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Abstract

High-level representations of uncertainty, such as prob-
abilistic logics and programs, have been around for
decades. Lifted inference was initially motivated by the
need to make reasoning algorithms high-level as well.
While the lifted inference community focused on ma-
chine learning applications, the high-level reasoning
goal has received less attention recently. We revisit the
idea and look at the capabilities of the latest techniques
in lifted inference. This lets us conclude that lifted in-
ference is strictly more powerful than propositional in-
ference on high-level reasoning tasks.

Introduction
When Poole (2003) originally conceived lifted inference, it
was motivated by the following question. “Suppose we ob-
serve that (i) Joe has purple hair, a purple car, and has big
feet, and (ii) a person with purple hair, a purple car, and
who is very tall was seen committing a crime. What is the
probability that Joe is guilty?” Despite its simplicity, this
problem is prevalent in criminal trials: it is an example of
the prosecutor’s fallacy (Thompson and Schumann 1987).
To represent the problem, several high-level languages have
been proposed (Richardson and Domingos 2006; Milch et
al. 2007). To solve it, one needs to know the probability of
purple hair, a purple car, big feet, but most importantly, the
size of the population that Joe is part of. Poole (2003) al-
ready proposed an algorithm that performs high-level rea-
soning for this problem, factoring in the populations size us-
ing exponentiation – an operation that is not supported by
classical algorithms.

Since Poole’s original question, lifted inference has made
much progress, but the focus has shifted. Current research
looks at machine learning applications (Ahmadi, Kerst-
ing, and Natarajan 2012; Van Haaren et al. 2014), large-
scale probabilistic databases (Gribkoff, Suciu, and Van den
Broeck 2014), exploiting symmetries for approximate in-
ference (Niepert 2013; Mladenov, Globerson, and Kersting
2014; Bui, Huynh, and Sontag 2014), and even exploiting
approximate symmetries (Van den Broeck and Darwiche
2013; Singla, Nath, and Domingos 2014; Venugopal and
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Gogate 2014; Van den Broeck and Niepert 2015). The over-
all goal of those works is to bring lifted inference to the
mainstream, by showing it speeds up traditional learning
and reasoning tasks. The type of question that Poole asks
is rarely considered.

The move away from these high-level questions is best
exemplified by the experimental evaluations found in re-
cent lifted inference papers, which typically involve Markov
logic networks (MLNs) (Richardson and Domingos 2006)
for collective classification, entity resolution, or social net-
work analysis. These are powerful models for machine
learning, but they are not interpretable. It is not clear why
a computer should have high-level reasoning capabilities on
these tasks and be able solve them efficiently. As humans,
we certainly do not have that capability.1

The fact that lifted inference works on large and com-
plex MLNs is impressive and useful, but it does not exactly
demonstrate Poole’s original vision of a new type of high-
level reasoning task. In this paper, we discuss tasks that do
demonstrate this vision, including a task that humans can
easily solve, but which we show cannot be solved efficiently
with traditional techniques. Next, we review recent advances
in lifted inference that enable more high-level reasoning:
weighted first-order model counting and its inference rules.
We demonstrate the power of these advances on an example
task, showing that lifted inference is strictly more powerful
than propositional reasoning techniques.2

High-Level Reasoning Tasks
This section describes two classes of tasks that pose high-
level probabilistic reasoning challenges. We will see prob-
lems whose textual description is very simple and that can
be solved using elementary statistical techniques. However,
no classical automated reasoning algorithms can apply the
same techniques for general-purpose inference.

Reasoning about Populations Suppose we are epidemi-
ologists investigating a rare disease that is expected to
present itself in one in every billion people. The probabil-

1They express correlation, not causation (Fierens et al. 2012).
2A similar separation in complexity was shown for lifted query

evaluation in probabilistic databases by Beame et al. (2013).
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ity that somebody in the world has the disease is

1− (1− 1/1000000000)7000000000 ≈ 0.999. (1)

Here, we have used the fact that, for the level of detail we
have knowledge about, all people are indistinguishable and
independent. Therefore, we can exponentiate the probabil-
ity that a single person is healthy to obtain the probability
that all people are healthy. When encoding this distribution
as a probabilistic graphical model, in the best case, infer-
ence ends up multiplying 7 billion numbers. In the worst
case, naively representing the query variable’s dependency
on each person’s health already requires a conditional prob-
ability table with 27000000000 rows. In either case, despite
the simplicity of the problem, graphical model algorithms
do not exploit the symmetries that we exploit in Equation 1.

