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Abstract

In this paper we introduce a new measure of team be-
havior called Efficiency based upon work of Conant on
team interdependence. We use Shannon’s information
as a basis our measure. We then introduce a 2nd law of
thermodynamics approach to team efficiency. We con-
clude the paper by relating our definition of team effi-
ciency to the spectral analysis of the adjacency matrix
from the areas of epidemiology and network science.

Introduction
Research within individual and team performance has been
an area of significant study for more than ten years. Team-
work is critical within so many domains, for example,
within submarine combat information centers, medical, dis-
mounted infantry, virtual and distributed teams supervising
multiple autonomous vehicles, etc. Therefore, understand-
ing the processes by which individuals and teams build and
share knowledge with other members, techniques to quan-
tify the quality of the knowledge products generated through
written artifacts or through discourse, and how these prod-
ucts and processes impact the domain specific mission out-
come measures has drawn considerable interest from both
academicians and practitioners. This field has received great
attention from cognitive scientists and psychologists. For in-
stance, macrocognition (Salas, Fiore, and Letsky 2012, e.g.
Ch. 2 ), which is defined as the internalized and external-
ized high-level mental processes employed by teams to cre-
ate new knowledge during complex, one-of-a-kind, collab-
orative problem solving. High-level processes combine vi-
sualizing and aggregating information to resolve ambigu-
ity in support of the discovery of new knowledge and re-
lationships. The field of macrocognition has spawned re-
search that has focused on measuring the convergence of
team mental models, metrics that measure the emergence
of knowledge and the effects of sharing that knowledge on
team outcomes, identification of leaders within a team based
on discourse analysis, and the TARGETs (Targeting Accept-
able Responses to Generated Events and Tasks) (Stanton et
al. 2004, Ch. 53) methodology. This latter approach recog-
nizes that certain team behaviors should occur at certain key
events.
Copyright c© 2015, Association for the Advancement of Artificial
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While macrocognition and the related fields of study have
focused primarily on the cognitive aspects of individual and
team performance, very little has been devoted to mathe-
matically modeling team efficiency from the perspective of
interdependence, as well as identification of optimal team
structures that permit knowledge to be spread effectively.
By this, we mean how is team interdependence measured
(for those activities that are dependent) and how does team
efficiency as measured by the degree of interdependence
relate to the spreading of knowledge across the team and
eventually what is the impact to improving mission outcome
measures. Our work extends the cognitive science based
approaches for understanding team performance by apply-
ing the notion of joint entropy to understand team efficien-
cies under conditions of interdependence, and we hypothe-
size that our technique would enable approaches such as the
TARGETs methodology easier to quantify.

In (Balch 1997), (Balch 2000), (Kenny, Kashy, and Bol-
ger 1998), (Lawless et al. 2013), various mathematical ap-
proaches are taken to model social interactions. What we
find particularly of interest is how a group of individuals is
connected into a team in a network of influence. We will
model how the team learns its job(s) by using information
theoretic measurements such as entropy (Shannon 1948).

This paper does not pretend to be the modeling tool for
how a team should interact. Rather, this paper, and the
ensuing discussion of team efficiency, and the interacting
team-graph topology must be taken in the light of desired
team interdependencies. In this matter, the paper relies heav-
ily upon the earlier work of Conant (Conant 1974; 1976;
Conant and Ashby 1970).

Shannon’s seminal work on information theory (Shannon
1948) influenced both Conant and us. We caution the reader,
just as Shannon cautioned researchers with information the-
ory in (Shannon 1956), we too must be careful with what we
are writing and how it is interpreted. First, we are assum-
ing away the issue of desired team independence. We are
only looking at how team players are dependent upon each
other. Secondly, when we discuss a closed team, we mean
a team without any team degrading interruptions. Thirdly,
very similarly to how information theory models how chan-
nel capacity lessens following a cascade of channels (Cover
and Thomas 2006), we discuss how a team with a high spec-
tral radius (that is much link interconnectivity) makes one
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team more efficient that a less connected team. With this
caveats in mind we continue our paper. We view this paper
as a preliminary approach to improving team performance
using entropic measures.

