
The Entity Registry System: Collaborative Editing of
Entity Data in Poorly Connected Environments

Christophe Guéret
DANS, Royal Dutch Academy of Sciences

The Netherlands
{firstname.lastname}@dans.knaw.nl

Philippe Cudré-Mauroux
eXascale Infolab, University of Fribourg

Switzerland
{firstname.lastname}@unifr.ch

Abstract

There are about 4.5 billion people in the world who have no or
limited Internet access. Those are deprived from using entity-
driven applications that assume data repositories and entity
resolution services are always available. In this paper, we dis-
cuss the need for a new architecture for entity registries. We
propose and evaluate a new general-purpose Entity Registry
System (ERS) supporting collaborative editing and deploy-
ment in poorly-connected or ad-hoc environments. The refer-
ence open-source implementation is evaluated for scalability
and data-sharing capabilities.

Introduction

Quoting Tim Unwin, it can be observed that “information
and knowledge have always been central to the effective
functioning of human societies” (Unwin 2009). Over the
past decades, computational systems greatly influenced the
scale and span of information sharing. We are entering an era
where computer-mediated interactions and, soon, machine-
to-machine interactions (“Internet of Things”) are the norm.

Yet, although human society as a whole has its activi-
ties centred around information and knowledge not everyone
benefits from the same tools. A digital divide is increasingly
observed between the few having access to information and
communication technologies (ICT) infrastructures and those
who don’t. As of 2012, an estimated 65 % of the world’s cit-
izens are still deprived from Internet access1.

Enabling data sharing for disconnected populations is a
goal that encompasses several key societal, economical and
technological challenges (Becker 2004; Guéret et al. 2011).
Among these, the typical assumption that connectivity to
data repositories and entity resolution services are always
available make many data-driven applications out of reach.
These applications may have a critical impact on the life of
the 4.5 Billion people that are off-line, but are inaccessible to
them due to the architecture of today’s data registries. There
is a need for novel approaches for the collaborative editing
of entity data in poorly connected environments.

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1http://www.internetworldstats.com/stats.htm, last visited June
2014

Example use-case

The Sugar Learning Platform 2 originally developed for the
XO laptop of the One Laptop Per Child initiative (OLPC) 3

is an education environment aimed at young learners. Sugar
lets users perform a number of game-oriented activities such
as collaborative text writing, photo-novel editing and aba-
cus counting. Everything a kid does with his laptop gets
logged into the “Journal”, a diary used as a tool for self-
reflection and to get guidance from teachers who can consult
it 4. There is today a need to extend the usage of the Journal
data to collect more general statistics on the learning pro-
cess of the users. Some solutions have been already put in
place (Verma 2014), though these are either using dumps of
the entire Journal contents or require an external server to
export the data. This poses threats to privacy (Guéret 2014)
and limits usability when connectivity is a challenge. In the
following, we argue for a new kind or data repository that
can handle the private content of the Journal as well as ex-
posing public statistics about its contents. This system must
be able to work in very different connectivity contexts and
ensure that at least local teachers always get access to the
public data.

Research questions and main contributions

In this work, we pursue the design of a generic information
system that is able to store and share structured data. This
data consists in descriptions associated to uniquely identi-
fied entities. The related research questions for the design of
such a system are:
• What should be the resolvability, consistency, content rel-

evancy and autonomy capabilities of systems designed for
collaborative editing of entity data?

• Can decentralised approaches by used in poor connectiv-
ity contexts and if so at which cost?

We tackle these points with a conceptual and practical ap-
proach, sketching out a general information model for de-
centralised entity registries and providing a concrete refer-
ence implementation. More specifically, our main contribu-
tions are:

2http://sugarlabs.org/, last visited June 2014
3http://one.laptop.org/, last visited June 2014
4http://wiki.laptop.org/go/Journal Activity, last visited June

2014

Structured Data for Humanitarian Technologies: Perfect Fit or Overkill? Papers from the 2015 AAAI Spring Symposium

12



• A novel hybrid architecture for the collaborative editing
of entity data;

• A reference implementation of the Entity Registry System
(ERS);

Outline

This paper is based on earlier introduction and early proto-
type description of ERS (Guéret and Cudré-mauroux 2014;
Charlaganov et al. 2013b). It is structured as follows: we
first give an overview of common collective knowledge cu-
ration architectures and discuss them in the light of our ex-
ample use-case. Subsequently, we give a description of the
Entity Registry System and of the reference implementation
we propose before concluding the paper.

