important to 
remember that the guaranteed detection of goal conflicts 
during the planning process is computationally intractable. 
Heuristic methods are required in order to focus attention 
on likely sources of goal conflict (Luria 1987). These 
heuristics are also attention management mechanisms. 
Luria (op. cit.) provides a brief taxonomy of goal conflicts. 
Drawing from that taxonomy provides a good start towards 
identifying goal conflict-related fault modes (see Table 1 
for examples). These modes are each potential vectors for 
cyber-attack by an adversary with the capability to 
artificially induce the conditions that enable a type of goal 
conflict. 
 

TYPE OF CONFLICT DESCRIPTION 

Compromised Intent Conflict between explicit goal and 
default policy or implicit intent. 

Violated Defaults Unverified knowledge of the 
values of default preconditions. 

Unintended Effects Plan used in a novel situation with 
un-modeled direct interactions. 

Expressed Conflict Human agent asserts that a conflict 
exists, with or without explanation. 

Effects Cascade 

Effects of plan execution result in 
an unrelated conflict (side effect), 
e.g., due to insufficient causal 
model fidelity, inference horizon, 
etc. If the effects are non-linear, a 
cascade is possible. 

Table 1: Example Types of Goal Conflicts. 

Consider just one of the many sources of goal conflicts 
that are known: Compromised Intent. This type of goal 
conflict occurs when achievement of a goal conflicts with 
default policy or intent. It may occur because (1) a causal 
interaction is not modeled, or; (2) an inference chain is too 
long to find the conflict (as in a search with a bounded 
horizon), or; (3) unknown, explicit or implicit priorities, or 
other conditions that enable the relaxation of constraints. I 
would be greatly surprised if a reader familiar with AI 
planning systems has not seen this type of conflict. 

There is another reason it seems familiar. Return to our 
(fictional) example in the introduction, HAL 9000, of the 
movie “2001: A Space Odyssey.” Recall that the super-
secret, highest priority mission goal given to HAL is to 
investigate the monolith at Jupiter. This explicit goal 

comes into conflict, later in the mission, with the default 
policy of protecting the lives of the crew. This is just one 
of many types of potential goal conflicts that may not be 
detected before actual execution of a plan. Skipping over 
the drama of the movie, we discover that HAL chooses to 
resolve this goal conflict by killing the crew. The 
hypothetical mechanism is relatively easy to discern: a 
relaxation of a constraining default policy (crew safety) in 
order to achieve a high priority goal (investigate the 
monolith). The constraint relaxation is enabled by HAL’s 
certainty that he can complete the secret mission without 
the aid of the crew (this is also a failure of ethical 
reasoning, discussed later). In humans, unresolved goal 
conflict is a source of significant mental distress (Mansell 
2005). Similarly, resolution of goal conflict is often (but 
not always) an imperative in autonomous systems. 

Indifference. This type of fault is a milder form of goal 
conflict that can result from an intelligent system 
concluding that (1) a human-provided goal has insufficient 
priority relative to other goals, or (2) the system itself does 
not possess the competence to achieve a goal, or (3) the 
goal is irrelevant. The consequence of goal conflict 
resolution is the human-provided goal is dropped and no 
action occurs to achieve the goal. In human terms, this 
condition is described as apathy. 

Self-Motivated Behavior. Autonomy necessarily implies 
a degree of choice of actions, whether they originate from 
externally provided goals or goals internally generated. In 
the latter case, the addition of autonomic processes to a 
system (e.g., for health maintenance, energy management 
and so forth) can result in goals that conflict with on-going 
activities. The examples we see today, such as a robot 
vacuum cleaner stopping to recharge itself, are expected 
behaviors and not of interest. However, as intelligent 
robots are deployed into dangerous situations, such as 
urban rescue or a battlefield, their autonomic functions are 
likely to expand to include self-preservation as a default 
autonomic function. Consider the possibility that an 
undesirable machine behavior (perhaps as a result of 
another fault and/or subversion) results in a shutdown 
command. Due to a conflict with the internally generated 
goal of self-preservation, the directive to shutdown could 
be ignored in certain situation-driven conflict resolutions. 