A network is an undirected graph consisting of nodes (ver-
tices) and links (edges). A path between two nodes is a set of
links that connect the two nodes. Of course, a link is a path
of length one. If we have a node nA we call all the nodes
that have a link to nB the neighbors of nA, we may also say
that they are one hop from nA. The minimal number of links
(minimal path length) between two nodes is called the dis-
tance between those nodes. For simplicity we assume that
the networks in this paper are topologically connected, and
that all links are bidirectional and of weight one.

A team may be a network in its own right, or a connected
subnetwork within a larger network. A team has one or more
nodes. We view the nodes as players. In an efficient (good)
team the players interact well with each other and their ac-
tions are highly coordinated with the actions of their team-
mate players. A team may influence another team by spread-
ing its knowledge across the network in a virus like manner.
We desire that a team performs a specific task (it could be re-
viewing papers for a conference, or making sandwiches at a
deli, etc.). The definition of a task is particularly important.
A high degree of team player interdependence is desirable
(mapping to good performance). However this is not always
the case, as certain tasks may require players to be indepen-
dent. The tasks that involve player independence are outside
the model of this paper. This is not a deficit in our model,
rather we make the assumption that knowledge shared across
a team only helps team interdependency. Tasks that are in-
dependent are not (negatively) affected by knowledge sent
across the team network. We realize this is a contentious
point and will address it further in future work. We refer the
interested reader to (Surowiecki 2005, 2.II) for a contrary
point of view which is outside of our modeling universe. We
desire a mathematical measurement to determine if the team
is performing efficiently (well), or if it is performing poorly,
based upon increasing player interdependency.

Consider the player nodes in a team they are X1, ...,Xm.
At this point, we do not discuss the graph topology for the
team, it suffices that the team forms a connected set as a
graph. The decision action of each node is given by a ran-
dom variable Xk, k = 1, ...,m and with probability distri-
bution P (Xk = xki

) := p(xki
). Each random variable has

its associated entropy H(Xk), where1 as usual

H(Xk) := −
∑
ki

p(xki
) log p(xki

) . (1)

Note that for now we are assuming that our distributions are
stationary, that is they do not change over time. We may con-
sider the ensemble of team random variables and form the
joint entropy (Feinstein 1958, p. 13) and conditional entropy

Hjoint := H(X1, ..., Xm) :=

−
∑

1i,2i,...,mi

p(x1i , x2i , ..., xmi)log p(x1i , x2i , ..., xmi), (2)

1Unless noted otherwise all logarithms in this paper are base 2.

and H(X|Y ) := H(X,Y )−H(Y ) . (3)
It can easily be shown (Feinstein 1958, p. 16), (Cover and
Thomas 2006) that

0 ≤ H(X1, ..., Xm) ≤
∑
k

H(Xk) , (4)

with equality iff the Xk are independent.
So, the above tells us that H(X1, ..., Xm) is maximized

when the Xk are independent. Let us look at the opposite
extreme, that is X = X1 = X2 = · · · = Xm. To do this we
use (Cover and Thomas 2006, Thm. 2.5.1) the chain rule for
entropy

H(X1, ..., Xm) = H(X1)+H(X2|X1)+H(X3|X2, X1)

+ · · ·+H(Xn|Xn−1, ..., X1) (5)
Since entropy and conditional entropy is never negative

we have that
H(X1) ≤ H(X1, ..., Xm)

but since we can reorder the Xk without changing the value
of the joint entropy (since the commas represent intersec-
tion) we have

max
k

H(Xk) ≤ H(X1, ..., Xm) (6)

Combining the above we have

Hmax := max
k

H(Xk) ≤ H(X1, ..., Xm) ≤
∑
k

H(Xk)

(7)
In the “most independent situation” we have

H(X1, ..., Xm) =
∑
k

H(Xk)

and in the most “dependent situation”, that is where
∀k,Xk = X we have

H(X) = H(X1, ..., Xm)

Thus, the joint entropy give us a metric for how depen-
dent/independent the random variables are, and for our in-
terests for how well the team T is interacting. For a well-
functioning team we want dependence between the players.
So, for our thinking the best way for a team to perform is
to be as interdependent as possible, so the closer that joint
entropy is to maxk H(Xk) from above the better, and the
closer, from below that it is to

∑
k H(Xk), the worse it is

performing. Furthermore, we would like to have this metric
of team efficiency normalized so that we can compare dif-
ferent teams.