Background and related work

Emerging on-line applications based on the Web of Objects
and Linked Open Data typically assume that connectivity to
data repositories and entity resolution services are always
available. Yet, there are 4.5 Billion individuals world-wide
who are deprived from stable Internet access and for which
common architectures for entity registries can not be de-
ployed effectively. In what follows, we review and point out
the limitations of current entity registries when deployed in
poorly connected environments.

Common architectures for entity registries

We can observe three main approaches to design a repository
for semi-structured entity data: centralised, hierarchical and
distributed.

Centralised The Linked Data movement 5 has been push-
ing towards publishing and interlinking public data in stan-
dard formats, which enables the automated discovery, man-
agement and integration of structured resources online. The
adopted technology is based on HTTP URIs and RDF. The
resolution of an entity given its identifier boils down to three
steps in that context:

1. discovering the IP address where the HTTP URI is sup-
posed to be hosted (for example using the Domain Name
System—DNS)

2. contacting the corresponding server and negotiating the
content (e.g., to serve an HTML version of the RDF data
if the client is a Web browser)

3. retrieve the structured description of the entity over HTTP.
This process is commonly called entity dereferencing since
it is similar to general URI dereferencing on the Web 6. In
the context of the Okkam project, the Entity Name System
(ENS) (Bouquet, Stoermer, and Bazzanella 2008) has been
proposed. It is defined as a service to resolve entity names
to their global identifiers (called Okkam IDs). This is made
available thanks to a repository of entity profiles described as
a set of attribute-value pairs, and a mix of matching compo-
nents that select the correct identifiers for an entity request

5http://linkeddata.org/, accessed June 11, 2014
6http://www.w3.org/2001/tag/doc/httpRange-14/2007-05-

31/HttpRange-14, accessed June 11, 2014

which may be submitted in the form of a structured (i.e.,
attribute-value) or unstructured (i.e., keyword) query.

Hierarchical The Domain Name System (DNS) used on
the Internet to resolve domain names to their correspond-
ing IP addresses works in a hierarchical manner. The top
of the domain name space is served by so-called root name
servers, pointing to name servers maintaining authoritative
information for the top-level domains (a.k.a. “TLDs”, such
as “.ch” or “.com”), which in turn point to second-level do-
mains (e.g., “unifr.ch”) and so on and so forth until the last
iteration, which returns the IP address of the query7. Though
originally not designed for this purpose, it is be possible to
extend the current DNS infrastructure to create a full-fledged
entity registry. In that context, we recently suggested an ex-
tension of the DNS (Cudré-Mauroux et al. 2011) to serve au-
thoritative meta-data about Internet domains, levering both
the DNS Text Record field (DNS TXT) and new crypto-
graphic features (DNSSEC).

Distributed Distributed Hash-Tables (DHTs), such as
Chord (Stoica, Morris, and Karger 2001) or our P-Grid sys-
tem (Aberer and Cudré-Mauroux 2003), provide distributed,
scalable hash-table-like functionalities that can be used to
store entity identifiers as well as related meta information
in ad-hoc environments. Through dynamic load-balancing
and replication, those networks provide fault-tolerance and
efficient networking primitives where arbitrary requests can
typically be resolved in O(log(N)) messages, where N is
the number of nodes in the P2P network, from any entry
point to the network. GridVine (Cudré-Mauroux, Agarwal,
and Aberer 2007) uses such a DHT to locate nodes respon-
sible for queries related to a specific entity. Swarm intel-
ligence and bee computing can also be used in this con-
text to provide an even more flexible alternative to DHTs
(see S4 (Mühleisen et al. 2010) and DataHive (Kroes, Beek,
and Schlobach 2013)). The “divide and conquer” hierarchi-
cal computing paradigm can also be applied to storing and
retrieving the descriptions of entities. Illustrating this, the
cluster-oriented database system HBase has recently been
used to store RDF data (Sun and Jin 2010; Fundature-
anu 2012). The interested reader is referred to (Mühleisen,
Walther, and Tolksdorf 2011) and (Cudré-Mauroux et al.
2013) for a more exhaustive study on distributed storage
model and performances of distributed RDF storage.

