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Abstract

Distributed representations (such as those based on embed-
dings) and symbolic representations (such as those based on
logic) have complementary strengths. We explore one pos-
sible approach to combining these two kinds of representa-
tions. We present a model theory/semantics for first order
logic based on vectors of reals. We describe the model theory
and discuss some interesting properties of such a representa-
tion.

Introduction
Knowledge Representation based approaches to AI involve
encoding knowledge in a logical language and performing
logical inference to derive conclusions. Such systems have
certain highly desirable properties.

• They are teachable. We can add both specific facts and
general axioms/heuristics concisely. E.g., we can sim-
ply tell such a system that every human has a biological
mother, without having to feed it a large number of ex-
amples, in the hope that a learning system appropriately
generalizes

• There is a well defined notion of entailment, that allows
us to draw conclusions from the general axioms we add
to the system

These systems, which are usually based on some form
of first order logic, are very good for writing axioms to
represent (and reason about) complex domains. These ax-
ioms are typically hand written, because of which building
a broad artificial intelligence using this approach has proven
to be rather daunting (Lenat et al. 1990). Completely au-
tomating the construction of these systems using learning
has also proven difficult. Complex first order statements are
extremely hard to automatically learn.

The strengths of Knowledge Representation based system
come from the origins of these systems, namely, in mathe-
matical logic. Unfortunately, these origins also bring some
unwanted baggage. Mathematical logic was developed for
the purpose of stating mathematical truths in a manner where
the terms in these statements have precise and unambigu-
ous meaning. Most axioms we add to our knowledge based
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systems are transliterations of natural language utterances.
And as with all such utterances, despite our best attempts,
terms and axioms in knowledge based systems end up hav-
ing many of the characteristics of natural language. In par-
ticular, our experiences with systems such as Cyc (Lenat et
al. 1990) and Schema.org (Guha 2011) have highlighted the
fluid and ambiguous nature of linguistic terms. Not just con-
cepts like ’chair’, but even terms like ’person’ afford a wide
range of meanings, something difficult for logic based sys-
tems to handle.

Recent work on distributed representations [(Socher et al.
2012), (Bowman, Potts, and Manning 2014), (Bordes et al.
2011), (Bordes et al. 2014), (Le and Mikolov 2014)] has ex-
plored the use of embeddings as a representation tool. These
approaches typically ’learn an embedding’, which maps
terms and statements in a knowledge base (such as Freebase
(Bollacker et al. 2008)) to points in an N-dimensional vec-
tor space. Vectors between points can then be interpreted
as relations between the terms. A very attractive property
of these distributed representations is the fact that they are
learnt from a set of examples. Further, the continuous na-
ture of the underlying vector space also gives hope for cop-
ing with the fluidity encountered in the meaning of terms.

But this benefit comes at the cost of not being able to do
some of the things that are relatively trivial for logic based
systems.

Goals & Outline of Approach
We would like to have systems that are largely learnt, which
we can also teach. In this work we take the first steps to-
wards building a representation system that combines the
strengths of logical and distributed representations. The first
step is to create a system that has a common representation
for both embeddings and logical sentences. The representa-
tion needs to be common not just in syntax, but also in terms
of semantics, i.e., in what operations can be carried out on
them.

Model theory (Enderton 2001) is the mathematical foun-
dation for logic. It tells us what logical sentences may be
construed to mean, which operations make sense and what
can be said to follow from a set of statements in a knowledge
base. We believe that an essential step in bringing logic and
distributed representations closer is to create a model theory
based on embeddings.
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Rather than look at the geometric properties of learnt em-
beddings as validation of the system having a semantic un-
derstanding, we take the concept of an embedding as the
starting point and try to build a model theory out of it.

Our model theory is structurally similar to the standard
Tarskian semantics for first order logic. Tarskian seman-
tics is based on the concept of an interpretation for a set of
statements in a language. An interpretation maps symbols
in the language into objects and relations (n-tuples of these
objects). In contrast, our interpretations map symbols in the
language to points and vectors in an N-dimensional space.
Intuitively, a good/correct embedding maps to a single sat-
isfying interpretation. We define satisfaction and entailment
as in Tarskian semantics.

