
A CLIB-Inspired Library of Commonsense Knowledge
in Modular Action Language ALM

Daniela Inclezan
Miami University

Oxford, Ohio 45056
inclezd@MiamiOH.edu

Abstract

This paper describes a modular action language, ALM,
dedicated to the specification of complex dynamic sys-
tems. One of the main goals of the language is to facil-
itate the development and testing of knowledge repre-
sentation libraries. We present the implementation of a
large scale library of commonsense concepts, achieved
by porting knowledge from the Component Library
(CLIB) into ALM. Our choice of CLIB as a source
of inspiration is justified by the well-founded method-
ology used by its authors in selecting the general con-
cepts it contains, and its extensive testing in the context
of the Automated User-centered Reasoning and Acqui-
sition System. The resulting ALM library has the ad-
ditional advantage of incorporating established knowl-
edge representation methodologies developed in the ac-
tion language research community.

Introduction
This paper describes a modular action language, ALM (Ac-
tion Language with Modules), dedicated to the specifica-
tion of complex dynamic systems, and presents the imple-
mentation of an ALM library of commonsense concepts,
achieved by translating knowledge from the Component Li-
brary (CLIB) (Barker, Porter, and Clark 2001) into ALM.

Dynamic systems that change because of actions and
evolve in discrete steps (i.e., discrete dynamic systems)
can theoretically be modeled by transition diagrams whose
nodes represent physical states of the domain and whose arcs
are labeled by actions. Action languages (Gelfond and Lif-
schitz 1998) were introduced as one of the solutions to the
long debated problem of finding the concise and mathemat-
ically accurate description of transition diagrams. These are
formal languages that describe the effects of actions and ac-
tion preconditions in a syntax close to that of natural lan-
guage. Several action languages exist nowadays. They incor-
porate, in various degrees, solutions to important problems
from the field of representing and reasoning about actions
(e.g., the frame, ramification, or qualification problems).
Action languages sometimes differ in their underlying as-
sumptions. For instance, the semantics of action language

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

AL (Turner 1997; Baral and Gelfond 2000) relies on the In-
ertia Axiom (McCarthy and Hayes 1969), which expresses
the intuition that “Normally things stay the same”.

Although traditional action languages represent a sub-
stantial advancement, they are unsuitable for representing
knowledge about large dynamic systems. First of all, they
lack the means for structuring knowledge and representing
hierarchies of abstraction, relevant for the design of knowl-
edge bases and the creation of libraries. Secondly, traditional
action languages do not thoroughly address the issue of how
to represent objects of the domain (including actions). They
do not possess means for describing optional attributes of
objects, or objects as special cases of other objects—a com-
mon practice in natural language (e.g., “carry” is defined as
“move while holding,” a special case of “move”).

Modular action language ALM intends to remedy these
problems and allow for the elaboration tolerant representa-
tion of knowledge about large dynamic systems. ALM in-
corporates the underlying ideas of AL, and addresses the
issues of the traditional approach by (1) separating a gen-
eral theory from its structure; (2) organizing knowledge into
modules; (3) introducing classes of objects with optional at-
tributes; and (4) allowing the declaration of classes in terms
of previously defined ones. Other modular action languages
exist, but they have different underlying assumptions. For
instance, modular language MAD (Lifschitz and Ren 2006;
Erdoǧan and Lifschitz 2006) is based on the Causality Prin-
ciple that says that “everything true in the world must be
caused” (McCain and Turner 1997; Giunchiglia and Lifs-
chitz 1998; Giunchiglia et al. 2004).

A first version of our language was introduced in (Gelfond
and Inclezan 2009). Since then, substantial improvements
have been made based on our practice in formalizing knowl-
edge. As an example, we tested our language in the context
of Project Halo (Gunning et al. 2010) by representing spe-
cialized knowledge about a biological process (Inclezan and
Gelfond 2011).