Discussion

Figure 1 provides a visual summary of the different architec-
tures. It can be observed that the centralised approach cre-
ates a strong dependency on a central node used to store and
serve the content (see Figure 1a). The single point of failure
and the scalability issues that are associated can be mitigated
by a hierarchical approach (see Figure 1b) whereas the dis-
tributed architecture more equally shares the load among all
the nodes in the network (see Figure 1c).

7In practice, domain names are often cached at various levels,
for instance at the client-side, or at the level of the DNS server
provided by the Internet Service Provider in order to limit the load

13



(a) Centralised (b) Hierarchical (c) Distributed

Figure 1: Overview of the interactions among nodes for cen-
tralised, hierarchical and distributed systems for the storage
and sharing of entity data

These different common approaches have to be consid-
ered in the light of our example use-case, which is to sup-
port knowledge sharing in poorly connected environments.
The following criteria can be defined based on our use-case:

Resolvability: finding the information associated to an
identifier;

Consistency: dealing with inconsistent updates inserted by
different users;

Relevancy: caring for context dependant information
needs;

Autonomy: amount of dependency set among all the nodes
in the system.

The result of matching of the above architectures against
these criteria is visible in Table 1. We observe that none of
the discussed approaches commonly found in the literature
fits our context. Centralised approaches require a regular ac-
cess to a central store that cannot be guaranteed in environ-
ments where connectivity is an issue. The centralisation of
information can also be sensitive for knowledge collected in
the context of political unrest. Hierarchical architectures are
doing better but depend on the availability of a number of
nodes in the tree to resolve the description of entities. Going
distributed is the most promising way, though this comes at
a cost on consistency and resolvability and sets a stronger
dependency among the nodes.

Centralised Hierarchical Distributed

Resolvability + - o
Consistency + o -

Relevancy - + o
Autonomy - o +

Table 1: Overview of the advantages of the three common ar-
chitectures in light of the criteria introduced. A + indicates a
fit of the approach, a - signifies that the architecture does not
fit and a o is used for cases needed specific implementations.

The design goals of the Entity Registry System (ERS)
hereafter introduced is to combine a decentralised and hi-
erarchical approach into a flexible system that can be used
off-line and on-line with low resources. For this, we adopt
a fully decentralised approach with very loose dependencies
among the nodes.

on authoritative DNS servers.

The Entity registry system

With ERS, we aim to provide a local system that can also
operate in connected settings. In our approach, our system
is “off-line by default” but it is able to seamlessly transition
from off-line to on-line settings depending on the current
connectivity.

Information model

ERS stores semi-structured descriptions of entities to
power data-intensive applications and is designed around
lightweight components that collaboratively support data
sharing and editing in intermittently connected settings. It
is compatible with the RDF data model and makes uses of
both Internet and local networks to share data, but does not
base its content publication strategy on the Web. No single
component is required to hold a complete copy of the reg-
istry. The global content consists of the union of what every
component decides to share.

Documents Statements expressed by a user about an
entity are wrapped into unique logical containers hereafter
referred to as a “documents”. Every set of statements about
a given entity contributed by one single author is stored
in a unique document. Every document gets assigned a
unique identifier within the system, a version number and
a link to its author. Because every document is internally
consistent, potential conflicting statements are necessarily
found in different containers thereby avoiding consistency
issues. This system also facilitates tracking the provenance
of all the individual contributions made to the registry.
The identifier for the entities can be freely chosen by
developers using ERS. It is however advised to use a URN
urn:ers:<path>:<identifier>, with “path” being
a ontological path and “identifier” an identifier of the entity.
For example, urn:ers:pet.feline.cat:felix.
Part of the goals of the project is to investigate how some
URNs end up being preferred over others as part of a collab-
orative reinforcement process similar to the one driving data
sets re-use on the LOD (Maali, Cyganiak, and Peristeras
2011). Every node running ERS can freely contribute to the
description of any entity by creating documents extending
its description.