This small change (from objects to points) in Tarskian se-
mantics is not enough to reflect object similarity as captured
by the geometry of embeddings. To recapture this, we in-
troduce a class of preferred models, where the relative geo-
metric location of objects reflects their similarity. We argue
that such models, where similar objects are spatially closer,
better capture the generalizations implicit in the data. We
present an approach to simple inference in these preferred
models.

Finally we revisit some old thorny problems that come up
in representing common sense knowledge and discuss how
a vector space approach might help.

This paper is an early exploration along this direction.
Much work needs to be done before we can actually build
systems based on the approaches described here.

Model Theory
Recap of Tarskian Semantics
For the sake of simplicity, without loss of generality, we
restrict our attention to logical languages with no function
symbols, no free variables and with only binary predicates.

Tarskian semantics for first order logic is based on the
concept of an interpretation for a set of logical statements in
a language. The interpretation is defined using a model. A
model for a first order language assigns an interpretation to
all the non-logical constants in that language. More specifi-
cally,

1. A model M specifies a set of objects D (d1, d2, ...), the
domain of discourse.

2. To each term ti in the language, M assigns an object in
M(ti) in D

3. Each (binary) predicate symbol P is assigned to a relation
M(P ) over D2

A sentence in the language evaluates to True or False
given a model M if

1. Atomic formulas: A formula P (t1, t2) evaluates to True
iff < dt1, dt2 >∈M(P )

2. Formulas with logical connectives, such as ¬φ, φ → ψ
are evaluated according to propositional truth tables

3. ∃xφ(x) is True if there exists some element of D, di for
which φ(di) is true.

4. ∀xφ(x) is true if φ(di) is true for every element di ∈ D.

If a sentence φ evaluates to True under a given interpreta-
tion M , one says that M satisfied φ; this is denoted M |= φ.
A sentence is satisfiable if there is some interpretation/model
under which it is True. A formula is logically valid (or sim-
ply valid) if it is True in every interpretation.

A formula ψ is a logical consequence of a formula φ if
every interpretation that makes φ True also makes ψ True.
In this case one says thatψ is logically implied by φ. It is this
notion of logical implication that allows us to do inference
in knowledge based systems.

Embeddings based Semantics

We now describe how Tarskian semantics can be modified
to be based on a vector space model. We do this by using a
different kind of model, wherein the domain is a set of points
in anN dimensional vector space of reals. More specifically,

1. A model M specifies an N dimensional vector space.

2. To each term ti in the language, M assigns a point M(ti)
in this vector space

3. Each (binary) predicate symbol P is assigned to a unit
vector M(P ) in K ≤ N dimensions of the vector space.1

P (t1, t2) evaluates to True iff the projection of the
vector from M(t1) to M(t2) onto the K dimensions of
M(P ) has the same direction as M(P ).

The definitions for evaluating formulas with logical con-
stants, formulas with quantifiers, of satisfaction and logical
entailment are the same as with Tarskian semantics.

Each of our models is also a Tarskian model in a fashion
that is consistent with the Tarskian definition of satisfaction,
entailment, etc. Consequently, the soundness of classical
inference rules (modus ponens, resolution, etc.) carry over.

This kind of model corresponds closely to the kind of em-
beddings (TransE) described in (Bordes et al. 2014). In that
work, the authors present a mechanism for computing map-
pings from terms to points in the vector space that is maxi-
mally consistent with and predictive of a database of atomic
formulas such as those in Freebase. (Wang et al. 2014) solve
the problem of representing one to many relations in their
TransH model. In (Le and Mikolov 2014) the authors use a
similar approach to map words (Paris, France, Rome, Italy,
etc.) into a vector space so as to maximize skipgram recall.
The vectors between pairs such as (Paris, France) tend out to
be parallel to those between (Rome, Italy), i.e., are ’seman-
tically’ meaningful.

We have taken this as a starting point, but instead of treat-
ing such embeddings, where terms/words map to points in
an N-dimensional vector space and relations map to vectors,
as the target of a learning function, we have used them as the
starting point for a model theory.