After defining our language, our next goal was to develop
an ALM library of commonsense knowledge that would fa-
cilitate the description of large dynamic systems through the
reuse of its components. We started by creating a small li-
brary of motion. We were satisfied with the result, and were
able to use our representation in solving reasoning tasks by
combining system descriptions of ALM with reasoning al-

82

Logical Formalizations of Commonsense Reasoning: Papers from the 2015 AAAI Spring Symposium



gorithms written in Answer Set Prolog (Gelfond and Lifs-
chitz 1988; 1991). However, we were not sure what criteria
to use for the selection of further concepts, general enough
to deserve inclusion in our commonsense library.

An answer to our question was provided by our collab-
oration on project AURA (Automated User-centered Rea-
soning and Acquisition System) (Chaudhri et al. 2007;
Clark et al. 2007; Chaudhri et al. 2009). AURA is a knowl-
edge acquisition system that allows domain experts to en-
ter knowledge and questions related to different disciplines,
with minimum support from knowledge engineers. Our task
within the project was to revise a section of AURA’s core
knowledge base, called Component Library (CLIB), from
the point of view of its soundness and completeness with re-
spect to the goals of AURA (Chaudhri, Dinesh, and Inclezan
2014). CLIB (Barker, Porter, and Clark 2001) is a vast li-
brary of general, reusable knowledge components with goals
similar to ours. It was extensively tested in AURA along the
years and, more importantly for us, its concepts were se-
lected using a well-founded methodology, based on lexical
and ontological resources. We benefited from these key fea-
tures of CLIB by porting the library, in its revised form re-
sulting from our analysis, into ALM. The resulting ALM
library combines the advantages of CLIB with those of in-
corporating established knowledge representation method-
ologies developed in the action language community. The
process of creating a CLIB-inspired library in ALM has
also allowed us to find a few areas of future refinement of
our language and the methodology of its use.

In what follows we describe language ALM. We present
CLIB and AURA, and introduce our CLIB-inspired library
in ALM. We end with conclusions and future work.

Modular Action Language ALM
Syntax
A dynamic system is represented in ALM by a system de-
scription that consists of two parts: a general theory (i.e., a
collection of modules with a common theme organized in a
hierarchy) and a structure (i.e., an interpretation, in the clas-
sical logic sense, of some of the symbols in the theory). A
module is a collection of declarations of classes and func-
tions together with a set of axioms. The purpose of a mod-
ule is to allow the organization of knowledge into smaller
reusable pieces of code – modules serve a similar role to
that of procedures in procedural languages.

We briefly illustrate the syntax of ALM via some ex-
amples. Note that boldface symbols denote keywords of the
language; identifiers starting with a lowercase letter denote
constant symbols; and identifiers starting with a capital letter
denote variables.

Let us consider a dynamic system in which we have
things and discrete points in space. Certain things, called
movers, are able to move from one point to another. We are
interested in the locations of things, as well as the effects
of action move and its executability conditions. To describe
this domain, we create a module called basic motion that
we declare as follows:

module basic motion

Then, we declare the classes of objects in our domain,
which are organized into a DAG class hierarchy with the
root universe; points, things, and actions are children of
universe; movers is a child of things; and move is a child
of actions. Note that in our language universe is a pre-
defined class and the root of every class hierarchy.

class declarations
points, things :: universe
movers :: things

The above declarations say that things, points, and
movers are classes, where movers is a special case of
things. The symbol :: above denotes the specialization
construct, introduced to represent links between nodes in the
class hierarchy. Multiple links can be represented in a single
statement, as shown in the declaration of classes points and
things.

The only class remaining to declare is move, which is a
subclass of the pre-defined class actions of our language;
move has three attributes (i.e., three intrinsic properties):
actor, origin, and destination (shortened as dest). These
are possibly partial functions that map elements of class
move into elements of class movers, points, and points,
respectively. For readability purposes, we do not repeat the
domain move of these attributes and simply write:

move :: actions
attributes
actor : movers
origin : points
dest : points

The next component of our module is the declaration of
functions in our domain. Functions represent relevant rela-
tions between domain objects, and are divided into statics
(those properties that cannot be changed by actions) and
fluents (those that can). Statics and fluents are further di-
vided into basic and defined, where defined functions are
described in terms of other functions and can be viewed
as shorthands used for the ease of representation. In our
basic motion domain, the only property of interest is the
location of things, which can be changed by actions of type
move – hence it is a fluent; it is also a basic and total fluent,
as we will not define it in terms of other functions and we
assume that the location of all things is known at each step
in time. We encode all this information in ALM as follows:

function declarations
fluents

basic
total loc in : things → points

The final part of a module contains axioms that describe
direct effects of actions (dynamic causal laws), indirect ef-
fect of actions (state constraints), definitions of defined
functions (function definitions), and conditions for the exe-
cutability of actions (executability conditions). This section
starts with the keyword

axioms

followed by domain axioms ending with a period symbol
(.). In our scenario, we have a dynamic causal law specify-
ing that the actor of a move action will be located at the
destination after the execution of the action:

83



occurs(X) causes loc in(A) = D
if instance(X,move),

occurs(X),
actor(X) = A,
dest(X) = D.

We also have two executability conditions, one of them spec-
ifying that a move action cannot occur if the actor is not
located at the origin:

impossible occurs(X)
if instance(X,move),

actor(X) = A,
origin(X) = O,
loc in(A) �= O.

and the other preventing circular movements in which the
destination is the same as the initial location of the actor:

impossible occurs(X)
if instance(X,move),

actor(X) = A,
dest(X) = D,
loc in(A) = D.

Next, let us illustrate how classes of ALM can be defined
in terms of other classes. Let us imagine that some of the ob-
jects of our domain are light enough to be carried between
points by movers. We call such objects carriables. In the
dictionary, action carry is defined as “to move while sup-
porting.” To encode this information, we expand the module
basic motion by the following class declarations:

carriables :: things
carry :: move
attributes
carried thing : carriables

This says that carry is a special case of the action class
move, meaning that, in addition to its own attributes and
axioms, carry inherits the attributes and axioms of move.

Our module will also contain the following basic total flu-
ent declaration, which will be added underneath the declara-
tion of loc in shown above:

total supports : things× carriables → booleans
(We assume that booleans is a pre-defined and pre-
interpreted class of our language).

We expand the axioms of the original module by the fol-
lowing state constraint saying that the location of a sup-
ported thing is the same as the location of its supporter:

loc in(C) = loc in(T ) if supports(T,C).
and the executability condition:

impossible occurs(X)
if instance(X, carry),

actor(X) = A,
carried thing(X) = C,
¬supports(A,C).

that says that only the supporter of a thing can carry it
around.

New modules of knowledge can be developed and tested
independently from existing ones, while reusing already en-
coded information from the older modules. This is done
via the module dependency syntactic construct that allows
knowledge engineers to create tree-like hierarchies of mod-
ules in which declarations and axioms from parent modules
do not have to be explicitly repeated in children modules,

as they are considered implicit. A collection of modules sat-
isfying certain restrictions forms a theory of ALM. Intu-
itively, a theory describes a collection of transition diagrams
corresponding to different scenarios that may differ in the
instantiation of classes of the theory or the values of statics.

Theories containing very general information can be
stored into libraries and can be imported from there
into system descriptions using import statements. For in-
stance, imagine that the general knowledge about mo-
tion represented above is stored in a theory called
commonsense motion, which currently consists of only
the basic motion module, and that this theory is part of a
library named commonsense lib.

The second part of a system description, specified after
the theory, is its structure. The structure represents a spe-
cific scenario for the domain described in the theory. For
example, let us consider a scenario of the motion domain
described earlier, in which two people, John and Bob, travel
between London and Paris; Bob may carry his suitcase with
him. To encode this scenario, we start with the keyword
structure and a name, and continue with the definitions of
instances of our classes:

structure travel
instances
john, bob in movers
london, paris in points
suitcase in carriables
move(A,P ) in move
actor = A
dest = P

bob suitcase lp carry in carry
actor = bob
carried thing = suitcase
origin = london
dest = paris

The definition of move(A,P ) above, called an instance
schema, is a shorthand for a set of instances that includes,
for example, the instance:

move(john, london)
with the following values assigned to its attributes:

actor = john
dest = london

Our particular domain is described by a system descrip-
tion whose theory, commonsense motion, is imported
from the commonsense lib library and whose structure is
the one presented earlier:

system description travel
import commonsense motion

from commonsense lib
structure travel
〈structure body〉

This concludes the brief exemplification of the syntax of
ALM.