Stores As highlighted in the introduction, one may want to
contribute to the description of an entity with parts of the de-
scription that are private and others that are public. The for-
mer being meant for publication & consumption on a single
machine and the later being freely shared among the peers.
The need to temporarily store some documents produced by
some of these peers may also arise. We cover those three dif-
ferent needs by implementing three different stores in each
of the ERS nodes (see Figure 2). The way documents are ex-
changed among the nodes across their different data stores
depends on their type. The three types of nodes and their
interaction are hereafter introduced.

Example As an example let us consider structured data as-
sociated to an entry of an activity journal. We will hereafter
consider the journal of the educative environment “Sugar”.

14



Figure 2: Every node in the system has three different data
stores: one for his own public contributions to the knowledge
base, one for that of others and one for additional content
that is private

Table 2 shows part of such a journal entry. The table con-
tains the unique identifier associated to this entry (“uid”),
the title given by the user (“title”), the name of the activity
associated to the record (“activity”), the timestamp of the
last update (“timestamp”) and the color of the icon showed
in the Journal viewer (“icon color”).

Key Value

uid c7022a25-892a-4848-b539-8b525371d571
title Record Activity

activity org.laptop.RecordActivity
timestamp 1375588726
icon color #FF8F00,#BE9E00

Table 2: Excerpt of a Journal entry showing some of the most
important values

The JSON data showed in Listing 1 is the matching doc-
ument for Table 2 as used in ERS. For the encoding, we had
the choice between using predicates as keys or using two
synchronised arrays of key/value pairs (Charlaganov et al.
2013a). After some testing and taking inspiration from re-
lated work (LD-In-Couch 8, JSON-LD 9), we opted for us-
ing predicate as keys. It can be observed that a field has been
added to keep track of the owner of the document (@owner)
along with other additional fields recommended for JSON-
LD description of entities.

Listing 1: Private journal entry serialized using predicates as
keys
{ "@context": { "ers": "urn:ers:meta:vocabulary" },

"@id": "urn:ers:journal-entry:c7022a25",

"@type": "ers:JournalEntry",

"@owner": "urn:ers:host:100953e1",

"ers:title": "Record Activity",

"ers:activity": "org.laptop.RecordActivity",

"ers:timestamp": "1375588726",

"ers:icon_color": "#FF8F00,#BE9E00" }

The content of a Journal entry is inherently private and
will be stored into the matching document store. Our moti-
vating use-case and running example require to also publish
a public document to be used to collect statistics over the
usage of the laptop. This is ensured by creating another doc-

8https://github.com/mhausenblas/ld-in-couch
9http://www.w3.org/TR/json-ld/

ument that will be placed in the public store. The document
for Listing 1 is shown in Listing 2.

Listing 2: A public document exposing some data about the
journal entry
{ "@context": { "ers": "urn:ers:meta:vocabulary" },

"@id": "urn:ers:stats:org.laptop.RecordActivity",

"@type": "ers:JournalStatEntry",

"@owner": "urn:ers:host:100953e1",

"ers:journal_entry":

"urn:ers:journal-entry:c7022a25"

,

"ers:activity": "org.laptop.RecordActivity"}

The most interesting thing to observe in Listing 2 is that
all the statistics entries are designed to describe the same en-
tity (in this case “urn:ers:stats:org.laptop.RecordActivity”).
Every individual log contributes to the description of a single
entity associated with an activity by adding links to journal
entries. Though the entries are not public, their number per
user can be counted and depicted as usage statistics.

Node types

ERS is articulated around three types of components: Con-
tributors, Bridges, and Aggregators. The components can be
deployed on any kind of hardware ranging from low-cost
computing devices such as RaspberryPis 10 to data centres.

Contributors use and create the contents of the registry.
They create and delete entities, look for entities, and con-
tribute to the descriptions of the entities.

Bridges do not contribute to the contents of the registry.
They are used to enable asynchronous communication
among Contributors found on a same network and con-
nect isolated pools of Contributors located in different
closed networks. Bridges store documents only for a lim-
ited amount of time (e.g., using soft states) due to their
limited capacity, focusing on keeping the most recently
used documents.