We propose the following as our definition of team effi-
ciency for team T with players modeled by the random vari-
ables X1, ..., Xm

E(T ) =
(
H(X1, ..., Xm)

)−1

−
(∑

k H(Xk)
)−1

(
maxk H(Xk)

)−1

−
(∑

k H(Xk)
)−1

=

1
Hjoint

− 1∑
H

1
Hmax −

1∑
H

(8)
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The above is well-defined as long as two or more of the
random variables are non-deterministic. We see that

0 ≤ E(T ) ≤ 1

and when the random variables are independent E(T ) = 0,
and as the dependence grows E(T ) → 1, from the left.
Keep in mind that 1 is the upper limit.

Examples

Example 1: Say that our team T consists of two players
X1,X2. Player X1 either toasts hamburger rolls or hotdog
buns, the behavior of X1 is given by the random variable
X1 = 0 (hamburger roll), or X1 = 1 (hotdog bun). Player
X2 either cooks hamburgers or hotdogs. Its behavior is given
similarly by the random variable X2. We want there to be
dependencies between the two random variables. In fact, in
an ideal world we would have X1 = X2, that is hamburgers
and their rolls and hotdogs and their buns go hand in hand
with respect to the production there of. Under that assump-
tion E(T ) = 1. If the two players are independent of each
other then we have E(T ) = 0. Therefore, the better team
players we have the closer E(T ) gets to one. (Note: going
back to desired player independence, we could have the sit-
uation of the cooker of the hamburger and hotdogs needs to
add more charcoal to the grill, this action should be indepen-
dent of what the roll/bun toaster is doing and is not included
in our modeling!)

Example 2: Let us consider identical random variables X
and Y which describe a fair coin flip. X takes on the values
xi, i = 1, 2 and P (xi) = 1/2. Similarly for Y , P (yj) =
1/2, j = 1, 2.

If X and Y are independent (which would make them
i.i.d. in this example) we have p(xi, yj) = 1/4, and
H(X,Y ) = 2. If X = Y , which is the most dependent they
can be then p(x1, y1) = 1/2 = p(x2, y2), so H(X,Y ) = 1.
Consider the following matrix which describes the joint dis-
tribution

J =

(
p(x1, y1) p(x1, y2)
p(x2, y1) p(x2, y2)

)
=

(
1
4 + γ 1

4 − γ
1
4 − γ 1

4 + γ

)
.

Note that by using J to model the joint distribution the
marginals are constant at p(x1) = p(x2) = 1

2 = p(y1) =
p(y2). and hence H(X) = 1 = H(Y ). The joint entropy is

Hγ(X,Y ) = −2

(
1

4
+γ

)
log

(
1

4
+γ

)
−2

(
1

4
−γ

)
log

(
1

4
−γ

)
.

In the above γ is a metric for the dependence between the
identical random variables X and Y . When γ = 0 the distri-
butions are the most independent and H0(X,Y ) = 2, when
γ = 1

4 they are the most dependent and H.25(X,Y ) = 1.
We see that the efficiency is

Eγ(T ) =
1

Hγ(X,Y ) − 1
2

1− 1
2

=
2

Hγ(X,Y )
− 1,

which is plotted in Figure 1.

Figure 1: Efficiency

Comments on Shannon and Conant

When we look at Shannon’s (Shannon 1948) work on infor-
mation theory we see that his interest, and a good deal of the
information theory community’s is on the mutual informa-
tion I(X,Y ) between discrete two random variables X and
Y , where

I(X,Y ) = H(X) +H(Y )−H(X,Y ) .