Now consider more complex queries. The probability that

exactly five people are sick is
(

7·109

5

)
·
(
1− 10−9

)7·109−5 ·(
10−9

)5 ≈ 0.13. More than five are sick with probability

1−
5∑

n=0

(
7 · 109

n

)(
1− 10−9

)7·109−n (
10−9

)n ≈ 0.7.

Here, we have used the indistinguishability of people in both
the exponentiation, and in the binomial coefficients. It is not
clear how to solve this problem with graphical models, but
it would likely require enumerating all possible worlds.

The next example illustrates how to group indistinguish-
able objects into equivalence classes and reason about these
classes as a whole. This technique is essential in lifted in-
ference. Suppose we know that the disease is more rare in
women, presenting only in 1 in every 2 billion women and
1 in every billion men. Then, the probability that more than
five are sick is 1−

∑5
n=0

∑n
f=0 P (n, f) where P (n, f) is(

3.6 · 109

f

)(
1− 0.5 · 10−9

)3.6·109−f (
0.5 · 10−9

)f
·
(

3.4 · 109

(n− f)

)(
1− 10−9

)3.4·109−(n−f) (
10−9

)(n−f)
.

Here, we have split up the computation into two factors, for
women on the first line and men on the second. The variable
n represents the number of people with the disease and the
variable f counts the number of women among them.

Reasoning about Playing Cards Consider a randomly
shuffled deck of 52 playing cards. Suppose that we are dealt
the top card, and we want to answer the following basic
questions. What is the probability that we get hearts? When
the dealer makes a mistake and reveals that the bottom card
is black, how does our probability change? Basic statistics
tells us that the probability increases from 1/4 to 13/51.

To represent the distribution over all shuffled decks with a
probabilistic graphical model, a natural choice is to have 52
random variables, one for every card. Each variable can take
any of 52 values, one for every position in the deck. When
the queen of hearts takes the top position, none of the other
random variables are allowed to take that position. Such con-
straints are enforced by adding a factor between every pair of
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Figure 1: Graphical model for a shuffled deck of 13 cards
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Figure 2: Bipartite graph from cards to positions a, . . . ,m

variables, setting the probability to zero that two cards are in
the same position. Figure 1 depicts the graphical model for
a small deck of 13 cards.

The graphical model for this problem is a completely con-
nected graph whose treewidth grows linearly with the num-
ber of cards. This means that classical inference algorithms,
such as junctions trees and variable elimination, will re-
quire time and space that is exponential in the number of
playing cards (Darwiche 2009). Indeed, for a full deck of
cards, these algorithms will build a joint probability table
with 5252 rows. Of course, this makes our queries extremely
intractable for classical algorithms. The underlying reason
for this poor performance is that the distribution has no con-
ditional or contextual independencies. Our belief about the
top card is affected by any new observation on the remaining
cards. The reason why humans can still answer the above
queries efficiently is different: the distribution exhibits ex-
changeability (Niepert and Van den Broeck 2014).

The problem with this reasoning task is not one of rep-
resentation. Many statistical relational languages, including
Markov logic, can express the distribution concisely. It can
even be written in classical first-order logic as

∀p,∃c, Card(p, c)

∀c,∃p, Card(p, c)

∀p,∀c,∀c′,¬Card(p, c) ∨ ¬Card(p, c′) ∨ c = c′, (2)

where Card(p, c) denotes that position p contains card c.