Aggregators are used to gather a copy of the documents
transiting through the Bridges. When needed, an Aggre-
gator can provide a single entry point to the global content
of an ERS deployment. An Aggregator may also expose
the aggregated contents to other systems, for instance to
the Web of Data.

Contributors are the primary component necessary for the
operation of ERS. Bridges and Aggregators are optional and
may be deployed depending on the use-case. Looking at
the overall architecture of ERS in the light of P2P systems,
one could see Bridges and Aggregators as supernodes. Their
role is however slightly different. Unlike common P2P ar-
chitectures where supernodes are regular nodes performing
the same features with more computation power the Bridges
and Aggregators are not akin to Contributors. They are only
needed to provide aggregation of content and asynchronous
communication among the Contributors. From a require-
ment point of view their usage can contribute to tackling

10http://www.raspberrypi.org/, accessed December 9, 2013

15



the utility/validity gap observed when contextualising global
data with local data (Raftree 2013).

Synchronization schema

The interaction between Contributors, Bridges and Aggre-
gators is designed to maximise the data flow while limiting
the amount of data stored by each node. An overview of the
interactions is given in Figure 3. We hereafter give more de-
tail about the pair-wise mode of communication.
Contributor-Contributor Contributors can exchange up-

dates about the documents they have cached. An applica-
tion using ERS can also choose to cache documents found
in a peer Public or Cache document store.

Contributor-Bridge The basic interaction process between
a Contributor and a Bridge is simple and consists in i)
sending to the bridge every new document from the Con-
tributor’s public store and ii) exchanging updated versions
of cached documents. In addition, Contributors can query
the Bridges for data and persist in their cache the retrieved
documents.

Bridge-Bridge Bridges exchange updates for the docu-
ments found in their cache document store. Additionally,
a Bridge can query another Bridge for “interesting” doc-
uments and choose to cache the results to make them
available to the Contributors it typically interacts with. In
our implementation, interesting documents are those con-
taining a statements about an entity already found in the
cache.

Bridge-Aggregator Bridges push new documents from
their cache to the cache of Aggregator. The two nodes also
exchange updates for the documents they already have in
their cache.
Looking at Figure 3 it can be noted that the content of

the private store is never shared. Furthermore, as the Bridge
and Aggregator are not considered to directly contribute to
the common knowledge, their public stores are typically not
used. Deletion of documents are considered as an updated
status that also gets replicated. An entity ceases to exist
when there is no more document containing a statement ex-
pressed about it. In addition to these automated synchroni-
sations, an application using ERS can search for entities de-
scribed by other peers in the network and then can eventually
persist the results retrieved.

Figure 3: Synchronization schema among the different type
of nodes in the system. The solid arrows are automated pro-
cesses, dashed transfers are triggered by applications using
ERS

Discussion

We introduced earlier four criteria to study the suitability of
common architectures for knowledge information systems
to our specific context. In what follows, we discuss how ERS
matches the different criteria.

Resolvability: an entity can be resolved at any point in
time by fetching documents from all the contributors and
bridges found in the network neighbourhood and on the
stores of the component emitting the query. The entity al-
ways resolves but the degree of completeness of the de-
scription depends on the spread of the different documents
as well as the global connectivity;

Consistency: every contribution is wrapped onto a self-
consistent document that can only be updated by its au-
thor. Conflicting statements describing an entity are nec-
essarily found in different documents, making it possible
to defer the conflict resolution to the application consum-
ing the aggregated description of the entity;

Relevancy: contributors and bridges found in the network
neighbourhood are the only additional source of informa-
tion one component may query. This gives a natural pri-
ority to data found in a close network proximity. When
combined with a mesh networking, this logical proxim-
ity gets a physical dimension. Data coming from further
away has to transit through bridges;

Autonomy: a deployment made of two contributors is fully
functional and enables the collective description of en-
tities. The usage of bridges and aggregators is fully op-
tional.

Reference implementation

In this section, we give a detailed overview of the reference
implementation of ERS. All of the concepts we mention
in this paper are implemented and available as open-source
code from the “ers-devs” group on GitHub11.

