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Abstract

Natural logic offers a powerful relational conception of
meaning that is a natural counterpart to distributed se-
mantic representations, which have proven valuable in
a wide range of sophisticated language tasks. However,
it remains an open question whether it is possible to
train distributed representations to support the rich, di-
verse logical reasoning captured by natural logic. We
address this question using two neural network-based
models for learning embeddings: plain neural networks
and neural tensor networks. Our experiments evaluate
the models’ ability to learn the basic algebra of natural
logic relations from simulated data and from the Word-
Net noun graph. The overall positive results are promis-
ing for the future of learned distributed representations
in the applied modeling of logical semantics.

Natural logic offers a powerful relational conception
of semantics: the meanings for expressions are given, at
least in part, by their inferential connections with other
expressions (Katz 1972; MacCartney and Manning 2009;
van Benthem 2008). For instance, turtle is analyzed, not pri-
marily by its extension in the world, but rather by its lexical
network: it entails reptile, excludes chair, is entailed by sea
turtle, and so forth. With generalized notions of entailment
and contradiction, these relationships can be defined for all
lexical categories as well as complex phrases, sentences, and
even texts. The resulting theories of meaning offer valuable
new analytic tools for tasks involving database inference, re-
lation extraction, and textual entailment.

Natural logic aligns well with distributed (e.g., vector)
representations, which also naturally model meaning rela-
tionally. Distributed representations have been used success-
fully in a wide array of sophisticated language tasks, includ-
ing part of speach tagging, (Collobert et al. 2011), seman-
tic role labeling (Collobert et al. 2011), sentiment analy-
sis (Socher et al. 2011), and translation (Sutskever, Vinyals,
and Le 2014) among many others. However, it remains an
open question whether it is possible to train such represen-
tations to support the rich, diverse logical reasoning cap-
tured by natural logic; while they excel at synonymy (sim-
ilarity), the results are more mixed for entailment, contra-
diction, and mutual consistency. Using the natural logic
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of (MacCartney and Manning 2009) as our formal model,
we address this open question using two neural network-
based models for learning embeddings: plain neural net-
works and neural tensor networks (NTNs). The natural logic
is built from the seven relations defined in Table 1. Its formal
properties are now well-understood (Icard and Moss 2013a;
2013b), so it provides a rigorous set of goals for our neu-
ral models. To keep the discussion manageable, we limit at-
tention to experiments involving the lexicon; for a more ex-
tended treatment of complex expressions involving logical
connectives and quantifiers, see (Bowman, Potts, and Man-
ning 2014).

In our experiments, we evaluate these models’ ability to
learn the basic algebra of natural logic relations from simu-
lated data and from the WordNet noun graph. The simulated
data help us to achieve analytic insights into what the mod-
els learn, and the WordNet data show how they fare with a
real natural language vocabulary. We find that only the NTN
is able to fully learn the underlying algebra, but that both
models excel in the WordNet experiment.

1 Neural network models for relation
classification

We build embedding-based models using the method of
(Bowman, Potts, and Manning 2014), which is centered on
the task of labeling a pair of words or sentences with one of a
small set of logical relations. Unlike in a classical inference
setting, the model is not given specific premises to reason
with at test time, but rather is expected to encode all of the
information that it learns about each term (word) at training
time in the term embedding vectors, and to then use only
the information encoded in the relevant pair of term vectors
at test time. The architecture that we use is depicted in Fig-
ure 1. The model represents the two input terms as single
embedding vectors, which are fed into a comparison func-
tion based on one of two types of neural network layer func-
tion to produce a representation for the relationship between
the two terms. This representation is then fed into a softmax
classifier, which outputs a distribution over possible labels.
The entire network, including the embeddings, is trained
using backpropagation with AdaGrad (Duchi, Hazan, and
Singer 2011) and L2 regularization.

The simpler version of the comparison concatenates the

10

Knowledge Representation and Reasoning: Integrating Symbolic and Neural Approaches: Papers from the 2015 AAAI Spring Symposium



Name Symbol Set-theoretic definition Example

entailment x @ y x ⊂ y turtle @ reptile
reverse entailment x A y x ⊃ y reptile A turtle
equivalence x ≡ y x = y couch ≡ sofa
alternation x | y x ∩ y = ∅ ∧ x ∪ y 6= D turtle | warthog
negation x ∧ y x ∩ y = ∅ ∧ x ∪ y = D able ∧ unable
cover x` y x ∩ y 6= ∅ ∧ x ∪ y = D animal ` non-turtle
independence x# y (else) turtle # pet

Table 1: The seven natural logic relations of (MacCartney and Manning 2009).D is the universe of possible objects of the same
type as those being compared, and the relation # applies whenever none of the other six do.