1If M(P ) is N dimensions, then if P (A,B) and P (A,C), B
will have to be equal to C. Hence M(P ) is in a subspace.
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Spatial aspects of models
We have simply mapped objects to points in a real space. By
itself, this does not solve any of the issues faced by purely
symbol representations. The real benefits can come only
when we exploit the fact that this is in a ’space’ and asso-
ciate meaning with the absolute/relative locations of objects
beyond associating relations with vectors.

Aggregate/Approximate models
Certain concepts (e.g., the number one) will have a fairly
crisp meaning, whereas certain other concepts (e.g., chair),
can have a rather broad/vague/approximate meaning. Sys-
tems based on logic have found it very difficult to capture
this. We introduce Aggregate and Approximate models, two
alternatives that both use continuous nature of the embed-
ding space offers the hope of being able to capture this.

Approximate Models The simplest way to incorporate
approximateness into our model is to allow some variation
in the vector corresponding to each relation, which in turn
allows for some variation in the location of of each object.

Aggregate Models Consider the set of points across dif-
ferent models corresponding to a particular term. Consider
a cluster of these points (from a subset of the satisfying mod-
els) which are sufficiently close to each other. This cluster or
cloud of points (each of which is in a different model), cor-
responds to an aggregate of possible interpretations of the
term. We can extend this approach for all the (atomic) terms
in the language. We pick a subset of models where every
term forms such a cluster. The set of clusters and the vec-
tors between them gives us the aggregate model. Note that
in vectors corresponding to relations will also allow amount
of variation. If a model satisfies the KB, any linear trans-
form of the model will also satisfy the KB. In order to keep
these transforms from taking over, no two models that form
an aggregate should be linear transforms of each other.

In both aggregate and approximate models, each object
corresponds to a cloud in the N-dimensional space and the
relation between objects is captured by their approximate
relative positions. The size of the cloud corresponds to the
vagueness/approximateness (i.e., range of possible mean-
ings) of the concept.

Learning and object locations
Learnt embeddings, such as those reported in (Wang et al.
2014) and (Bordes et al. 2014) have the property that sim-
ilar objects tend to be spatially closer to each other than
to objects that are disimilar. This is a result of the learn-
ing/optimization mechanisms by which embeddings are cre-
ated. Given a KB of ground atomic facts (triples), these sys-
tems are trained on a subset of these triples. The output of
the training is a set of locations for the objects. The goal of
the learning is to correctly predict the other triples in the KB.
In other words, even though the KB itself does not contain
general axioms, the learning discovers the implicit, general
axioms governing the facts of the domain. These general
axioms are not directly represented in the learnt embedding,

but are reflected in the placement of the objects in the vector
space.

We now try to explain why embeddings where similar ob-
jects are closer tend to capture generalizations in the domain
and should hence be preferred. Imagine that there are a set
of axioms that capture the generalities in the domain. They
imply some subset of the triples in the KB from the other
triples. The goal of the learning algorithm is to ’discover’
the implications of these axioms.

We make our case on a class of axioms that is simple, but
very important. Consider axioms of the form

(∀ x P (x,A) =⇒ Q(x,B))

where P, Q are predicates and A, B are constants. Though
this axiom template looks very simple, in systems like
(Lenat et al. 1990), a significant fraction of axioms follow
this pattern. Of note are inheritance rules, which have the
form

(∀ x isa(x, 〈Category〉) =⇒ Q(x, 〈Attribute〉)

In our model, P and Q map to vectors Pv and Qv in some
subspace of the N-dimensional space. Given two objects x1
and x2 such that P (x1, A) and P (x2, A), x1 and x2 will
share the same coordinates in the subspace of Pv and differ
in their coordinates in the other dimensions. It is easy to see
that the likelihood ofQ(x1, B) andQ(x2, B) also being true
(in the learnt embedding) is higher if x1 and x2 are close in
these other dimensions as well. In other words, if the learn-
ing system is given a some of triples of the form P (xi, A)
and some of the form Q(xi, B), where there is an overlap
in the xi, by placing these xi, which share the similarity that
P (xi, A) is true of them, close together, it increases the like-
lihood of correctly predicting Q(xi, B).