Contributors and Bridges

Contributors and Bridges are implemented using the same
code designed to run on small hardware under sporadic con-
nectivity contexts. The operating mode of an ERS node is
set in a configuration file. We choose to use CouchDB12 to
persist all the data locally and perform the different syn-
chronizations. The main advantage of CouchDB is that it
provides built-in mechanisms for flexible replication of the
data. The CouchDB replication system can be configured to
match our needs (e.g., to create triggers and filters based on
the entity descriptions).

Data storage Internally, CouchDB defines documents that
are used to store and replicate payloads of JSON data. We
decided to use these documents as a one-to-one equivalent
to our notion of document introduced earlier. That is, ev-
ery document in a CouchDB database correspond to a set of
statements a Contributor made about a specific entity. The

11http://ers-devs.github.io, accessed December 6 2013
12http://couchdb.apache.org/

16



only difference with the code of Listing 1 is the addition of
two “ id” and “ rev” fields that CouchDB uses internally to
uniquely track and version the documents it stores. Similar
to the notion of named-graphs in RDF the “ id” differen-
tiates two document which could otherwise look the same.
“ rev” is used to track revision of a specific documents.

Peers discovery Contributors and Bridges run a daemon
that takes care of exposing the list of connected peers run-
ning ERS via the ERS API. This list of peers is used inter-
nally by ERS to dynamically configure the synchronization
rules of CouchDB and take care of the automated propaga-
tion of updated documents (solid arrows on Figure 3). The
daemon relies on the ZeroConf protocol to announce itself
on the network and discover other running processes. We
currently support only the Avahi implementation of this pro-
tocol commonly used on the GNU/Linux operating systems.

Operating mode The switch between the Contributor and
Bridge operating mode is done via a configuration file. By
default, every ERS node is a Contributor. As highlighted
earlier, the main difference between a Contributor and a
Bridge is that the later does not contribute contents using
its public store. The synchronization rules are also different
as Bridges have two core functionalities: distribution of lo-
cal data in semi-connected networks and synchronization to
other closed networks.

Aggregators

While Contributors and Bridges are designed around spo-
radic or ad-hoc connectivity, an Aggregator is an optional,
always-on component. A single instance of an Aggrega-
tor might not always store the entirety of data, but can
store references to other servers providing such informa-
tion, thereby acting like a typical registry for non-local con-
tent. Due to the distributed nature of how data is processed,
cached and shared in ERS, providing a consistent storage
layer is not trivial. To achieve the desired consistency, we
implemented a transaction layer on top of our data store.
Using traditional distributed transaction schemes from re-
lational database management systems is out of scope for
two reasons: first, allowing multi-side distributed transac-
tions would severely slow down the overall performance,
and second, even if the Aggregator is considered to be al-
ways available, this is not true for the Bridges sending it
data. Thus, the goal must be to achieve the best possible
throughput on slow dial-up connections even if the connec-
tion is dropped multiple times.

Data model The overall data model of the entity registry
is shown in Figure 4. There are two important semantic
properties that are visible in this figure. First, the proper-
ties of specific entities have no connections between each
other. This means that for a given triple t = {s, p, o} with
s ∈ S, p ∈ P, o ∈ O there can be no two triples that share
the same predicate and object. This effectively describes a
uniqueness constrain on all triples on the p and o attributes.
The second semantic property is that modifications on the
graph of entities are typically separated by the context in

which they operate, making it less likely that collisions be-
tween different contexts will occur.

Figure 4: Entity Model Overview

Concerning links, only connections between entities are
allowed. For simplicity, a connection between an entity is
seen as bidirectional. On the storage, side we model this as
two entries in the graph, one describing the original connec-
tion and a second entry describing the inverse relation. This
allows to navigate the path in both ways and to keep the
original semantics about how the connection was created.

Data storage The foundation for the storage layer of the
Aggregator is a cluster of Apache Cassandra nodes with
an additional abstraction layer for storing RDF inside the
cluster based on CumulusRDF (Ladwig and Harth 2011).
Basing the Aggregator on Cassandra allows us to minimize
the entity look-up latency, while also being able to dynami-
cally scale-out to multiple machines to aggregate very large
amounts of entity data whenever necessary. While Cassan-
dra natively offers no support for transactions or atomic op-
erations on data stored in the cluster, we implemented some
specific support for atomic operations at the RDF layer.

