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Abstract

In order to be fully robust and responsive to a dynamically
changing real-world environment, intelligent robots will need
to engage in a variety of simultaneous reasoning modalities.
In particular, in this paper we consider their needs to i) reason
with commonsense knowledge, ii) model their nondetermin-
istic action outcomes and partial observability, and iii) plan
toward maximizing long-term rewards. Answer Set Program-
ming (ASP) is good at representing and reasoning with com-
monsense and default knowledge, and Partially Observable
Markov Decision Processes (POMDPs) are strong at planning
under uncertainty toward maximizing long-term rewards.
This paper introduces the CORPP algorithm which combines
P-log, a probabilistic extension of ASP, with POMDPs to in-
tegrate commonsense reasoning with planning under uncer-
tainty. Our approach is fully implemented and tested on a
shopping request identification problem both in simulation
and on a real robot. Compared with existing approaches using
P-log or POMDPs individually, we observe significant im-
provements in both efficiency and accuracy.

1 Introduction

Intelligent robots are becoming increasingly useful across
a wide range of tasks. In real-world environments, intelli-
gent robots need to be capable of representing and reason-
ing with logical and probabilistic commonsense knowledge.
Additionally, due to the fundamental dynamism of the real
world, intelligent robots have to be able to model and rea-
son about quantitative uncertainties from nondeterministic
action outcomes and unreliable local observations. While
there are existing methods for dealing separately with either
reasoning with commonsense knowledge or planning under
uncertainty, to the best of our knowledge, there is no existing
method that does both.

Answer Set Programming (ASP) is a non-monotonic
logic programming language that is good at representing and
reasoning with commonsense knowledge (Gelfond and Kahl
2014). ASP in its default form cannot reason with probabil-
ities. A non-monotonic probabilistic logic (P-log) extends
ASP by allowing both logical and probabilistic arguments in
its reasoning (Baral, Gelfond, and Rushton 2009). However,
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ASP and its extensions are ill-equipped to plan toward max-
imizing long-term rewards under uncertainty. Partially ob-
servable Markov decision processes (POMDPs) generalize
Markov decision processes (MDPs) by assuming the partial
observability of underlying states (Kaelbling, Littman, and
Cassandra 1998). POMDPs can model the nondeterministic
state transitions and unreliable observations using probabil-
ities, and plan toward maximizing long-term rewards under
such uncertainties. However, POMDPs are not designed to
reason about commonsense knowledge. Furthermore, from a
practical perspective due to the computational complexity of
solving POMDPs, it is necessary to limit the modeled state
variables as much as possible.

This paper presents an algorithm called CORPP that
stands for combining COmmonsense Reasoning and Prob-
abilistic Planning. CORPP combines P-log with POMDPs
to, for the first time, integrate reasoning with (logical and
probabilistic) commonsense knowledge and planning under
probabilistic uncertainty. The key idea is to calculate pos-
sible worlds and generate informative priors for POMDP-
based planning by reasoning with logical and probabilistic
commonsense knowledge. In so doing, the logical reasoning
component is able to shield state variables from the POMDP
that affect the priors, but that are irrelevant to the optimal
policy given the prior. In solving a shopping request identi-
fication problem, experimental results show significant im-
provements on both efficiency and accuracy compared to ex-
isting approaches using only P-log or POMDPs.

2 The CORPP Algorithm

Both the possible worlds and POMDP states are described
using the same set of domain attributes. We say an attribute
e is partially observable, if e’s value can only be (unreliably)
observed using sensors. The values of attributes that are not
partially observable can be specified by facts, defaults, or
reasoning with values of other attributes. The value of an
attribute can be unknown. For instance, attribute current time
can be specified by facts. Similarly, identities of people as
facts can be available but not always. Current location (of a
robot) is partially observable, because self-localization relies
on sensors; and the value of attribute within if it is within
working hours now can be inferred from current time.

We propose algorithm CORPP for reasoning with com-
monsense and planning under uncertainty, as shown in Fig-
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Figure 1: Overview of algorithm CORPP for combining common-
sense reasoning with probabilistic planning

ure 1. The logical reasoner (LR) includes a set of logical
rules in ASP and takes defaults and facts (Section 2.1) as
input. The facts are collected by querying internal memory
and databases. It is possible that facts and defaults try to as-
sign values to the same attributes, in which case, default val-
ues will be automatically overwritten by facts. The output of
LR is a set of possible worlds {W0,W1, · · ·}. Each possible
world, as an answer set, includes a set of literals that specify
the values of attributes—possibly unknown.