Complexity of Propositonal Reasoning For Theory 2,
we will now argue that no propositional inference algorithm
can be efficient, unless P=NP. This is surprising, given how
easily humans can reason about the card distribution. We do
not require that the propositional inference algorithm comes
with a treewidth-based lower complexity bound. We also do
not require that the computation is isomorphic to a circuit
language (as in Beame et al. (2013)). We instead assume that
the propositional reasoner can efficiently deal with unary
potentials (factors over a single variables). This assumption
holds for all exact graphical model algorithms. Later, we dis-
cuss the performance of lifted inference.
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Observe that the Card relation represents a bipartite graph
from cards to positions, where Card(p, c) denotes an edge
from c to p. Figure 2 shows such a graph. Theory 2 forces
this bipartite graph to be a perfect matching, meaning that
every card gets matched with a unique position. Hence, the
number of possible words with non-zero probability equals
the number of perfect matchings in a completely connected
bipartite graph, which is n!. Note that Theory 2 can be ex-
tended with unary potentials to remove edges in Figure 2,
by setting the probability of Card atoms to zero. Then,
the number of worlds with non-zero probability equals the
number of perfect matchings in an arbitrary bipartite graph.
Valiant (1979) proved that counting such matchings is #P-
complete. Moreover, the number of worlds can be computed
from the partition function of Theory 2, or from the marginal
probabilities of a slightly modified representation. There-
fore, such queries cannot be answered in polynomial time
by a propositional algorithm, unless P=NP. A similar argu-
ment applies to other representations of the playing cards
problems, including the graphical model of Figure 1.

Weighted First-Order Model Counting
This section highlights some recent developments in lifted
inference that significantly increase the capabilities for high-
level reasoning. These developments are centered around the
weighted model counting (WMC) task. In model counting,
or #SAT, one counts the number of assignments ω that sat-
isfy a propositional sentence ∆, denoted ω |= ∆. In WMC,
each assignment has a weight and the task is to compute the
sum of the weights of all satisfying assignments.

Definition 1 (Weighted Model Count). The WMC of
– a sentence ∆ in propositional logic over literals L, and
– a weight function w : L → R,

is defined as WMC(∆,w) =
∑

ω|=∆

∏
l∈ω w(l).

The success of WMC for inference in graphical mod-
els (Chavira and Darwiche 2008) has lead Van den Broeck
et al. (2011) and Gogate and Domingos (2011) to propose
weighted first-order model counting (WFOMC) as the core
reasoning task underlying lifted inference algorithms. In-
stead of propositional logic, WFOMC works with theories ∆
in finite-domain first-order logic. Another key assumption is
that the function w in a WFOMC problem assigns identical
weights to all positive (negative) literals of the same relation.

Several inference tasks in statistical relational models
can be converted to WFOMC. This includes partition func-
tion and marginal computations in Markov logic, parfac-
tors, probabilistic logic programs and relational Bayesian
networks. We refer to Van den Broeck, Meert, and Dar-
wiche (2013) for details. Its separation of logic and probabil-
ity will enable complex logical transformations to be applied
to ∆ (also see Gribkoff, Suciu, and Van den Broeck (2014)).

Exponentiation We will now illustrate the principles be-
hind WFOMC solvers. Algorithmic details can be found in
Van den Broeck (2013). For the sake of simplicity, the ex-
amples are non-weighted model counting problems, corre-
sponding to WFOMC problems where w(l) = 1 for all lit-

erals l ∈ L. Consider ∆ to be

Stress(A)⇒ Smokes(A). (3)

Assuming a domain D = {A}, every assignment to
Stress(A) and Smokes(A) satisfies ∆, except when
Stress(A) is true and Smokes(A) is false. Therefore, the
model count is 3. Now let ∆ be

∀x, Stress(x)⇒ Smokes(x). (4)

Without changing D, the model count is still 3. When we
expand D to n people, we get n independent copies of For-
mula 3. For each person x, Stress(x) and Smokes(x) can
take 3 values, and the total model count is 3n.

This example already demonstrates the benefits of first-
order counting. A propositional model counter on Formula 4
would detect that all n clauses are independent, recompute
for every clause that it has 3 models, and multiply these
counts n times. Propositional model counters have no ele-
mentary operation for exponentiation. A first-order model
counter reads from the first-order structure that it suffices
to compute the model count of a single ground clause, and
then knows to exponentiate. It never actually grounds the
formula, and given the size of D, it runs in logarithmic time.
This gives an exponential speedup over propositional count-
ing, which runs in linear time.

These first-order counting techniques can interplay with
propositional ones. Take for example ∆ to be

∀y, ParentOf(y) ∧ Female⇒ MotherOf(y). (5)

This sentence is about a specific individual who may be fe-
male, depending on the proposition Female. We can sepa-
rately count the models in either case. When Female is false,
∆ is satisfied, and the ParentOf and MotherOf atoms can
take any value. This gives 4n models. When Female is true,
∆ is structurally identical to Formula 4, and has 3n models.
The total model count is then 3n + 4n.