P (@) = 0.8

turtle vs. animal

Softmax classifier

Comparison
N(T)N layer

Optional embedding
transformation NN layers

Learned term vectorsturtle

turtle

animal

animal

Figure 1: The model structure used to compare turtle and
animal. Learned term representations are fed through either
an NN or NTN comparison layer and then to a softmax clas-
sifier over the seven relations in Table 1.

two input vectors before feeding them into a LReLU (Maas,
Hannun, and Ng 2013) neural network (NN) layer. The more
powerful neural tensor network (NTN) version adds an ad-
ditional third-order tensor parameter to allow for multiplica-
tive interactions between the two inputs (Chen et al. 2013).
For more details on the implementation and training of the
layer functions, see (Bowman, Potts, and Manning 2014).

This model used here differs from the one described in
that work in two ways. First, because the inputs are single
terms, we do not use a composition function here. Second,
for our experiment on WordNet data, we introduce an addi-
tional tanh neural network layer between the embedding in-
put and the comparison function, which facilitates initializ-
ing the embeddings themselves from pretrained vectors and
was found to help performance in that setting.

2 Reasoning about semantic relations

In this experiment, we test our model’s ability to learn and
use the natural logic inference rules schematized in Fig-
ure 2a. For instance, given that a A b and b A c, one can
conclude that a A c, by basic set-theoretic reasoning (tran-
sitivity of A). Similarly, from a @ b and b ∧ c, it follows that
a | c. There are 32 valid inferences that can be made on the
basis of pairs of relations of the form aRb and bR′c. Cells
in the table containing a dot correspond to pairs of relations
for which no valid inference can be drawn in our logic.

Experiments To test our models’ ability to learn these in-
ferential patterns, we create artificial boolean structures in
which terms denote sets of entities from a small domain
(e.g., Figure 2b), employ logical deduction to identify the
valid statements, divide those into train and test sets, and
remove from the test set those statements which cannot be
proven from the training statements (Figure 2c). In our ex-
periments, we create 80 randomly generated sets drawn from
a domain of seven elements. This yields 6400 statements
about pairs of formulae, of which 3200 are chosen as a test
set. 240 of the test examples were excluded from the primary
test set for lack of evidence in the training data to support
the choice of any one relation. We then trained and evalu-
ated both the NN model and the NTN model on these data
sets.

Results We found that the NTN model worked best with
11-dimensional vector representations for the 80 sets and a
90-dimensional feature vector for the classifier, though the
performance of the model was not highly dependant on ei-
ther dimensionality setting. Averaging over five randomly
generated data sets, the model was able to correctly label
98.1% (standard error 0.67%) of the provably derivable test
examples, and 87.7% (SE = 3.59%) of the remaining test
examples. The simpler NN worked best with 11 and 75 di-
mensions, respectively, but was able to achieve accuracies
of only 84.8% (SE = 0.84%) and 68.7% (SE = 1.58%), re-
spectively. Training accuracy was 99.8% (SE = 0.04%) for
the NTN and 94.7% (SE = 0.89%) for the NN.

These results are fairly straightforward to interpret. The
NTN model was able to accurately encode the relations be-
tween the terms in the geometric relations between their vec-
tors, and was able to then use that information to recover re-
lations that were not overtly included in the training data. In
contrast, the NN was able to achieve this behavior only in-
completely. It is possible but not likely that it could be made
to find a good solution with further optimization on differ-
ent learning algorithms, or that it would do better on a larger
universe of sets, for which there would be a larger set of
training data to learn from, but the NTN is readily able to
achieve these effects in the setting discussed here.

It’s noteworthy that both models performed well above
chance on the unprovable examples. This indicates that both
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≡ @ A ∧ | ` #
≡ ≡ @ A ∧ | ` #
@ @ @ · | | · ·
A A · A ` · ` ·
∧ ∧ ` | ≡ A @ #
| | · | @ · @ ·
` ` ` · A A · ·
# # · · # · · ·

(a) Inference path from premises aR b (row) and b S c (col-
umn) to the relation that holds between a and c, if any.
These inferences are based on basic set-theoretic truths
about the meanings of the underlying relations as described
in Table 1. We assess our models’ ability to reproduce such
inferential paths.

{1, 2, 3}

a, b
{1, 2}

c
{1, 3}

d
{2, 3}

e, f
{1} {2}

g, h
{3}

{}

(b) Simple boolean structure. The letters
name the sets. Not all sets have names,
and some sets have multiple names, so that
learning ≡ is non-trivial.

Train Test

a ≡ b b ≡ b
a @ e b @ e
a ∧ g e ≡ f
d @ h g A d
e | g h A d

...
...

(c) A train/test split of the
atomic statements about the
model. Test statements not
provable from the training
data are crossed out.

Figure 2: Experimental goal and set-up for reasoning about semantic relations.

were able to identify statistical cues to the properties of the
underlying boolean structure, thereby going beyond what
one could obtain from the natural logic. Information of this
kind is not sufficient to yield the near-perfect accuracy that
we saw on the provable data, but it does highlight one of the
ways in which trained inference models can turn out to be
more powerful that rigidly defined proof systems.