From our above discussions we see that X and Y are inde-
pendent if and only if I(X,Y ) = 0. Mutual information is
a measure of how much information inherent in the input X
a channel passes through to the output Y . In Shannon infor-
mation theory the conditional random variable Y |X = xi is
fixed, but we vary the distribution of X to find the one that
maximized I(X,Y ) and gives us C, the channel capacity.

Our paradigm is opposite to this. We “vary” the condi-
tional values, and do not try to maximize the mutual infor-
mation, rather we try to maximize our normalized metric
efficiency. We note that Conant (Conant 1976) looked at the
difference ∑

k

H(Xk)−H(X1, ..., Xm) ,

which he coined the transmission, this is actually the best
we can do for a generalization of the mutual information.
We thankfully acknowledge that Conant was the first on the
path that we are on now, but we believe we have gone further.

Nota Bene

We make the assumption that we must carefully model ef-
ficient team work, not the exact opposite. This is due to
the phenomena in Shannon’s information theory that it is
not the actual symbol values that are important but how we
can manipulate and send information with those symbols.
For example, consider a binary symmetric channel with er-
ror probability p. The capacity of this channel is 1 − h(p),
where h(p) = −p · log(p)− (1− p) · log(1− p). Note that
h(p) = h(1 − p), and that the channel capacity is the same

46



for both p and 1−p. This is in accord with Shannon’s think-
ing. If the symbols are flipped we get the same information.
To make this even simpler if we send “0” and get “0”, send
“1” and get “1”, information theoretically that is the same as
sending a “0” and getting “1”, and sending a “1” and getting
“0”.

Correlation makes the distinction between positively cor-
related and negatively correlated. Anything that is solely en-
tropy based, such as our definition of Efficiency, does not
make this distinction. Therefore, one must make the proper
modeling assumptions when it comes to choosing the ran-
dom variable. In the above Ex. 1.1 if instead if we reserve
the position of hotdog buns and hamburger rolls, and strive
for maximum interdependence we would be doing our selves
a disservice. That is, unless we could convince people that
hamburgers are meant to be eaten on hotdog buns, and visa
versa. Now, this discussion begs the question that the ran-
dom variable has not changed.

Therefore, we need some concept of an “arrow” that
points in the correct direction for our team efficiency if we
are in a situation of no initial knowledge. By that we mean,
if we start off with the team performing in a manner that
we want, increasing the efficiency metric will increase pos-
itive team performance. However, if the team starts off in
the wrong direction, such as the reversal of buns and rolls
from above, the efficiency must first decrease to zero, and
then increase in the opposite direction. Therefore, efficiency
alone must be tempered with the notion of an arrow or di-
rection as discussed above in the situation where we start off
with no idea of our situation. We observe that Conant and
Ashby (Conant and Ashby 1970) touched upon this topic,
in a slightly different manner, in their analysis of Sommer-
hoff’s work on regulation.

We note that Kenny et al. (Kenny, Kashy, and Bolger
1998) when they model both team independence and depen-
dence rely on correlation. For the remainder of the paper we
make the assumption that we start off in a good situation
with respect to team performance, and only wish to improve
it.

The 2nd Law

In a team we conjecture that E changes over time. As time
progresses the players influence the other players as the team
functions more efficiently. Mathematically, this means that
the dependency between the random variables Xk increases,
which in turn means that the conditional terms in the chain
rule for entropy given in Eq. (5) do not decrease over time,
they should hopefully increase, but a team should never get
worse unless there are outside influences upon it, such as a
new player, or something happens to a player.

Therefore, we have that our mathematical terms are tem-
poral, and should be expressed as Xk(t), H(Xk(t)), ..., and
especially

E(T )t .
We may suppress the T part of the notation to make things

simpler and, when it is assumed there is a team T involved,
express the efficiency of T as a function of t as

Et .

Let us return to our previous discussions. For a team
where the players learn from each other even though for
small time values Eε may be close to zero, over time E≈∞
should increase and approach one. Now, this approach need
not be monotonic, and there may be attracting values along
the way. So in fact, a phase space analysis may need to be
performed.