Transactions Inside our thin application layer sit-
ting on top of Cassandra, we define the following
atomic operations: Insert entity (IE), Insert
property of entity (IP), Update property
of entity (UP), Delete property of entity
(DP), Delete entity (DE), Shallow entity
copy (SC), Deep copy of an entity (DC),
Insert bi-directional link between two
entities (IL), Delete link between two
entities (DL).

Since transaction support must be implemented on a
higher level, we define a multi-level locking scheme that al-
lows hierarchical locking of the different elements of an en-
tity. In contrast to traditional relational databases, our lock-
ing approach has the possibility to lock an entity even if it
does not exist by referencing the unique ID of the entity in
our lock table. This allows a strict serialization of conflicting
operations, even for insertions. The two hierarchical locks
are: LE+P and LE . The former locks the entity ID and the
property, while the latter locks the complete entity. While
two LE+P locks can be compatible in case they differ in
one of the two parts, two LP locks are not compatible. Ta-
ble 3 shows the compatibility for all kinds of operations with

17



our various types of locks. Since all property locks are com-
patible, we can achieve a high throughput for most of the
incoming operations. For the two lock types, we match the
following operations. Using the fine granular LE+P we can
run the following operations: IP, UP, DP, SC, IL, DL. Us-
ing the LE lock we can execute: IE, DE, DC. For links and
shallow copies the matching property is either sameAs or
linksTo.

LEa+Pc LEa+Pd
LEb+Pc LEb+Pd

LEa LEb

LEa+Pc × � � � × �
LEa+Pd

� × � � × �
LEb+Pc

� � × � � ×
LEb+Pd

� � � × � ×
LEa

× × � � × �
LEb

� � × × � ×

Table 3: Operation Compatibility

Performance We experimentally test the performance of
atomic operations introduced in Section 3 with 5 servers (8-
cores i7 Intel CPU, 8GB total RAM memory, Gigabit Eth-
ernet, Linux kernel 3.2.0, Java SE 1.6), all of them running
a Cassandra instance with replication level 2 and having a
varying number of clients (2-64). The performances of the
Aggregator are reported in Figure 5. We differentiate be-
tween basic operations that modify properties of existing en-
tities and linking operations that insert a bidirectional link
between two existing entities. Delete operations have the
highest throughput as they only require simple marking of
a record in the cluster with a tombstone by Cassandra. For
linking the situation is slightly different as it requires to bun-
dle two operations—two inserts—in one atomic operation,
adding additional overhead.

Conclusions

In this work, we outlined the limitations of entity reg-
istries in poorly connected environments, proposed an in-
novative architecture for a decentralised registry (ERS), and
described a reference implementation. We used the practi-
cal use-case of gathering and sharing public and private data
from the Sugar learning environment. The performance eval-
uation done on real test-cases and different hardware config-
urations shows that the system performs well and provides
the expected features. Future work will include getting ERS
to be adopted for the main-stream version of Sugar and de-
ploying wider instances of ERS.

Acknowledgment This work was supported by the
Verisign Internet Infrastructure Grant program.

References

Aberer, K., and Cudré-Mauroux, P. 2003. P-Grid: a
self-organizing structured P2P system. ACM SIGMOD
32(5005):29–33.
Becker, K. F. 2004. The Informal Economy - fact find-
ing study. Technical Report March, Swedish International

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

4 8 16 32 64 100

T
ra

ns
ac

tio
n/

s

Number of clients

Insert
Update
Delete

(a) Basic Operations

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

4 8 16 32 64 100

T
ra

ns
ac

tio
n/

s

Number of clients

Insert Link
Update Link
Delete Link

(b) Linking Entities

Figure 5: Throughput for different Aggregator operations.
All transactions per clients are executed sequentially, but all
clients run in parallel.