It is important to note that both Indifference and Self-
Motivated Behavior may have the appearance of self-
awareness. Yet, the information and goal conflict 
resolution processes are localized within the intelligent 
system. The appearance of self-awareness is an emergent 
psychological effect (Lewis et. al. 2011); actual self-
awareness is not required. 
Inference and Reasoning 

There are several important sources of potential faults in 
the area of inference and reasoning that require further 
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study. Some are familiar to many of us from long coding 
and test sessions with intelligent systems, others are 
speculative possibilities that may arise in future systems. 

 Invalid Logic. Often termed “fallacies of inference”, 
there are many forms of invalid logic that humans 
demonstrate. As yet, intelligent systems only suffer from a 
few. One of these cases is when “true” data results in a 
false answer as a result of a failure of inductive reasoning; 
for example, when an intelligent system is near the edges 
of its competence. As a consequence, insufficient previous 
experience (e.g., manifested as an incorrect probability 
distribution) results in over-weighted confidence for 
derived conclusions. This leads to the possibility that new 
data becomes marginalized or discarded rather than serving 
in a corrective function. This is an example of the classic 
“over-generalization” problem in machine learning, where 
important features that discriminate situations are ignored. 

The Fallacy Fallacy. This fault mode is complementary 
to Invalid Logic. Knowledge bases are inherently 
incomplete, likely to contain errors, and subject to many 
other limitations. One potential consequence is that a 
conclusion is dismissed because the logic used to derive 
the conclusion is faulty or incomplete, i.e., there is no 
inference chain to the conclusion that can be constructed 
from the knowledge and data given (or as a result of a 
bounded search horizon, as discussed earlier). If the 
argument contains a fallacy, i.e., invalid logic, then it is the 
argument that must be dismissed. The failure to construct 
an inference chain does not prove that the conclusion is 
incorrect, only that it cannot be proved with what is 
known. The conclusion may in fact be correct. Few, if any, 
extent intelligent systems respect this distinction; it is a 
defect of reasoning that unfortunately shared by many 
people as well. 

Solipsism. One of the dangers of the AI craft of applied 
epistemology arises from the quest to manage uncertainty. 
This has the potential to result in a sort of logical 
minimalism where sense data is subject to extreme 
skepticism and as a result, internally derived inferences 
may accrue more confidence than those based on empirical 
observations. In a sense, this is the robot equivalent of the 
human psychopathological condition of detachment from 
reality. The danger arises when solipsism undercuts 
externally imposed policy-guided constraints on behavior 
by authority. 
Planning and Execution Control 

There are a great many faults that can arise during the 
planning and execution control processes, including many 
of those related to goals as we have discussed above. 
Planning is essentially a search problem with surprising 
complexity that often requires exponential computation, 
i.e., is NP-hard (Chapman 1987; Hendler et. al. 1990) One 
of the most important potential fault modes of planning 

and execution control has only been recognized in the past 
few years: failures of ethical behavior (Arkin 2012; 
Bringsjord and Clark 2012). 

Ethical reasoning may fail due to bounded rationality. 
Depending on the circumstances, knowledge and analysis 
of the situation and actors may not be sufficient to reason 
about duty to ethical concerns. It is also true that creating 
an ethical code that is complete, unambiguous and can be 
applied correctly in every situation is notoriously difficult 
(Bringsjord 2006). Many possible algorithms to remedy 
this have been discussed (and fewer implemented), such as 
“ethics governors” (an execution monitoring system with 
veto power; essentially equivalent to the proverbial 
“restraining bolt”). Other theorists suggest that moral 
behavior will arise not from externally imposed 
constraints, but only from internally generated self-
regulation of behavior based on the utilitarian concerns of 
interacting with humans in a social world.  

A discussion of ethical behavior by machines is not 
complete without a consideration of deception, defined for 
our purposes here as a “false communication that tends to 
benefit the communicator” (Bond and Robinson 1988). For 
reasons of space, a complete review is not possible here. 
With respect to our concerns regarding fault modes and 
cyber-security, it is important to note that deception by an 
autonomous, intelligent system can arise naturally as an 
adaptive response to certain situational conditions 
(Floreano 2007; Mitri 2009), as a strategic choice, e.g., in 
warfare (Wagner and Arkin 2009, 2011), or as a relatively 
innocuous aspect of human-robot social interaction (Pearce 
et. al. 2014). This raises the question of how to tell the 
difference between a mistake (due to a failure or limitation) 
and an outright lie by an intelligent system. 