Informal Semantics
Semantically, a theory can be viewed as a function that maps
possible interpretations of its symbols into transition dia-
grams describing dynamic domains. We give the semantics

84



of ALM by defining the states and transitions of the transi-
tion diagram defined by a system description. For that pur-
pose, we encode statements of the system description into
a logic program of ASP{f} (Balduccini 2012), an extension
of Answer Set Prolog (Gelfond and Lifschitz 1991) by non-
Herbrand functions. The states and transitions of the corre-
sponding transition diagram will be determined by parts of
the answer sets of this logic program. As an example, the
dynamic causal law about actions of the type move shown
earlier is encoded as the following ASP{f} rule:

loc in(A, I + 1) = D ← instance(X,move),
occurs(X, I),
actor(X) = A,
dest(X) = D.

The remainder of the theory is translated in an equally sim-
ple manner. The structure is encoded using statements like:

instance(bob,movers).
instance(move(A,P ),move) ←

instance(A,movers),
instance(P, points).

Note that the encoding of a theory in ASP{f} needs to be
done only once. Then, this encoding can be used together
with the encodings of any number of its structures. This il-
lustrates the reuse of knowledge in ALM.

System descriptions of ALM are normally used in con-
junction with the description of the system’s history (Bal-
duccini and Gelfond 2003) to perform a variety of reasoning
tasks like temporal projection, diagnosis, or reasoning about
process interruptions (Inclezan and Gelfond 2011).

CLIB and AURA
CLIB (Barker, Porter, and Clark 2001) is an ontology of gen-
eral, reusable, composable, and interrelated components of
knowledge. One of its goals is to provide domain experts
with means for encoding knowledge from their fields, with
no or minimal involvement from the part of knowledge engi-
neers. Notions included in CLIB were selected using a solid
methodology relying on linguistic and ontological resources
such as WordNet,1 FrameNet,2 VerbNet,3 a thesaurus and
an English dictionary, as well as various ontologies from the
semantic web community. CLIB was built with three main
design criteria in mind: (1) coverage: CLIB should con-
tain enough components to allow representing a variety of
knowledge; (2) access: components should meet users’ in-
tuition and be easy to find; and (3) semantics: components
should be enriched with non-trivial axioms.

The library is written in the knowledge representation
language of Knowledge Machine (KM) (Clark and Porter
2004). KM is a frame-based language with first-order logic
semantics. It has two types of basic concepts: class and in-
stance. A slot is a special type of a class that defines a rela-
tion between two classes (it sometimes corresponds to an at-
tribute of a class in ALM). CLIB organizes its components
into three main classes: entities, events, and roles. Events
are divided into actions and states. An example of a CLIB

1wordnet.princeton.edu/
2framenet.icsi.berkeley.edu/
3verbs.colorado.edu/verb-index/

state is Be-Touching, which would be called a domain
property in action language terminology. A state of CLIB
should not be confused with a state of a transition diagram.
To distinguish between the two, we will use the expression
“CLIB-state” for the former and “state” for the latter. The
CLIB library was integrated in two systems developed at
SRI International, SHAKEN and its successor AURA, and
was extensively tested as a result.

