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Abstract

Traditional approaches to knowledge base completion
have been based on symbolic representations. Low-
dimensional vector embedding models proposed re-
cently for this task are attractive since they generalize to
possibly unlimited sets of relations. A significant draw-
back of previous embedding models for KB completion
is that they merely support reasoning on individual re-
lations (e.g., bornIn(X,Y ) ⇒ nationality(X,Y )).
In this work, we develop models for KB completion that
support chains of reasoning on paths of any length us-
ing compositional vector space models. We construct
compositional vector representations for the paths in the
KB graph from the semantic vector representations of
the binary relations in that path and perform inference
directly in the vector space. Unlike previous methods,
our approach can generalize to paths that are unseen in
training and, in a zero-shot setting, predict target rela-
tions without supervised training data for that relation.

1 Introduction

Knowledge base (KB) construction has been a focus of re-
search in natural language understanding, and large KBs
have been created, most notably Freebase (Bollacker et al.
2008), YAGO (Suchanek, Kasneci, and Weikum 2007) and
NELL (Carlson et al. 2010). These KBs contain several mil-
lion facts such as (Barack Obama, presidentOf, USA) and
(Tom Brady, memberof, New England Patriots). However,
these KBs are incomplete (Min et al. 2013) and are missing
important facts, thus jeopardizing their usefulness for down-
stream tasks.

Previous work in KB completion (Mintz et al. 2009;
Lao, Mitchell, and Cohen 2011; Lao et al. 2012) use sym-
bolic representations of knowledge and are bound to a fixed
and hand-built schema. Low-dimensional vector embedding
models proposed recently (Riedel et al. 2013; Bordes et al.
2013) are attractive since they generalize to possibly un-
limited set of relations. A drawback of previous work in
using embedding models for KB completion is that they
merely support simple reasoning of the form A ⇒ B (e.g.,
bornIn(X,Y ) ⇒ nationality(X,Y )).
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Figure 1: Vector Representations of the paths are computed
by applying the composition function recursively.

A more general approach for KB completion is to infer
missing relation facts of entity pairs using paths connect-
ing them in the KB graph (Lao, Mitchell, and Cohen 2011;
Gardner et al. 2013). The KB graph is constructed with the
entities as nodes and (typed) edges indicating relations be-
tween them. For example, if the KB contains the facts Is-
BasedIn(Microsoft, Seattle), StateLocatedIn(Seattle, Wash-
ington) and CountryLocatedIn(Washington, USA), we can
infer the fact CountryOfHeadquarters(Microsoft, USA) us-
ing the rule:
CountryOfHeadquarters(X, Y) :- IsBasedIn(X,A) ∧ StateLo-
catedIn(B, C) ∧ CountryLocatedIn(C, Y)

Here, (IsBasedIn - StateLocatedIn - CountryLocatedIn) is
a path connecting the entity pair (Microsoft, USA) in the
KB and IsBasedIn, StateLocatedIn, CountryLocatedIn are
the binary relations in the path.

Using paths as separate features to predict missing rela-
tions (Schoenmackers et al. 2010; Lao, Mitchell, and Co-
hen 2011; Lao et al. 2012), however, leads to feature space
explosion and poor generalization. Modern KBs have thou-
sands of relations and the number of paths is exponential
in the number of relations. Moreover, it is often beneficial
to add more information in the form of Subject-Verb-Object
(SVO) triples to the KB graph which further increases the
number of relations and paths in the KB graph, making the
feature explosion problem more severe. In fact, Gardner et
al. note that the performance of these methods drop signifi-
cantly as more facts are added to the KB.

Our approach constructs compositional vector representa-
tions for the paths in the KB graph from the semantic vector
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Figure 2: Two semantically similar paths connecting entity
pairs (Microsoft, USA) and (IBM, USA).

representations of the binary relations present in that path.
We use Recursive Neural Networks (RNNs) (Socher et al.
2011) to model semantic composition. Unlike previous ap-
proaches (Schoenmackers et al. 2010; Lao, Mitchell, and
Cohen 2011; Lao et al. 2012), our model can predict using
paths that are unseen in training, if the relations in the path
are observed in the training data. This ability to generalize is
crucial in modern KBs that have millions of paths connect-
ing entity pairs in the KB.

Experimental results show that our approach outperforms
previous methods when predicting relations having large
number of unseen paths and best performance is achieved
by combining the predictions of our approach with previous
work. We also develop a zero-shot model that achieves rea-
sonable performance (well above a random baseline) with-
out using any training data for the relation that it is predict-
ing.