While there is much attention to policy-constrained 
behavior (Uszok et. al. 2008), The fact remains that today 
we cannot guarantee that the behavior of a sufficiently 
autonomous intelligent system will necessarily conform to 
explicitly stated policies, including ethical rules. The 
consequences might be relatively minor or they might be 
as major as the HAL 9000 goal conflict resolution example 
discussed earlier. 

Emergent Behavior. As the technology of multi-agent 
systems has matured, the phenomenon known as emergent 
behavior has been observed, i.e., behavior that is not 
attributed to any individual agent, but is a global outcome 
of agent coordination (Li et. al. 2006). Emergent behavior 
may or may not represent a fault condition. The flocking 
behavior of birds is emergent and represents an important 
positive survival trait. On the other hand, stop and go 
traffic and traffic jams are emergent behaviors that 
enormously degrade the performance of traffic systems.  

As yet, no generalizable methods exist for predicting 
emergent behavior in multi-agent systems, or their 
“goodness”, in part because the task is computationally 
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intractable even for very simple agents with restricted 
behavioral repertoire and restricted inter-agent 
communication topology. Emergent behavior cannot be 
predicted by analysis at any level other than the system as 
a whole. The best that can be done is to measure certain 
trends in system-wide behavior that may lead to 
predictability (Gatti et. al. 2008; Pais 2012). 

A fault mode worthy of study is the possibility that an 
agent in a multi-agent system is able to assert its behavior 
on other agents in a way that triggers emergent effects 
(Lewis et. al. 2011). Two simple examples, similar in 
nature, are crowd behavior in humans and insect swarming. 
To the extent that an agent suffers some other fault, or is 
suborned, it may trigger undesirable emergent behaviors in 
the system as a whole. Despite the rush to implement 
multi-agent systems for important and critical applications 
in health, finance, transportation, defense and other 
domains, we simply do not yet have an understanding of 
fault modes that are likely to occur due to emergent 
behavior. 
Learning, Knowledge and Belief 

This category of potential fault modes is quite broad and 
truly deserves more attention than this short paper can 
afford. Nevertheless, it is important to highlight a few fault 
modes that may be quite common to intelligent, 
autonomous systems. These all arise from the autonomous 
processes involved in creating, maintaining, and adapting 
what an intelligent system believes to be true.  

The most glaring example of this type of fault mode is 
faulty or absent truth maintenance, i.e., the ability to retract 
assertions previously thought to be true which are now 
rendered invalid by new information (defeasibility). 
Formally, this is a property of first order logical 
“monotonic” systems. The use of monotonic inference is 
not in itself a fault. If previous inferred assertions do not 
play a role in future reasoning, they are effectively 
discarded if not explicitly falsified when contradictory 
information is obtained. For example, a credit card fraud 
detection system might depend exclusively on salient 
features in a single case of use of the card. The fact that a 
previous use of the card was valid does not automatically 
validate a new use of the card. First order logic is common 
in many applications.  

However, intelligent systems that build models of the 
world, actors, situations, and so forth via machine learning 
must use non-monotonic reasoning (second order or higher 
logics) to achieve defeasible inference. Given the 
uncertainty inherent in a dynamic and uncertain world, 
defeasibility can be a difficult process because it requires 
weighing the evidentiary force of new data against 
previously derived probative assertions. In a sense, 
skepticism must balance a rush to learn or “correct” 
previous beliefs. 

This is where computational argumentation and its 
contribution to persuasive technology may have an 
important role. While the topics are strongly related to 
formal logic and mathematical proof, they transcend it in 
several ways. Most important to this discussion is the 
explicit inclusion of dialog in the process of 
argumentation, often in the context of creating 
“explanations” as to why certain conclusions have been 
reached, as in intelligent decision-support systems (Bench-
Capon et. al. 1991,2007a). In this context, argumentative 
dialog is an exchange of ideas using rhetorical methods of 
persuasion that include social methods as well as 
mathematical logic. 