AURA (Automated User-centered Reasoning and Acqui-
sition System) (Chaudhri et al. 2007; Clark et al. 2007) is a
knowledge-based system whose goal is “to enable domain
experts to construct declarative knowledge bases from parts
of a science textbook for Physics, Chemistry, and Biology in
a way that another user can pose questions similar to those
in an Advanced Placement exam and get answers and expla-
nations” (Chaudhri et al. 2009). In AURA, domain experts
encode new knowledge by building upon the general con-
cepts of CLIB: they create directed graph structures spec-
ifying relations between new and existing components in
a user-friendly graphical interface. Tests performed on the
system showed promising results: knowledge was captured
in a speedy manner and at least 70% of the questions from an
Advanced Placement test suite were accurately answered by
the AURA system in all three domains of interest (Gunning
et al. 2010). These results seem to demonstrate that CLIB
is a valuable library of general concepts. On the other hand,
the extensive use of CLIB by knowledge engineers also indi-
cated aspects of the library that needed revision. The author
of this article was involved in the activity of reviewing and
refining part of CLIB based on the lessons learned from its
use in AURA (Chaudhri, Dinesh, and Inclezan 2014).

As a second task within project AURA, we translated
CLIB into modular action language ALM. The goal was
to create a CLIB-inspired knowledge base that would take
advantage of the methodologies developed in the action
language community for the representation of knowledge
and reasoning about dynamic systems (e.g., solutions to the
frame and ramification problems). ALM is a good choice
for such an endeavor as its relative closeness to the object-
oriented paradigm (in comparison with more traditional ac-
tion languages) eases the translation from KM. More impor-
tantly, encoding CLIB in ALM leads to an improved repre-
sentation of CLIB action classes, as detailed below:

1. Axioms are specified in ALM in an elaboration toler-
ant way, and in a syntax close to that of natural language,
whereas in KM they are described using STRIPS-like op-
erators (e.g., add lists, delete lists, etc.) and a more com-
plex syntax at times.

2. System descriptions of ALM can be used to solve vari-
ous computational tasks by coupling them with reasoning
algorithms written in ASP or its extensions (e.g., ASP{f}
(Balduccini 2012), CR-Prolog (Balduccini and Gelfond
2003)). On the other hand, the inference engine of KM
cannot perform planning nor postdiction (i.e., projection
backwards in time when the present is not completely
known). As a result, the ALM version of CLIB could
be used to answer more complex questions about the tar-
geted scientific domains, for instance questions that re-

85



quire finding a diagnostic (e.g., “A sample cell was situ-
ated in a medium favorable to cell division. However, cell
division did not occur. What can be the explanation?”).

A CLIB-Inspired ALM Library
Our ALM translation focused mainly on the 147 actions
of CLIB, but some related concepts, such as CLIB-states,
had to be addressed as well. The result was an ALM li-
brary called clib consisting of eight theories. In what fol-
lows, we describe some of the challenges we encountered
in constructing this library and show more details about one
of the produced ALM modules, contained by the motion
theory of this new library.

Challenges
In porting the CLIB library into ALM we had two main
concerns:

1) How to translate entities, events, and roles of CLIB into
classes, functions, and axioms of ALM.

2) How to conveniently group the resulting classes, func-
tions, and axioms into modules of ALM.
In addressing the first concern, we faced several difficul-

ties, most of them derived from the differences in basic con-
cepts between KM and our language:
• The two languages share the basic concepts of class and

instance, but ALM has an extra concept, that of a func-
tion. Properties of dynamic systems (i.e., domain proper-
ties: statics and fluents) are described in ALM by func-
tions. On the other hand, CLIB-states, which correspond
roughly to domain properties, are represented in CLIB
by classes, and their parameters and range are encoded
by attributes of these classes, where attributes may be
optional. For instance, the declaration of the CLIB-state
Be-Accessibile looks as follows:
(Be-Accessible has
(superclasses (State)))

(every Be-Accessible has
(object ((a Entity)))
(base ((must-be-a Thing))) ...

This says that a Be-Accessible CLIB-state has an
object that is required and must be of type Entity,
and a base that is optional, but if it exists it must
be of type Thing. If we think in terms of functions,
Be-Accessible is a boolean function with a variable
arity, either 1 or 2. The translation challenge is that in
ALM the number and order of a function’s parameters
is fixed. To solve this problem, multiple domain proper-
ties are defined in ALM for each CLIB-state with op-
tional parameters, to reflect the various combinations of
required and optional parameters. For instance, the CLIB-
state Be-Accessible is encoded in ALM using two
domain properties, declared as follows:
fluents
basic accessible to : thing × entity → booleans
defined accessible : entity → booleans

The domain property accessible will be defined in terms
of accessible to via state constraints.