Note, a team need not be a closed system, that is players
may enter or leave the team, and players’ behavior may be
influenced by outside forces. With this in mind, we enter the
realm of thermodynamics.

Let us consider the Second Law of Thermodynamics (Gi-
ancoli 1980 1991, Ch. 15.6). We will not go into the simi-
larities and differences between Shannon entropy H(X) and
thermodynamic entropy S. That analysis is best done via sta-
tistical mechanics. We have modeled team efficiency in such
a manner that it mimics the behavior of thermodynamic en-
tropy. When we are dealing with a closed (isolated) physical
system, the change in entropy is given by the ratio of the
heat Q ≥ 0 added to the system at a constant temperature T.

We paraphrase the Second Law of Thermodynamics as

ΔS =
Q

T
≥ 0 .

Thus, for a closed physical system entropy does not de-
crease over time, in fact for a non-idealized system it always
increases.

Now, let us return to social interaction, teams, and team
players. In a closed team, when there are not external inter-
ruptions, players should learn from each other and their ef-
ficiency (if modeled properly!) should not decrease as time
increases; hopefully, it should increase. We now state what
we call the second law of team dynamics. Note, there is no
first law, we are trying to stay consistent with the physics
nomenclature.

The Second Law of Team Dynamics:
For a closed team, efficiency does not decrease over time.
We take some mathematical liberties writing this as

dEt
dt
≥ 0 . (9)

Now, what if the team is not a closed system? If new play-
ers are introduced, or if players substitute for other play-
ers, the efficiency may go down. But, since our system is no
longer closed we do not violate the second law.

We say that a team is non-functional if ∀t, dEt
dt = 0. Un-

less otherwise noted we assume that our teams are striving to
improve their performance, never degrade it. Note, this does
not mean that dEt

dt is never zero, it means that the efficiency
is not constant throughout time.

Improving Efficiency

We wish to discuss how the underlying graph topology of a
team can influence its efficiency. The team is now modeled
as a discrete stochastic process. If two players are only one
hop away in the graph structure (a direct link between the
two players), the random variables can influence each other
in the next time step. If they are say, two nodes away, this
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influence may not occur until the second time increment,
etc. Thus team knowledge and dependence flows discretely
in time.

As noted, one of our assumptions is that T can be viewed
as a connected graph with the players being the nodes and
links between the nodes, or that the graph structure can
model communication from one team to another. Players can
directly influence another player if there is a link between
them; that is they are one hop away. If they are more than
one hop away the influence is secondary, or tertiary, etc. We
assume that all links have the same weight. Consider two
players: player one P1, and player two P2 that are one hop
away. How may P1 influence P2, we analyze two difference
models of influence.

Two Influence Situations

We will discuss in the next subsection what exactly we mean
by “knowledge”2.

Continuous Influence In this situation knowledge is con-
stantly flowing from one player to another via the link con-
necting them. What is important to keep in mind is that if
knowledge is flowing from n1 to n2, the knowledge inherent
in n1 does not diminish. This can be modeled by study of the
heat/diffusion equation and the Laplacian and spectral anal-
ysis of the graph adjacency matrix. We do not concentrate
on this important, but well-studied area of spectral analysis.
Rather we concentrate on what follows. Also the flow per
link is not instantaneous, it is given in units of knowledge
per time per hop.

Probabilistic Influence In this situation there may be re-
sistance to knowledge being passed from n1 to n2 via a con-
necting link. We also assume that we have a clock and that
every time unit t, now viewed in a discrete manner, we at-
tempt to pass the knowledge. Thus, the passing of the knowl-
edge is modeled as a geometric random variable with param-
eter p.

In either situation how does knowledge passed from n1 to
n2 affect the efficiency?

Knowledge and Changes in Joint Entropy

Let us consider the simple situation of two binary random
variables X ∈ {x1, x2} with probabilities p(xi) and Y ∈
{y1, y2} with probabilities p(yj). The joint probabilities are
given, as usual, by P (X = xi, Y = yj) = pi,j . We start off
with X and Y being independent, that is pi,j = p(xi)·p(yj).