Justification of belief though argumentative dialog opens 
the door to fallacious reasoning as a method of persuasion. 
“Appeal to Authority” (argumentum ad verecundiam), 
while regarded as fallacious in theories of debate, cannot 
be ruled invalid simply by noticing it in dialog – it requires 
a further exchange of ideas. In the absence of effective 
counter argument, by either human or machine participant, 
fallacious reasoning may be highly influential as a result of 
“practical reasoning”, i.e., an assertion is correct within the 
perspective of one of the agents involved (Bench-Capon 
and Dunne 2007b). Humans are particularly vulnerable to 
deceptive cognitive illusions that result from certain 
argumentation strategies and practical reasoning. The 
computational methods for exploiting this weakness are 
actively being explored (Clark and Bringsjord 2008). 

The cyber-security concern is that practical reasoning to 
justify belief in the presence of uncertainty opens the door 
to the possibility that an adversary could, though the 
argumentative dialog process, undermine an intelligent 
system’s beliefs. This would be an even greater risk in the 
context of supervised learning with training data. 
Supervised machine learning is already known to be 
subject to a number of systematic biases, including for 
example, order bias, recency bias, and frequency bias. 
Errors in causal attribution can easily result from these 
biases. 

A second, related cyber-security concern is the role 
practical reasoning could play in goal generation and 
planning. By undermining (or cunningly shaping) an 
autonomous, intelligent system’s beliefs, all of the goal-
related fault modes discussed earlier could be induced. 

Conclusions 
Inherent in the concept of autonomy in intelligent systems 
is the ability to make choices about what to do and how to 
do it. These are fundamentally mechanisms for managing 
attention and vigilance. In this paper, we have examined 
some of the components of intelligent systems that support 
autonomy and discussed a selection of potential fault 
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modes. Some of these fault modes require a degree of 
meta-cognition that, while not yet realized in autonomous 
systems, is an active area of research.  

It is possible that some or all of these fault modes can be 
induced, and as a consequence, there now exist new and 
unique cyber-security concerns surrounding autonomous 
systems that must be explored. It is therefore incumbent on 
the AI research community to establish a theoretical and 
empirically substantiated foundation for cyber-security 
issues related to autonomy, with special attention to gaps in 
current knowledge. Future studies of cyber-attack 
vulnerabilities, per fault modes that are related to 
autonomy, should explore the following: 

1. Fault Modes: Are there new types of fault modes 
that can be exploited? Which fault modes are 
possible to induce, and in what manner and 
circumstance?  

2. Detection: How can we detect that an intelligent, 
autonomous system has been/is being subverted? 

3. Isolation: In the context of autonomous system 
faults and possible subversion, what do the 
traditional system concepts of fail safe and fail 
operational mean? 

4. Resilience and Repair: What are the proximal 
causes of the observable symptoms of autonomous 
system fault modes and how can these be mitigated? 

5. Consequences of Vulnerabilities: What are the 
consequences of deception by an autonomous, 
intelligent system (whether it has been subverted or 
not)? What is the impact of different types of fault 
modes on human reliance, trust, and performance of 
human-machine systems? 

The inspiration for this paper was the question of 
whether fictional dramatic accounts of computers/robots 
“run amok,” often described in anthropomorphic terms, 
have the potential to actually occur either with existing 
technology or technology that can be reasonably foreseen 
on the horizon. Some, but not all, of these faults and 
vulnerabilities have useful analogies to psychopathologies 
of the human mind. The development of a theory of 
“psychopathology of intelligent machines” has the 
potential to provide insight into aspects of computational 
intelligence just as studies of human mental disorders 
provide insight into the functioning of the brain. The 
methodology that remains to be developed will guide us 
towards computational approaches that design out, work 
around or otherwise mitigate these failure modes and 
potential cyber-security risks. Ultimately, the real payoff is 
the opportunity to increase the trustworthiness of machine 
intelligence; in the absence of justifiable trust, the full 
potential of autonomy technology will not be realized. 
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