• As CLIB-states are specified by classes and classes can
be organized in inheritance hierarchies, a CLIB-state can
be defined in terms of other CLIB-states. For instance, the
CLIB-state Be-Attached-To is defined in terms of the
CLIB-state Be-Touching:

(Be-Attached-To has
(superclasses (Be-Touching)))

In ALM however, only classes are organized into a hi-
erarchy, but not functions. This issue is addressed by in-
troducing state constraints stating that a domain property
must hold in every state of the transition diagram in which
the properties specializing it also hold. Let us take the ex-
ample of the CLIB-state Be-Touching, with two re-
quired attributes, and its subclass Be-Attached. We
model this relation by the state constraint:
touching(X,Y ) if attached to(X,Y ).

• Certain features of CLIB have no translation into concepts
of ALM. One such example are defeasible laws, for in-
stance soft preconditions for the execution of an action,
which are not always necessary to hold in order for the
occurrence of the action to be possible.

Regarding our second concern, the primary challenge was
that the main reusable unit of ALM is not that of a class, as
in CLIB, but rather that of a module, a concept that does
not exist in KM. This results from our knowledge repre-
sentation thought pattern, which revolves around the task
of specifying dynamic systems, not action classes in iso-
lation. To address this issue, we grouped action classes of
CLIB by themes. Some of the themes we identified were:
motion, accessibility, contact and attachment, resource man-
agement, collections, communication, or change in posses-
sion. The action classes corresponding to one theme were
all placed in the same module, unless there were too many
such classes. For instance, the theme of motion had to be
broken down into several modules (fundamental motion,
locomotion, container motion, etc.) to ensure their man-
ageable size and readability. All these motion modules, how-
ever, formed part of the same theory stored in the library.
Once action classes were assigned to a module, the ALM
module was completed with the translation of axioms and
of the related CLIB components mentioned in these axioms
(e.g., other classes of objects, CLIB-states, other actions in-
hibiting the execution of the selected actions). Classes of
CLIB that were recurrently referenced in other classes were
grouped in a high-level module upon which all other mod-
ules depended. Two examples are the hierarchy of entities,
captured by module entity ontology, and the general def-
inition of events and actions, included in a module called
general events. Both of these modules form part of a the-
ory fundamental concepts stored in the library. Below,
we show parts of the contents of these modules, after which
we will explain some key points.

theory fundamental concepts
module entity ontology
class declarations

entity :: universe
spatial entity :: entity . . .

86



module general events
depends on entity ontology
class declarations
event :: universe

attributes
agent : entity
object : entity
base : universe
origin : spatial entity
destination : spatial entity . . .

actions :: event
sequences of actions :: event
role :: universe

function declarations
statics
plays : entity × role× event → booleans

constants
target,medium, signal, resource : role

Notice first that the knowledge representation methodol-
ogy of CLIB differs from that of ALM illustrated by the
commonsense motion theory shown earlier. In CLIB, all
possible attributes of events are specified in the topmost
class of the hierarchy of events, whereas in the ALM theory
of commonsense motion, we only introduced attributes in
the subclasses of the pre-defined class actions as these at-
tributes became relevant to an action class. Moreover, the
attributes of the CLIB class event are all supposed to have
the same meaning across subclasses of this class with the ex-
ception of base; in commonsense motion attributes have
names closely related to the meaning of the action class to
which they belong (e.g., grasper and grasped thing in an
action class grasp). Which methodology is the best is still
up to debate. Second, notice how object constants (i.e., func-
tions of arity 0 such as target, medium, etc.) can be speci-
fied in the function declaration section of an ALM module,
in a subsection preceded by the keyword constants.