The probabilistic reasoner (PR) includes a set of random
selection rules and probabilistic information assignments
(Section 2.2) in P-log and takes the set of possible worlds
as input. Reasoning with PR associates each possible world
with a probability {W0 : pr0, W1 : pr1, · · ·}.

Unlike LR and PR, the probabilistic planner (PP), in the
form of a POMDP, is specified by the goal of the task and the
sensing and actuating capabilities of the agent (Section 2.3).
The prior in Figure 1 is in the form of a distribution and
denoted by α . The ith entry in the prior, αi, is calculated
by summing up the probabilities of possible worlds that are
consistent with the corresponding POMDP state si. In prac-
tice, αi is calculated by sending a P-log query of this form:

?{si}|obs(l0), · · · ,obs(lm),do(lm+1), · · · ,do(ln).
where l’s are facts. If a fact l specifies the value of a random
attribute, we use obs(l). Otherwise we use do(l). Techni-
cally, do(l) adds l into a program before calculating the
possible worlds, while obs(l) is used to remove the calcu-
lated possible worlds that do not include literal l.

The prior is used for initializing POMDP beliefs in PP.
Afterwards, the robot interacts with the world by continu-
ally selecting an action, executing the action, and making
observations in the world. A task is finished after falling into
a terminating state. CORPP is summarized in Algorithm 1.
We next use an illustrative problem to present more details.
Illustrative Problem: Shopping Request Identification In
a campus environment, the shopping robot can buy an item
for a person and deliver to a room, so a shopping request is
in the form of 〈item, room, person〉. A person can be either
a professor or a student. Registered students are authorized
to use the robot and professors are not unless they paid. The
robot can get access to a database to query about registration
and payment information, but the database may be incom-
plete. The robot can initiate spoken dialog to gather informa-
tion for understanding shopping requests and take a delivery

Algorithm 1 The CORPP algorithm
Require: a task τ and a set of defaults D
Require: a policy π produced by POMDP solvers
1: collect facts μ in the world, and add μ and D into LR
2: reason with LR and calculate possible worlds: W
3: add the possible worlds into PR
4: for state si ∈ S do
5: create a query φi using si and add φi into PR
6: reason with PR, produce αi, and remove φi from PR
7: end for
8: initialize belief state in PP: b = α
9: repeat

10: make an observation z; and update belief b
11: select an action a using policy π
12: until s is term

action when it becomes confident in the estimation. This task
is challenging for the robot because of its imperfect speech
recognition ability. The goal is to identify shopping requests,
e.g., 〈coffee, office1, alice〉, efficiently and robustly.

2.1 Logical Reasoning with ASP
Sorts and Objects: LR includes a set of sorts Θ :
{time,item,room,person} and a set of objects O:

time= {morning,noon,afternoon}.
item= {sandwich,coffee}.
room= {office1,office2,lab,conference}.
person= {alice,bob,carol,dan,erin}.

Variables: We define the set of variables V : {T,I,R,P},
using a construct #domain, which can be interpreted by pop-
ular ASP solvers.

#domain time(T). #domain item(I).
#domain room(R). #domain person(P).

Predicates: The set of predicates, P , includes:

place(P,R). prof(P). student(P). registered(P).

authorized(P). paid(P). task(I,R,P).

where place(P,R) represents person P’s working room is R,
authorized(P) states P is authorized to place orders, and a
ground of task(I,R,P) specifies a shopping request.

The following two logical reasoning rules state that pro-
fessors who have paid and students who have registered are
authorized to place orders.

authorized(P)← paid(P), prof(P).

authorized(P)← registered(P), student(P).

Since the database can be incomplete about the registra-
tion and payment information, we need default knowledge
to reason about unspecified variables. For instance, if it is
unknown that a professor has paid, we believe the professor
has not; if it is unknown that a student has registered, we
believe the student has not.

¬paid(P)← not paid(P), prof(P).

¬registered(P)← not registered(P), student(P).

96



ASP is strong in default reasoning in that it allows priori-
tized defaults and exceptions at different levels (Gelfond and
Kahl 2014). LR has the Closed World Assumption (CWA)
for some predicates, e.g., the below rule guarantees that the
value of attribute authorized(P) must be either true or
false (cannot be unknown):

¬authorized(P)← not authorized(P).

To identify a shopping request, the robot always starts with
collecting all available facts, e.g.,

prof(alice). prof(bob). prof(carol). student(dan).

student(erin). place(alice,office1).

place(bob,office2). place(erin,lab).