These concepts can be applied recursively to count more
complicated formulas. Take for example

∀x,∀y, ParentOf(x, y) ∧ Female(x)⇒ MotherOf(x, y).

There is now a partition of the ground clauses into n inde-
pendent sets of n clauses. The sets correspond to values of
x, and the individual clauses to values of y. The formula for
each specific x, that is, each set of clauses, is structurally
identical to Formula 5 and has count of 3n + 4n. The total
model count is then (3n + 4n)n.

Counting The most impressive improvements are attained
when propositional model counters run in time exponential
in n, yet first-order model counters run in polynomial time.
To consider an example where this comes up, let ∆ be

∀x,∀y, Smokes(x) ∧ Friends(x, y)⇒ Smokes(y). (6)

This time, the clauses in the grounding of ∆ are no longer
independent, and it would be wrong to exponentiate. Let
us first assume we know that k people smoke, and that we
know their identities. Then, how many models are there?
Formula 6 encodes that a smoker cannot be friends with a
non-smoker. Hence, out of n2 Friends atoms, k(n − k)
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have to be false, and the others can take either truth value.
Thus, the number of models is 2n

2−k(n−k). Second, we
know that there are

(
n
k

)
ways to choose k smokers, and k

can range from 0 to n. This results in the total model count
of
∑n

k=0

(
n
k

)
2n

2−k(n−k). WFOMC solvers can automati-
cally construct this formula and compute the model count
in time polynomial in n. On the other hand, propositional
algorithms require time exponential in n.

Skolemization The theories have so far consisted of uni-
versally quantified clauses. Directed models and probabilis-
tic programs also require existential quantification. Skolem-
ization is the procedure of eliminating existential quantifiers
from a theory. Van den Broeck, Meert, and Darwiche (2013)
introduce a Skolemization procedure that is sound for the
WFOMC task. Suppose that we are eliminating the existen-
tial quantifier in the following sentence from Theory 2.

∀p, ∃c, Card(p, c)

We can do so without changing the model count. First, in-
troduce a new relation S and replace the sentence by

∀p,∀c, Card(p, c)⇒ S(p)

Second, extend the weight function w with w(S(y)) = 1
and w(¬S(y)) = −1 for all y.

We can verify this transformation as follows. For a
fixed position p, consider two cases: ∃c, Card(p, c) is ei-
ther true or false. If it is true, then so is S(p). All models
of the Skolemized sentence are also models of the orig-
inal sentence, and the models have the same weight. If
∃c, Card(p, c) is false, then this does not correspond to any
model of the original sentence. However, the Skolemized
sentence is satisfied, and S(p) can be true or false. Yet, for
every model with weight w where S(p) is true, there is also
a model with weight −w where S(p) is false. These weights
cancel out in the WFOMC, and the transformation is sound.

Playing Cards Revisited Let us reconsider the playing
card problem from Theory 2. Skolemization yields

∀p,∀c, Card(p, c)⇒ S1(p)

∀p,∀c, Card(p, c)⇒ S2(c)

∀p,∀c,∀c′,¬Card(p, c) ∨ ¬Card(p, c′) ∨ c = c′

One can now show that the WFOMC inference rules are ca-
pable of simplifying this theory recursively, and efficiently
computing its WFOMC. First, one can apply the count-
ing rule to remove S1, S2 and the first two sentences. The
groundings of the third sentence are independent for differ-
ent p, enabling exponentiation of the simplified theory

∀c,∀c′,¬Card(c) ∨ ¬Card(c′) ∨ c = c′.

Continued application of the WFOMC inference rules yields
the following expression for the model count

#SAT =
n∑

k=0

(
n

k

) n∑
l=0

(
n

l

)
(l + 1)k(−1)2n−k−l = n!

This expression is evaluated in time polynomial in the num-
ber of cards n. It shows that lifted inference is strictly more
powerful than propositional reasoning. The key difference is
that WFOMC can assume certain symmetries that proposi-
tional techniques cannot take into account.
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