A CLIB-inspired fundamental motion Module
We further discuss our methodology of translating CLIB into
ALM by briefly focusing on the fundamental motion
module that includes actions move and carry.4

When creating the fundamental motion module, we
took advantage of the features of ALM, which encour-
age representing knowledge in as general terms as possi-
ble, and we introduced new classes to create a more gen-
eral representation. For instance, CLIB contains a class of
Spatial-Relations; we further divided this class into
the classes sym sp rel and antisym sp rel, denoting sym-
metric and antisymmetric spatial relations respectively, to
minimize the number of axioms in the encoding. We then
declared the different spatial relations defined in CLIB as
object constants of the ALM module. We introduced a new
basic fluent absent in CLIB, spatial sit, to describe the spa-
tial situation between two spatial entities, and a new defined
fluent, known spatial sit, to describe the spatial situation
of a spatial entity in terms of a place.

4See http://tinyurl.com/m5a9zn3. The CLIB counterpart can be
seen at http://tinyurl.com/k6z6ues.

In CLIB, the agent of a carry action is required (and
similarly for the object of move). We specified this in our
module via state constraints of the type

false if ¬domagent(X), instance(X, carry).

Function domagent above is considered implicitly declared
in module general events where attribute agent is de-
clared explicitly; ¬domagent(X) is to be read as “X is not
in the domain of function agent,” meaning that “function
agent is not defined on object X .”

It is important to remark that our fundamental motion
ALM module contains a much smaller number of axioms
and lines of code than its counterpart classes in CLIB –
the relevant part of the declaration of action classes Move
and Carry in CLIB totals approximately 300 lines, while
our module contains around 90 lines. As a consequence,
we believe that the ALM representation gains in readabil-
ity. All this is largely because of (1) the way action effects
and preconditions are specified in ALM; (2) the introduc-
tion of fluent spatial sit; and (3) the introduction of classes
sym sp rel and antisym sp rel with their constant ob-
jects. We also noticed that the use of the CLIB knowledge
representation methodology in which all actions may have
an agent (or other attributes) forced us to introduced addi-
tional executability conditions for move in order to cover the
case in which the optional attribute agent is actually speci-
fied. This indicates one disadvantage for the CLIB approach
of declaring all possible attributes in the event class.

Conclusions and Future Work
In this paper, we have described a modular action language,
ALM, suitable for the specification of large dynamic sys-
tems and for the development of knowledge representation
libraries. We have presented our approach of building a large
ALM library by translating CLIB—a library of general
components selected from lexical and ontological resources
based on a thorough methodology.

This work enables an informal comparison between two
knowledge representation languages: ALM and KM, the
language of CLIB. ALM has the advantage of a concise
representation of effects and preconditions of actions, as
well as an increased readability due to the structuring in
the same module of knowledge on a common theme. On
the other hand, KM allows the description of classes of
compound actions, which were not addressed by the current
translation. For instance, an action like Disperse–several
objects leaving the same place— cannot be elegantly repre-
sented in ALM currently, although instances of compound
actions can be represented. Future work on ALM will ad-
dress this issue.

A strength of CLIB is the ease of finding relevant com-
ponents in it, as the library provides users with well-
documented specifications of its components. This aspect
was not yet explored in the context of ALM, but will have
to be studied in the future.

Acknowledgments. This research was funded by SRI In-
ternational and Vulcan Inc.