3 Reasoning about lexical relations in
WordNet

Using simulated data as above is reassuring about what the
models learn and why, but we also want to know how they
perform with a real natural language vocabulary. Unfortu-
nately, as far as we are aware, there are no available re-
sources labeling such a vocabulary with the relations from
Table 1. However, the relations in WordNet (Fellbaum 2010;
Miller 1995) come close and pose the same substantive chal-
lenges within a somewhat easier classification problem.

We extract three types of relation from WordNet. Hyper-
nym and hyponym can be represented directly in the Word-
Net graph structure, and correspond closely to the A and
@ relations from natural logic. As in natural logic, these
relations are mirror images of one another: if dog is a hy-
ponym of animal (perhaps indirectly by way of canid, mam-
mal, etc.), then animal is a hypernym of dog. We also extract
coordinate terms, which share a direct hypernym, like dal-
matian, pug, and puppy, which are all direct hyponyms of
dog. Coordinate terms tend to exclude one another, thereby
providing a loose approximation of the natural logic exclu-
sion relation |. WordNet’s antonym relation, however, is both
too narrowly defined and too rare to use for this purpose.
WordNet defines its relations over sets of synonyms, rather
than over individual terms, so we do not include a synonym
or equivalent relation, but rather consider only one member
of each set of synonyms. Word pairs which do not fall into
these three relations are not included in the data set.

To limit the size of the vocabulary without otherwise sim-
plifying the learning problem, we extract all of the instances
of these three relations for single word nouns in WordNet
that are hyponyms of the node organism.n.01. In order

to balance the distribution of the classes, we slightly down-
sample instances of the coordinate relation, yielding a total
of 36,772 relations among 3,217 terms. We report results be-
low using crossvalidation, choosing a disjoint 10% test sam-
ple for each of five runs. Unlike in the previous experiment,
it is not straightforward here to determine in advance how
much data should be required to train an accurate model,
so we performed training runs with various fractions of the
remaining data. Embeddings were fixed at 25 dimensions
and were initialized randomly or using distributional vectors
from GloVe (Pennington, Socher, and Manning 2014). The
feature vector produced by the comparison layer was fixed
at 80 dimensions.

Results The structured WordNet data contains substan-
tially more redundancy than the random artificial data above,
and we find that the NTN performs perfectly with random
initialization. The plain NN performs almost as well, pro-
viding a point of contrast with the results of Section 2. We
also find that initialization with GloVe is helpful in allow-
ing the models to maintain fair performance with smaller
amounts of training data. Some of the randomly initialized
model runs failed to learn usable representations at all and
labeled all examples with the most frequent labels. We ex-
cluded these runs from the statistics, but marked settings for
which this occurred with the symbol †. For all of the remain-
ing runs, training accuracy was consistently above 99%.

4 Conclusion
This investigation builds upon extensive prior research on
constructing compositional word meanings in vector spaces
(Clark, Coecke, and Sadrzadeh 2011; Grefenstette 2013;
Hermann, Grefenstette, and Blunsom 2013; Rocktäschel et
al. 2014), extracting entailment information from distribu-
tional vector space models (Baroni et al. 2012; Rei and
Briscoe 2014), and transferring information between logic
programs and neural networks in constrained settings (Hit-
zler, Hölldobler, and Seda 2004; Hölldobler, Kalinke, and
Störr 1999). Our primary contribution is to establish a tight
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Portion of NN NTN Baseline
training data w/ GloVe w/o GloVe w/ GloVe w/o GloVe

100% 99.73 (0.04) 99.37† (0.14) 99.61 (0.02) 99.95 (0.03) 37.05 (–)
33% 95.96 (0.20) 95.30 (0.12) 95.83 (0.35) 95.45† (0.31) 37.05 (–)
11% 91.11 (0.24) 90.81† (0.20) 91.27 (0.27) 90.90† (0.13) 37.05 (–)

Table 2: Mean test % accuracy scores (with standard error) on the WordNet data over five-fold crossvalidation. The baseline
figure is the frequency of the most frequent class, hypernym.

connection between these approaches and formal develop-
ments within natural logic. More specifically, we showed
that neural network models, optimized using established
techniques, can learn distributed representations that closely
approximate the behavior one would expect from a natural
logic inference algorithm.

This paper evaluated two neural models on the task of
learning natural logic relations between distributed word
representations. The results suggest that at least the neural
tensor network has the capacity to meet this challenge with
reasonably-sized training sets, learning both to embed a vo-
cabulary in a way that encodes a diverse set of relations,
and to subsequently use those embeddings to infer new re-
lations. In (Bowman, Potts, and Manning 2014), we extend
these results to include complex expressions involving log-
ical connectives and quantifiers, with similar conclusions
about (tree-structured recursive versions of) these models.
These findings are promising for the future of learned dis-
tributed representations in the applied modeling of logical
semantics.
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