Network Structure and Flow of Knowledge

The topology of the team impacts how knowledge flows, and
efficiency improves over time, for a team. Consider a hier-
archical team, with a top node node, two nodes under the
top node, two nodes under each secondary node, etc. We see
that the number of levels of nodes affects the time it takes
knowledge to spread through the team. This statement is
true whether we consider continuous or probabilistic prop-
agation. However, if we consider a team to be completely
connected (in the graph sense), then we see that the spread

2Note that social knowledge is a form of cultural knowledge.

of knowledge is much faster. Therefore, we must take into
account the team topology.

Many models of propagation on a network are given by
using epidemiological models. We use this for knowledge
transfer.

We are given a connected graph G and assume that a node
with a virus at time t can only infect a node that it is a “neigh-
bor”, that is it is linked to it by a link (one hop), and this other
node will be considered to be infected at time t+ 1, and the
probability of this is β. That is to get a node sick, it most
be contiguous to a sick node, and it takes one time interval
for this to happen. Furthermore, ni can become infected at
t+1 via the infection in a neighbor at t with probability β. If
ni(t) = 1, that is ni is sick at t it can become cured at t+ 1
with probability δ, this is independent of any neighboring
nodes attempting to get it sick — this is a strong model-
ing assumption. That is, a cure works even if there are more
virus attacks coming in.

For us β can model how knowledge moves throughout the
team, and δ can model how knowledge flow can be thwarted
(this is especially true if it is not a closed system).

The largest eigenvalue of the adjacency matrix A corre-
sponding to the graph G is λAmax which is also called the
spectral radius of Amax, written as ρ(Amax).

Variations on reinfection is a topic of the various virus
models in the literature, see (Prakash 2012). The major
result in the literature is (we express as a heuristic)

Heuristic (Wang et al. 2003; Chakrabarti et al. 2008;
Prakash et al. 2011; Prakash 2012; Jamakovic et al. 2006;
Mieghem, Omic, and Kooij 2009; Mieghem 2011; Newman
2010)
A necessary condition, if there are initially infected nodes,
for there not to be an epidemic, and for the infection to prob-
abilistically die out is that

β

δ
<

1

λAmax

. (10)

The various statements and proofs of the above seem to
be lacking, or extremely complex. In future work we will
present out proof. We do not do it in this paper for reasons
of space limitations and applicability to the tastes of the
symposium attendees. We sketch the proof ideas in this
paper.

Proof sketch of Heuristic:
PART 1: Iterative Inequality
Let ni(t) be the condition of node ni at time t viewed as an
indicator function. By this we mean that ni(t) = 0 if ni is
healthy at time t, and if it is sick at time t then ni(t) = 1.
We denote the state of health at time t of the entire graph
by the column vector �n(t), whose components are the ni(t).
Thus, the initial state of the graph is �n(0). We are in a prob-
abilistic situation where 0 ≤ P

(
nk(t) = 1

) ≤ 1. We de-
fine the vector �Pt to be the column n vector whose k-th
component is P

(
nk(t) = 1

)
. To simplify notation we set

pk,t := P
(
nk(t) = 1

)
.
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We are interested in pk,t or equivalently pk,t+1.

pk,t+1

= P
(
nk(t+1) = 1, nk(t) = 0

)
+P

(
nk(t+1) = 1, nk(t) = 1

)
=P

(
nk(t+1) = 1, nk(t) = 0

)
+P

(
nk(t+1)=1|nk(t) = 1

)·pk,t
(11)

Define S := (1− δ)I+ βA, and one can show that to the
first order that

�Pt+1 � S · �Pt . (12)
Thus, we have the approximate iterative inequality

�Pt � S
t · �P0. (13)

The use of the matrix S is not surprising based upon the
type of epidemiological virus spread model we are using.
Basically we assume that a node maybe healed and not in-
fected in the same time slice. Healing comes from itself,
hence the identity matrix I, and infection comes from a
neighbor, hence the adjacency matrix. We note that it is not
coincidental that the above equations are very similar to the
equations given in (Blanchard and Volchenkov 2009, 2.2.1).
This is because that book analyzes random walks, which are
very similar to what we are doing. A difference is that in the
random walks under consideration something either proba-
bilistically stays put or moves to a particular neighbor. In our
situation it may move to every neighbor. However, this is a
slight difference. In fact, after a (partial) literature review,
it seems that (Blanchard and Volchenkov 2009) is the only
complete proof of the result.