2 Recursive Neural Networks for KB

Inference

In our model for KB inference, each binary relation is rep-
resented using a d-dimensional real valued vector. The vec-
tor representations of the paths in the KB are computed by
applying the composition function recursively as shown in
Figure 1. The composition function takes two d-dimensional
real valued vectors as input and outputs a new d-dimensional
real valued vector which can be recursively used to com-
pute vector representations for paths of any length. To model
composition, we adopt the method in Socher et al., where the
composition operation is performed using a matrix Wr ∈
R

d∗2d. Given the vector representation of the two children
(c1 ∈ R

d, c2 ∈ R
d), the vector representation of the parent

p ∈ R
d is given by p = f(Wr[c1; c2]), where f = tanh is

the element-wise non-linearity function, [a; b] represents the
concatenation of two vectors a ∈ R

d, b ∈ R
d to get a new

vector [a; b] ∈ R
2d and Wr is a matrix learned to perform

composition operation for predicting relation r between the
entity pairs.

We predict the missing relations of an entity pair using the
vector representations of the path connecting them. To pre-
dict missing relations, we compare the learned vector rep-
resentation of the relation to be predicted with the vector
representation of the path constructed using the composition
function (Socher et al. 2013).

Compositional vector space models help in handling the
feature space explosion problem faced by the classifier ap-
proach. For example in Figure 2, two entity pairs (Microsoft,
USA) and (IBM, USA) are connected using semantically sim-
ilar paths. Methods like Lao, Mitchell, and Cohen and Lao et
al. create two different features for these semantically simi-
lar paths. So, there is no sharing of parameters between these

two paths each having three binary relations, out of which
two of them are exactly the same and the other relation pair
is semantically equivalent. This leads to data sparsity issues
and drop in performance on large KBs (Gardner et al. 2013).
Our model overcomes this issue by constructing vector rep-
resentations for a path using the vector representations of the
binary relations in that path.

Modern KBs have thousands of relations and the number
of paths in the knowledge graph is exponential in the num-
ber of relations. Hence, handling unseen paths is crucial to
achieve good performance. By creating a feature for every
path in the knowledge graph previous methods at prediction
time cannot handle paths that are not observed in the training
data. In contrast, our method can construct vector represen-
tation of paths that are unseen while training, if the binary
relations in the path are observed in the training data.

Pre-Trained Vectors for Binary Relations

We initialize the vector representations of the binary re-
lations using the representations learned in Riedel et al.
which is useful for the following reasons: (1) Good initial-
ization could lead to a better local optimum solution since
the objective function is non-convex. (2) At test time un-
like previous approaches (Lao, Mitchell, and Cohen 2011;
Lao et al. 2012), our method can handle any binary relation
in the KB even if they are not seen in the training data. By
using the pre-trained vector representations of the binary re-
lations we can estimate the vector representation of the path
even if the binary relations in that path are never observed
during training.

3 Zero-shot KB Inference

In zero-shot or zero-data learning (Larochelle, Erhan, and
Bengio 2008), training data for a few classes is omitted and a
description of those classes is given only at prediction time.
We propose a zero-shot model for KB inference where we
can predict relations that are unseen during training. Here,
instead of learning a separate composition matrix for every
relation that is being predicted we learn a single composi-
tion matrix. The composition operation is always performed
using a matrix W ∈ R

d∗2d irrespective of the relation to be
predicted. Given the vector representation of the two chil-
dren (c1 ∈ R

d, c2 ∈ R
d), the vector representation of the

parent p ∈ R
d is given by p = f(W [c1; c2]), where W is

a general composition matrix learned to construct the vector
representation of a path.

We fix the vectors of the relations in the path and the re-
lations to be predicted with vector representations learned
using Riedel et al.. A single composition matrix, irrespec-
tive of the relation to be predicted empowers the model to
make predictions on relation types for which there are no
training data examples.

The objective function minimized by this model is convex
since the parameters to be learned are only the composition
matrix. Hence, training in this model is guaranteed to con-
verge to the global optimum solution.
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Metric LR LR-b RNN-r RNN RNN + LR RNN + LR-b Random ZS

Average MAP 0.5625 0.5715 0.5505 0.5699 0.5853 0.5923 0.2028 0.3833
Weighted MAP 0.5175 0.5324 0.5185 0.5198 0.5403 0.5492 0.1475 0.3248

Average MAP (flipped) 0.4668 0.4642 0.4390 0.4707 0.4892 0.4965 0.1366 0.3923
Weighted MAP (flipped) 0.5136 0.5139 0.4806 0.4901 0.5289 0.5297 0.1376 0.3767

Table 1: Results on the original and flipped dataset. LR: logistic regression. LR-b: LR with bigram features. RNN-r: recursive
neural network initialized with random relation vectors. RNN: recursive neural network initialized with pre-trained relation
vectors. RNN+LR/LR-b: Combination of RNN with LR/LR-b. Random: Random baseline. ZS: Zero-shot model.