Applying this observation to inheritance rules, since ob-
jects typically inherit some properties by virtue of what kind
of object they are, it follows that objects of the same type
are likely to be found close to each other in the embedding
space.

In other words, of the set all satisfying models, the subset
of models in which objects of the same type (or more gener-
ally, similar objects) are placed together, better capture the
generalities implicit in the data.

Coming back to our model theory, unfortunately, though
we map terms to points in our models, there is no similarity
metric that is built into this mapping. Consequently, even
in satisfying models, points that are extremely close may
denote extremely dissimilar terms. Further, in order to de-
termine if something is logically entailed by a knowledge
base, we have to consider the set of all models that satisfy
the knowledge base. Different satisfying models might have
completely different coordinates for the same term and dif-
ferent vectors for the same predicate.

We now introduce a class of preferred models which try
to capture this intuition.

24



Preferred Models
Typically, in machine learning based approaches, a number
of examples are used to try construct a single model or a
probability distribution over models. There is a tradeoff be-
tween precision and recall, where we tolerate some number
of wrong predictions in order to increase the number of cor-
rect predictions.

Logical approaches on the other hand, try to get all the
correct predictions (i.e., completeness) while avoiding all
wrong predictions (i.e., soundness). To do this they deal not
with a single ’best’ model, but with the set of all satisfying
models. The only statements that follow are those that are
true in all these models. For example, consider a knowl-
edge base about American history. It will likely contain a
symbol like ’AbrahamLincoln’, which the author of the KB
intends to denote the 16th American President. The logical
machinery doesn’t care if the satisfying models map it to the
President, flying cars, real numbers or just the symbol itself.
It will draw a conclusion only if the conclusion follows un-
der all these interpretations that satisfy the KB. This is at the
heart of soundness in logical inference.

Research in non-monotonic reasoning has explored relax-
ing the heavy constraint of only drawing conclusions true in
all satisfying models. For example, circumscription [(Hin-
tikka 1988), (McCarthy 1980)] allows conclusions that are
true in only a preferred subset of satisfying models, those
that minimize the extent of certain predicates (typically the
’ab’ predicates). Such systems sacrifice soundness for the
sake of non-monotonicity.

We follow a similar path, introducing a class of preferred
models that sacrifice soundness for the sake of learning gen-
eralizations implicit in the data. We made the case earlier
that models where object similarity is proportional to object
distance better capture generalities in the domain.

We use similarity to define a set of preferred models.
Assume that we have a similarity function S(t1, t2) which
measures the similarity between two terms and evaluates to
a number between 0 and 1, with S(t1, t2) being closer to 1
if t1 and t2 are more similar. We want models where the
distance between the points denoting t1 and t2 is correlated
(inversely) to S(t1, t2). When this is the case for every
pair of points, we have model where the geometry has
significance. Let D(ti, tj) be the distance between the
points that ti and tj map to. Then when

SD(ti, tj) = (1− S(ti, tj))/D(ti, tj) ≈ 1

for every pair of terms, the proximity in the model
correlates with similarity between the objects denoted by
the terms. There are multiple ways of picking such models.
For example, we can minimize

(ΣL
i=0ΣL

j=0log(SD(ti, tj)))/L
2

where L is the number of terms This measures the av-
erage disparity between the similarity measure and the dis-
tance between (dis)similar objects. The preferred models
are those where this average is less than some threshold. Al-
ternately, we can pick all models where a measure such as

log(SD(ti, tj)) is less than some threshold for each pair of
terms.

Inference and Learning
As mentioned earlier, since every model in our framework
is also Tarskian model and our definition of satisfaction and
entailment are the same, every sound proof procedure for
first order logic is also sound in our system.

However, we would like inference mechanisms that are
cognizant of preferred and aggregate models, i.e., that ex-
ploit the geometric structure of our models. Much work
needs to be done before we have general purpose inference
mechanisms such as resolution, that exploit the geometric
properties of preferred models.