PART 2: Eigenvalues (This is standard Linear Algebra in-
cluded for completeness, the interesting modeling work is in
part 1.)

Let us compare the spectrums (set of matrix eigenvalues)
spec(A) with spec(S). It is trivial to see that

λ ∈ spec(A) =⇒ 1− δ + βλ ∈ spec(S),

and λ̃ ∈ spec(S) =⇒ λ̃− 1 + δ

β
∈ spec(A) . (14)

Therefore,
ρ(S) = 1−δ+βρ(A) , where ρ is the spectral radius of a matrix.

(15)
We see, accepting Eq. (13) as an inequality, that

lim
t→∞ S

t = [0] =⇒ lim
t→∞

�Pt = �0

regardless of the initial condition �P0.
Since A is symmetric, so is S. The Spectral Theorem

(Lang 1971, XIV§13) states that there is an orthonormal ba-
sis of R

n of eigenvectors of S. Thus, if in non-increasing
order spec(S) = {λ̃1 = λ̃max = ρ(S) > 0, ..., λ̃n}, there is
an orthonormal basis {�εS1 , ....,�εSn} then if a generic vector
�v =

∑
i vi�εSi then S

t ·�v =
∑

i λ̃
t
ivi�εSi . Thus, S = U

−1Λ U,
where Λ is the diagonal matrix with the eigenvalues of S

down the diagonal, and U is a unitary matrix.
So, using Perron-Frobenius again, which tells us that

ρ(S) ≥| λ̃i | then | St · �v | is dominated by ρ(S)t | v1 |
which, if ρ(S) < 1, approaches zero as t grows. Therefore,

ρ(S) < 1 =⇒ lim
t→∞ S

t = lim
t→∞U

−1Λt
U = [0].

In particular, since 0 < ρ(A) and using Eq. (15), we have

ρ(S) < 1 ⇐⇒ β

δ
<

1

ρ(A)
. (16)

Which is the same as

λSmax < 1 ⇐⇒ β

δ
<

1

λAmax

. (17)

We note that our approximations and approach were
guided by the existing literature (Wang et al. 2003;
Chakrabarti et al. 2008; Prakash et al. 2011; Prakash 2012;
Jamakovic et al. 2006; Mieghem, Omic, and Kooij 2009;
Mieghem 2011; Newman 2010) . However, we note that we
only “prove” one way, not if and only if. Because that is not
a correct result, the result should be thought of as a phase
transition value. Furthermore, we do not find it necessary
to appeal to continuous Markov type models, and apply re-
sults from the stability of differential equations, for a dis-
crete problem. Thus, we end up with the approximate result:

β

δ
<

1

λAmax

=⇒ lim
t→∞

�Pt = �0 . � (18)

Keep in mind that many approximations were done to
achieve the above result, and also that it is a probabilistic re-
sult. We have run simulations, varying β and δ so that their
ratio was constant but we could force an epidemic to live on
for a long time or die out quickly regardless if the above in-
equality is satisfied. However, the literature does show that
it is a good rule of thumb, and should be considered a phase
transition point. This is not surprising because the cutoff
value 1

λAmax
in fact is the boundary between 0 being a lo-

cally asymptotic stable fixed point or not (van den Driessche
and Watmough 2002).