87



References
Balduccini, M., and Gelfond, M. 2003. Diagnostic Reason-
ing with A-Prolog. TPLP 3(4–5):425–461.
Balduccini, M. 2012. A “Conservative” Approach to
Extending Answer Set Programming with Non-Herbrand
Functions. Correct Reasoning: Essays on Logic-Based AI in
Honour of Vladimir Lifschitz. Springer Verlag, Berlin. 23–
39.
Baral, C., and Gelfond, M. 2000. Reasoning Agents in Dy-
namic Domains. Norwell, MA: Kluwer Academic Publish-
ers. 257–279.
Barker, K.; Porter, B.; and Clark, P. 2001. A Library of
Generic Concepts for Composing Knowledge Bases. In Pro-
ceedings of the 1st international conference on Knowledge
capture, K-CAP ’01, 14–21. New York, NY, USA: ACM.
Chaudhri, V. K.; John, B. E.; Mishra, S.; Pacheco, J.; Porter,
B.; and Spaulding, A. 2007. Enabling experts to build
knowledge bases from science textbooks. In Proceedings
of the 4th international conference on Knowledge capture,
K-CAP ’07, 159–166. New York, NY, USA: ACM.
Chaudhri, V. K.; Clark, P. E.; Mishra, S.; Pacheco, J.;
Spaulding, A.; and Tien, J. 2009. Aura: Capturing knowl-
edge and answering questions on science textbooks. Tech-
nical report, SRI International.
Chaudhri, V.; Dinesh, N.; and Inclezan, D. 2014. Three
Lessons in Creating a Knowledge Base to Enable Explana-
tion, Reasoning and Dialog. Advances in Cognitive Systems
3:183–200.
Clark, P. E., and Porter, B. 2004. KM – The Knowledge
Machine 2.0: Users Manual. Retrieved from the web page:
http://www.cs.utexas.edu/users/mfkb/km/userman.pdf.
Clark, P.; Chaw, S.; Barker, K.; Chaudhri, V.; Harrison, P.;
John, B.; Porter, B.; Spaulding, A.; Thompson, J.; and Yeh,
P. Z. 2007. Capturing and answering questions posed to a
knowledge-based system. In Proceedings of Fourth Interna-
tional Conference on Knowledge Capture.
Erdoǧan, S., and Lifschitz, V. 2006. Actions as special cases.
In Principles of Knowledge Representation and Reasoning:
Proceedings of the International Conference. 377–387.
Gelfond, M., and Inclezan, D. 2009. Yet Another Modular
Action Language. In Proceedings of SEA-09, 64–78. Uni-
versity of Bath Opus: Online Publications Store.
Gelfond, M., and Lifschitz, V. 1988. The Stable
Model Semantics for Logic Programming. In Proceed-
ings of the International Conference on Logic Programming
(ICLP’1988), 1070–1080.
Gelfond, M., and Lifschitz, V. 1991. Classical Negation in
Logic Programs and Disjunctive Databases. New Genera-
tion Computing 9(3/4):365–386.
Gelfond, M., and Lifschitz, V. 1998. Action languages.
Electronic Transactions on AI 3(16):193–210.
Giunchiglia, E., and Lifschitz, V. 1998. An Action Language
Based on Causal Explanation: Preliminary Report. In Pro-
ceedings of National Conference on Artificial Intelligence
(AAAI), 623–630. AAAI Press.

Giunchiglia, E.; Lee, J.; Lifschitz, V.; McCain, N.; and
Turner, H. 2004. Nonmonotonic Causal Theories. Artifi-
cial Intelligence 153(1–2):105–140.
Gunning, D.; Chaudhri, V. K.; Clark, P.; Barker, K.; Chaw,
S.-Y.; Greaves, M.; Grosof, B.; Leung, A.; McDonald, D.;
Mishra, S.; Pacheco, J.; Porter, B.; Spaulding, A.; Tecuci,
D.; and Tien, J. 2010. Project Halo–Progress Toward Digital
Aristotle. AI Magazine 31(3):33–58.
Inclezan, D., and Gelfond, M. 2011. Representing Bio-
logical Processes in Modular Action Language ALM. In
Proceedings of the 2011 AAAI Spring Symposium on For-
malizing Commonsense, 49–55. AAAI Press.
Lifschitz, V., and Ren, W. 2006. A Modular Action Descrip-
tion Language. Proceedings of the Twenty-First National
Conference on Artificial Intelligence (AAAI), 853–859.
McCain, N., and Turner, H. 1997. Causal Theories of Action
and Change. In Proceedings of AAAI-97, 460–465.
McCarthy, J., and Hayes, P. J. 1969. Some Philosophical
Problems from the Standpoint of Artificial Intelligence. In
Meltzer, B., and Michie, D., eds., Machine Intelligence 4.
Edinburgh University Press. 463–502.
Turner, H. 1997. Representing Actions in Logic Programs
and Default Theories: A Situation Calculus Approach. Jour-
nal of Logic Programming 31(1–3):245–298.

88