Development Cooperation Agency. http://www.eldis.org/go/
home&id=15832&type=Document.
Bouquet, P.; Stoermer, H.; and Bazzanella, B. 2008. An en-
tity name system (ens) for the semantic web. In Bechhofer,
S.; Hauswirth, M.; Hoffmann, J.; and Koubarakis, M., eds.,
ESWC, volume 5021 of Lecture Notes in Computer Science,
258–272. Springer.
Charlaganov, M.; Cudré-Mauroux, P.; Dinu, C.; Guéret, C.;
Grund, M.; and Macicas, T. 2013a. The Entity Registry
System: Implementing 5-Star Linked Data Without the Web.
arXiv preprint.
Charlaganov, M.; Cudré-mauroux, P.; Guéret, C.; Grund,
M.; and Macicas, T. 2013b. Demonstrating The Entity Reg-
istry System : Implementing 5-Star Linked Data Without the
Web. In Proceedings of ISWC2013, Poster and Demo track,
4.
Cudré-Mauroux, P.; Agarwal, S.; and Aberer, K. 2007. Grid-
vine: An infrastructure for peer information management.
IEEE Internet Computing 11(5).
Cudré-Mauroux, P.; Demartini, G.; Difallah, D. E.; Mostafa,
A. E.; Russo, V.; and Thomas, M. 2011. A Demonstration
of DNS3: a Semantic-Aware DNS Service. In ISWC 2011.
Cudré-Mauroux, P.; Enchev, I.; Fundatureanu, S.; Groth, P.;
Haque, A.; Harth, A.; Keppmann, F.; Miranker, D.; Sequeda,
J.; and Wylot, M. 2013. NoSQL databases for RDF: An em-
pirical evaluation. In The Semantic Web ISWC 2013, volume
8219 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg. 310–325.

18



Fundatureanu, S. 2012. A scalable rdf store based on hbase.
https://archive.org/details/ScalableRDFStoreOverHBase.
Guéret, C., and Cudré-mauroux, P. 2014. The Entity Reg-
istry System: Publishing and Consuming Linked Data in
Poorly Connected Environments.
Guéret, C.; Schlobach, S.; Boer, V. D.; Bon, A.; and Akker-
mans, H. 2011. Is data sharing the privilege of a few ? Bring-
ing Linked Data to those without the Web. In Proceedings of
ISWC2011 - ”Outrageous ideas” track, Best paper award,
1–4. Best paper award.
Guéret, C. 2014. Impressions from sugarcamp3.
http://worldwidesemanticweb.org/2014/04/16/impressions-
from-sugarcamp3/.
Kroes, P.; Beek, W.; and Schlobach, S. 2013. DataHives:
Triple Store Enhancement Using A Bee Calculus. In Pro-
ceedings of the 25th BNAIC.
Ladwig, G., and Harth, A. 2011. CumulusRDF: Linked Data
Management on Nested Key-Value Stores. In Proceedings
of the 7th International Workshop on Scalable Semantic Web
Knowledge Base Systems (SSWS2011). -.
Maali, F.; Cyganiak, R.; and Peristeras, V. 2011. Re-
using cool uris: Entity reconciliation against lod hubs. In
Bizer, C.; Heath, T.; Berners-Lee, T.; and Hausenblas, M.,
eds., LDOW, volume 813 of CEUR Workshop Proceedings.
CEUR-WS.org.
Mühleisen, H.; Augustin, A.; Walther, T.; Harasic, M.; Tey-
mourian, K.; and Tolksdorf, R. 2010. A self-organized
semantic storage service. Proceedings of the 12th Inter-
national Conference on Information Integration and Web-
based Applications & Services - iiWAS ’10 357.
Mühleisen, H.; Walther, T.; and Tolksdorf, R. 2011. A sur-
vey on self-organized semantic storage. International Jour-
nal of Web Information Systems 7(3):205–222.
Raftree, L. 2013. Open data, open government and critical
consciousness.
Stoica, I.; Morris, R.; and Karger, D. 2001. Chord: A scal-
able peer-to-peer lookup service for internet applications.
ACM SIGCOMM 1–45.
Sun, J., and Jin, Q. 2010. Scalable rdf store based on hbase
and mapreduce. In Advanced Computer Theory and Engi-
neering (ICACTE), 2010 3rd International Conference on,
volume 1, V1–633–V1–636.
Unwin, T. 2009. ICT4D: Information and communication
technology for development. Cambridge University Press.
Verma, S. 2014. The quest for data. http://www.olpcsf.org/
node/204.

19