Table 1: Spectral radius as function of n
n Ln Rn Sn Kn

2 1 NA 1 1
3 1.412 2 1.412 2
4 1.618 2 1.732 3
5 - 2 - 4
6 - 2 - 5

10 - 2 - 9
n 2 cos

(
π/(n+ 1)

)
2

√
n− 1 n-1

∞ 2 2 ∞ ∞

Discussion

Our heuristic rule of thumb Eq. (10) should really be ex-
pressed as an approximation, that is:

β

δ
� 1

λAmax

. (19)

We note that as the cure rate approaches zero, the epidemic
never dies out — this is not surprising. Even though the
above is an approximation if we can lessen λAmax

which
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Figure 2: Various Team Topologies

increases 1/λAmax
we should make it harder for a virus to

spread.
We remind the reader that this infection/knowledge trans-

fer model is based upon an exact mathematical model that
may not represent all ways for a team to get smarter.
However, this model does capture the topological flavor of
knowledge transfer in a simple manner that relates to how
we may want to model communication paths in a team. Of
course, if all players can directly converse with all players
(via one hop) we are in the best possible situation.

We must keep in mind though that we cannot just blindly
throw mathematical models at the problem. If the knowl-
edge we are discussing is a social or cultural knowledge,
then there may exist hard bounds given by the team bound-
aries.

Spectral radius for various graphs

Let us consider what we have above, keeping in mind that
the spectral radius is the inverse of the maximal eigenvalue.
Let us state our thinking below.

Spectral Analysis of Team Efficiency The larger the
spectral radius of the topology of a team, the more efficient
it will be, for all other things being equal.

Let us go back to Table 1. The line graph Ln has the
smallest spectral radius. This makes sense, the only way that
knowledge can be passed is down the line, and it takes time.
If there are 10 people on the team the average number of
hops to pass knowledge, and hence influence the dependent
random variables is approximately 5. The ring graph Rn is
a bit better because we can go to the left of the right, the star
graph Sn is even better since we are never more than 2 hops
away. Of course the completely connected graph Kn is the
best, every player is 1 hop away from another.

Consider Figure 3. We envision a team structure where
the manager is the top node, the two assistant managers are
on the middle row, and the four workers are on the bottom
row. Upon inspection it would appear that ET has better team
efficiency as time evolves, than does CT. Lets us look at the
maximal eigenvalues of the associated adjacent matrices.

Figure 3: Two Team Structures:top row node 1, middle row
nodes 2,3 (left to right), bottom row nodes 4,5,6, & 7 (left to
right)

CT =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 0 0 1 1
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

and

ET =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 1 1
1 0 0 1 1 0 0
1 0 0 0 0 1 1
1 1 0 0 0 0 0
1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

One can show that λCTmax
= 2 and λETmax

= 3.24, thus
our mathematics backs our intuition. Of course, one could
obviously look at the team structure and see that in CT, a
manager can influence a worker in at best two time steps,
where as in ET, it only requires one. We certainly did not
need any fancy spectral analysis to see that. Rather, we used
this example as a proof of our reasoning.

This reasoning leads us to the following: (Keep in mind
that our infection rate is the rate of the spread of knowledge,
there is no cure rate. For now at least we do not assume that
the players get stupider.)

PARADIGM 1 We make it harder for knowledge to
spread by lessening the spectral radius of the connected
graph. Mathematically, with connected G and connected
G′: If [G] = [G′], and λGmax

< λG′
max

, then we say that
the team represented by G performs poorer than the team
T ′ represented by G′.

PARADIGM 2 Given connected G if we can remove
links, but not nodes, and arrive at connected G′, so that
[G] = [G′] and λG′

max
< λGmax

, then we have modified
G into a poorer performer G′, that still connects the same
nodes. Of course, turning this around we find ways to in-
crease team performance.

Conclusion

Thus, team topology has a strong affect upon how teams per-
form. The more connected the are, the better, over time the
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team should perform. Table 1 shows how the spectral ra-
dius (maximal eigenvalue) for various team configurations
changes as a function of the number of nodes. Ln is a linear
graph, Rn is a ring graph, Sn is a star configuration, and Kn

is a completely connected graph (clique).
The new metric we have proposed Efficiency is entropy

based. The interaction between the random variables model-
ing how team players behave is influenced by the other ran-
dom variable, via the various links in the team graph struc-
ture. A random variable may not directly influence another
via a direct hop, it might take several hops, and if proba-
bilistic effects are incorporated into the modeling the graph
theoretic approach applies.
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