Relation LR RNN UP Ratio
stadiumlocatedincity 0.2694 0.4029 0.950
countryhascompanyoffice 0.2127 0.2545 0.937
cityliesonriver 0.2634 0.3998 0.910
headquarteredin 0.3088 0.3550 0.910
companyceo 0.7605 0.8525 0.828
citylocatedincountry 0.4326 0.2073 0.783
locationlocatedwithinlocation 0.3679 0.3803 0.710
athleteplaysforteam 0.2404 0.3469 0.642
athleteplaysinleague 0.7600 0.7077 0.597
writerwrotebook 0.8845 0.8129 0.567
publicationjournalist 0.6718 0.5801 0.566
teamplaysagainstteam 0.4301 0.3487 0.211

Table 2: Per relation results on the flipped dataset. UP Ratio: ratio of unseen paths in test.

4 Related Work

KB Inference: Methods such as Lin and Pantel, Yates and
Etzioni and Berant, Dagan, and Goldberger learn inference
rules of length one. Schoenmackers et al. learn general in-
ference rules by considering the set of all paths in the KB
and selecting paths that satisfy a certain precision thresh-
old. Their method does not scale well to modern KBs and
also depends on carefully tuned thresholds. Lao, Mitchell,
and Cohen trained a simple logistic regression classifier with
NELL KB paths as features. Gardner et al. add SVO triples
to the KB graph, and cluster them in order to overcome fea-
ture sparsity. Our method is not directly comparable with
them since their method operates on a different set of clus-
tered features.

Compositional Vector Space Models: There has been
plenty of work on compositional vector space semantics
of natural language (Mitchell and Lapata 2008; Baroni and
Zamparelli 2010; Yessenalina and Cardie 2011). RNNs have
been successfully used to learn vector representations of
phrases using the vector representations of the words in that
phrase (Socher et al. 2012).

5 Experiments

For all our experiments we train the network for 50 iterations
using 25 dimensional vectors for the binary relations and
set the L2-regularizer and learning rate to 0.00001 and 0.01
respectively. The neural network is trained using the back
propagation algorithm as described in Socher et al.. When
we learn a separate composition matrix for every relation to
be predicted we update both the vector representations and
the composition matrix while in the zero-shot experiments

we update only the composition matrix.
First, we tested our approach on the dataset described in

Gardner et al.. The methods are evaluated on 12 relations.
The dataset contains facts from the NELL KB (Carlson et al.
2010) and SVO triples from Clueweb (Orr et al. 2013). This
dataset was constructed by aggressive feature pruning so that
the classifier can handle the number of features that are cre-
ated. Given that the number of relations in the KB graph is
218, 913 the number of paths that were considered for pre-
dicting each relation is only 750. This makes the number of
unseen paths in prediction time unrealistic. The percentage
of unseen paths to the total number of paths in test data is
just 1.7% in this dataset, resulting in an unrealistically opti-
mistic setting.

To make the evaluation more realistic, we therefore
flipped the dataset by training on the test data and evalu-
ating on the training data. The percentage of unseen paths
in this case is on average 71.8%. For the zero-shot model to
make predictions on a relation type we train on the exam-
ples of the other eleven relations. The number of entity pairs
per relation that are used for training averages to 670 for the
original dataset and to 77 for the flipped dataset.

The results for both settings are shown in Table 1. Ini-
tialization with pre-trained vectors helps the RNN model to
achieve better performance. The logistic regression classifier
and the RNN give similar performance, while their combi-
nation gives best performance on both datasets. Even though
the Zero-shot method does not use any supervised training
data for the relation being predicted, it performs better than
the random baseline method. Table 2 shows the per-relation
results for the flipped data-set, sorted by unseen paths ratio.
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The RNN approach significantly outperforms the classifier
on the five relations having the highest unseen paths ratio.

6 Conclusion

We developed a compositional vector space model for
knowledge base inference that unlike previous methods gen-
eralizes to paths which are unseen in training. Empirical re-
sults show that our method outperforms previous work on
predicting relations that have a high unseen paths ratio, and a
combination of our model with a classifier based on path fea-
tures achieves best performance. The zero-shot model can
successfully predict missing instances of relation types that
are unoberved in training.
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