One approach to approximate inference, that works for
domains with a small number of objects, is as follows. We
build a representative ensemble of preferred approximate
models. Queries are answered by checking the query against
each of the models in the ensemble. If the query formula
is true (or is true for the same variable bindings) in every
model in the ensemble, it is true. Since the model checking
is only done over preferred models, the result should be a
combination of learning and logical inference.

Model Generation
Here, we present a simple approach for generating a set of
preferred models that are consistent with a given KB. We
map axioms (ground and quantified) in the KB to equa-
tions/constraints on the coordinates of objects. Solutions to
these constraints correspond to our preferred models. This
approach works only for KBs with small enumerable do-
mains.

Ground Atomic Formulas Each triple Pi(tj , tk) gives us
the equation:

|M(tj , Pi)−M(tk, Pi)−M(Pi)| < δ

whereM(tj , Pi) is the location in theK dimensional sub-
space corresponding to Pi of the term tj and M(Pi) is the
vector corresponding to Pi and δ is some measure of the ap-
proximateness we want to allow in our relations.

Quantified Axioms Next, we need a set of equations that
capture the quantified axioms. We ’unroll’ the quantifiers by
instantiatinting the quantified variables with the terms in the
KB and then map the instantiated ground axioms to equa-
tions.

We illustrate our approach on a simple class of axioms.
Consider axioms of the form (∀ x P (x,A) =⇒ Q(x,B)).
We instantiate this axiom for each term ti. Consider a
ground non-atomic formula such as

P (ti, A) =⇒ Q(ti, B) ≡ ¬P (ti, A) ∨Q(ti, B)

We map Q(ti, B) to σ(M(ti, Qi)−M(B,Qi)−M(Q))
where σ is a sigmoid function that is 1 if
|M(ti, Q) − M(B,Q) − M(Q))| < δ and 0 other-
wise.
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¬P (ti, A) maps to (σ−1(M(ti, P )−M(A,P )−M(Q)))

Disjunctions are modelled by addition. So,
P (ti, A) =⇒ Q(ti, B) is mapped to

σ−1(M(ti, P )−M(A,P )−M(P )) +
σ(M(ti, Q)−M(B,Q)−M(Q)) = 1

More complex formulas can similarly be used to generate
more constraints on the locations of the objects.

Finally, we have a set of constraints based on the similar-
ity function S(tj , tk), which try to learn generalities implicit
in the data by placing similar objects close to each other.

A variety of existing techniques can be used to solve this
system of constraints.

Further thoughts
The vector space representation very loosely corresponds to
a semantics or understanding that the system has. In logi-
cal systems, the semantics is only in the meta-theory of the
system (i.e., governs what the system should and should not
do), not in the system itself.

Having a set of structures, distinct from the logical state-
ments, that correspond to the system’s understanding gives
us a mechanism for dealing with the variation and context
sensitivity in the meaning of terms. The same term, in dif-
ferent statements could map to slightly different points in the
vector space, thereby having slightly different meanings.

A vector space based model gives us a generative func-
tion for objects. Consider a symbol in the language (e.g.,
’Chair’). In classical semantics, this symbol denotes a sin-
gle object in a given model. There may be other objects in
the model that are very similar, but lacking a term that refers
to them. The discreteness of the Tarskian model puts beyond
the reach of our language. Attempts to incorporate context
into logic ((Guha 1991), (Guha and McCarthy 2003) allow
for different occurances of a term to refer to distinct objects,
but do so at the relatively heavy cost of making them com-
pletely different. We are hopeful that the vector space model
might give us a tool that gives us a more nuanced control
over the denotation space. We feel that this is one of the
biggest promises of this approach.

Conclusions
In this paper, we took some first steps towards building a rep-
resentation system that combines the benefits of traditional
logic based systems and systems based on distributed rep-
resentations. We sketched the outline of a Model Theory
for a logic, along the lines of Tarskian semantics, but based
on vector spaces. We introduced a class of preferred mod-
els that capture the geometric intuitions behind vector space
models and outlined a model checking based approach to
answering simple queries.
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