If the robot also observes facts of paid(alice), paid(bob)
and registered(dan), reasoning with the above defaults
and rules will imply that alice, bob and dan are autho-
rized to place orders. Thus, LR can generate a set of possible
worlds by reasoning with the rules, facts and defaults.

2.2 Probabilistic Reasoning with P-log

PR includes a set of random selection rules describing pos-
sible values of random attributes:

random(curr time). curr time : time.
random(req item(P)). req item : person→ item.

random(req room(P)). req room : person→ room.

random(req person). req person : person.

For instance, the second rule above states that if the deliv-
ery is for person P, the value of req item is randomly se-
lected from the range of item, unless fixed elsewhere. The
following two pr-atoms state the probability of delivering
for person P to P’s working place (0.8) and the probability
of delivering coffee in the morning (0.8).

pr(req room(P) = R | place(P,R)) = 0.8.
pr(req item(P) = coffee|curr time= morning) = 0.8.

Such random selection rules and pr-atoms allow us to rep-
resent and reason with commonsense with probabilities. Fi-
nally, a shopping request is specified as follows:

task(I,R,P)←req item(P) = I, req room(P) = R,

req person= P, authorized(P).

PR takes queries from PP and returns the joint probability.
For instance, if it is known that Bob, as a professor, has paid
and the current time is morning, a query for calculating the
probability of 〈sandwich,office1,alice〉 is of the form:

?{task(sandwich,office1,alice)} | do(paid(bob)),
obs(curr time= morning).

The fact of bob having paid increases the uncertainty in esti-
mating the value of req person by bringing additional pos-
sible worlds that include req person= bob.

2.3 Probabilistic planning with POMDPs

A POMDP needs to model all partially observable attributes
relevant to the task at hand. In the shopping request identifi-
cation problem, an underlying state is composed of an item,
a room and a person. The robot can ask polar questions such
as “Is this delivery for Alice?”, and wh-questions such as
“Who is this delivery for?”. The robot expects observations
of “yes” or “no” after polar questions and an element from
the sets of items, rooms, or persons after wh-questions. Once
the robot becomes confident in the request estimation, it can
take a delivery action that deterministically leads to a termi-
nating state. Each delivery action specifies a shopping task.
• S : Si×Sr×Sp ∪ term is the state set. It includes a Carte-

sian product of the set of items Si, the set of rooms Sr, and
the set of persons Sp, and a terminal state term.

• A : Aw ∪Ap ∪Ad is the action set. Aw = {ai
w,a

r
w,a

p
w} in-

cludes actions of asking wh-questions. Ap = Ai
p ∪Ar

p ∪
Ap

p includes actions of asking polar questions, where Ai
p,

Ar
p and Ap

p are the sets of actions of asking about items,
rooms and persons respectively. Ad includes the set of de-
livery actions. For a ∈ Ad , we use s� a to represent that
the delivery of a matches the underlying state s (i.e., a
correct delivery) and use s	a otherwise.

• T : S×A×S → [0,1] is the state transition function. Ac-
tion a ∈ Aw ∪Ap does not change the state and action
a ∈Ad results in the terminal state term deterministically.

• Z : Zi∪Zr ∪Zp∪{z+,z−} is the set of observations, where
Zi, Zr and Zp include observations of action item, room
and person respectively. z+ and z− are the positive and
negative observations after polar questions.

• O : S ×A× Z → [0,1] is the observation function. The
probabilities of O are empirically hand-coded, e.g., z+ and
z− are more reliable than other observations. Learning the
probabilities is beyond the scope of this paper.

• R : S ×A→ R is the reward function. In our case:

R(s,a) =

⎧⎪⎪⎨
⎪⎪⎩

−rp, if s ∈ S, a ∈ Ap

−rw, if s ∈ S, a ∈ Aw

−r−d , if s ∈ S, a ∈ Ad , s	a
r+d , if s ∈ S, a ∈ Ad , s�a

(1)

where we use rw and rp to specify the costs of asking wh-
and polar questions. r−d is a big cost for an incorrect deliv-
ery and r+d is a big reward for a correct one. Unless other-
wise specified, rw = 1, rp = 2, r−d = 100, and r+d = 50.

Given a POMDP, we calculate a policy using state-of-the-
art POMDP solvers, e.g., APPL (Kurniawati, Hsu, and Lee
2008). The policy maps a POMDP belief to an action toward
maximizing the long-term rewards. Specifically, the policy
enables the robot to take a delivery action only if it is confi-
dent enough about the shopping request that the cost of ask-
ing additional questions is not worth the expected increase
in confidence. The policy also decides what, for whom and
where to deliver. There are attributes that contribute to cal-
culating the POMDP priors but are irrelevant to the opti-
mal policy given the prior. The reasoning components shield
such attributes, e.g., curr time, from the POMDPs.
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Figure 2: CORPP performs better than the other approaches in
both efficiency and accuracy (Hypothesis-III). Each data point is
the average of at least 10,000 simulated trials.

3 Experiments

The experiments focus on comparisons based on results of
large numbers of simulated trials, and were designed to eval-
uate the hypothesis that CORPP performs the best in both
accuracy and efficiency by combining LR, PR, and PP.

Probabilistic Knowledge at Different Levels: The robot
does not necessarily have full and/or accurate probabilistic
commonsense knowledge. We distinguish the probabilistic
knowledge provided to the robot based on its availability
and accuracy. All: the robot can get access to the knowledge
described in Section 2.1 and 2.2 in a complete and accurate
way. Limited: the accessibility to the knowledge is the same
as “All” except that current time is hidden from the robot. In-
accurate: the accessibility to the knowledge is the same as
“All” except that the value of current time is always wrong.

We provide the probabilistic commonsense knowledge
(Section 2.2) to the robot at different completeness and
accuracy levels—learning the probabilities is beyond the
scope of this paper. Experimental results are shown in Fig-
ure 2. Each set of experiments has three data points be-
cause we assigned different penalties to incorrect identifi-
cations in PP (r−d equals 10, 60 and 100). Generally, a larger
penalty requires the robot to ask more questions before tak-
ing a delivery action. POMDP-based PP without common-
sense reasoning (blue rightward triangle) produced the worst
results. Combining LR with PP (magenta leftward trian-
gle) improves the performance by reducing the number of
possible worlds. Giving inaccurate probabilistic common-
sense (green upward triangle) significantly hurts the accu-
racy of CORPP when the penalty of incorrect identifications
is small. CORPP with limited probabilistic commonsense re-
quires much less cost and results in higher (or at least simi-
lar) accuracy on average, compared to planning without PR.
Finally, CORPP with all knowledge produced the best per-
formance in both efficiency and accuracy.

4 Related Work

Researchers have developed algorithms and frameworks that
combine logical and probabilistic reasoning, e.g., proba-
bilistic first-order logic (Halpern 2003) and Markov logic
network (Richardson and Domingos 2006). However, algo-
rithms based on first-order logic for probabilistic reasoning
have difficulties in representing or reasoning with common-
sense. P-log (Baral, Gelfond, and Rushton 2009) can do log-

ical and probabilistic reasoning with commonsense but has
difficulties to plan toward maximizing long-term rewards.

POMDPs have been applied to a variety of probabilis-
tic planning tasks (Young et al. 2013; Zhang, Sridharan,
and Washington 2013). However, existing POMDP-based
planning work does not readily support representation of or
reasoning with rich commonsense knowledge. Furthermore,
from a practical perspective, the state variables modeled by
POMDPs have to be limited to allow real-time operation.
This makes it challenging to use POMDPs in large, complex
state-action spaces, even if hierarchical decomposition and
approximate algorithms have been applied (Zhang, Sridha-
ran, and Washington 2013; Kurniawati, Hsu, and Lee 2008).

Existing work investigated generating priors by ASP-
based inference for POMDP-based planning (Zhang, Srid-
haran, and Bao 2012). However, that work did not have a
probabilistic reasoner to reason with probabilistic common-
sense knowledge. Furthermore, the logical reasoner in that
work did not calculate possible worlds for POMDPs.

5 Conclusions

This paper presents the CORPP algorithm that integrates
reasoning with commonsense knowledge and planning un-
der probabilistic uncertainty. Answer Set Programming, a
non-monotonic logic programming language, is used to rea-
son with logical commonsense knowledge. P-log, a prob-
abilistic extension of ASP, further enables reasoning with
probabilistic commonsense knowledge. POMDPs are used
to plan under uncertainty toward maximizing long-term re-
wards. The complementary features of ASP and POMDPs
ensure efficient, robust information gathering and behavior
in robotics. Experimental results on a shopping request iden-
tification problem show significant improvements on both
efficiency and accuracy, compared with existing approaches
using P-log or POMDPs individually.
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