
Dimensionality Reduction via Program Induction

Kevin Ellis and Eyal Dechter and Joshua B. Tenenbaum
Department of Brain and Cognitive Sciences

Massachusetts Institute of Technology
{ellisk,edechter,jbt}mit.edu

Abstract

How can techniques drawn from machine learning be applied
to the learning of structured, compositional representations?
In this work, we adopt functional programs as our repre-
sentation, and cast the problem of learning symbolic repre-
sentations as a symbolic analog of dimensionality reduction.
By placing program synthesis within a probabilistic machine
learning framework, we are able to model the learning of
some English inflectional morphology and solve a set of syn-
thetic regression problems.

Introduction

Dimensionality reduction is a core machine learning task in
which the objective is to discover a latent representation of
a data set. This representation should have fewer degrees of
freedom than those present in the original data, revealing a
lower-dimensional subspace that spans the data.

Symbolic dimensionality reduction generalizes this task
by replacing the lower-dimensional subspace with a pro-
gram, and by replacing the latent representation of each da-
tum with the arguments to that program. Instead of finding
a representation with fewer continuous degrees of freedom,
we aim to find the program minimizing the total description
length of the data.

As a motivating example, consider a problem that nearly
every child faces: that of acquiring the linguistic rules of
his or her native language. During the first few years of
life, children learn their language’s rules for forming plurals,
past tense, superlatives, past participles, and other forms of
inflectional morphology (O’Donnell 2015). Although form-
ing the English plural may seem simple to a native speaker,
the regular rule actually consists of three different cases that
the child must learn; depending upon phonetic properties of
the end of the noun, a different sound is appended to it. Ad-
ditionally, the child must identify a large set of irregular pat-
terns, such as ox→oxen.

When confronted with linguistic data such as in Figure 1,
children can, and computers ought to, explain this data by
inducing the general morphophonological rule of the En-
glish plural. This is an example of symbolic dimensionality

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

reduction: explaining data through the induction of a sym-
bolic, program-like rule. Throughout this paper, we will use
the English plural as a running example of symbolic dimen-
sionality reduction.

Symbolic dimensionality reduction is not limited to ex-
plaining symbolic data. For example, consider an agent
tasked with a set of related regression problems. For each
regression problem, the agent has a set of sampled points
from an unknown relation, as illustrated in Figure 2. Upon
solving some of the regression problems, the agent could
more compactly represent its solutions, and make better fu-
ture predictions, by extracting a common symbolic structure
from the relations.

/kæts/ (“cats”) /dOrz/ (“doors”)
/bajsIk@lz/ (“bicycles”) /tiT/ (“teeth”)
/b6lz/ (“balls”) /Or@ndZ@z/ (“oranges”)
/Suz/ (“shoes”) /bUks/ (“books”)
/hOrs@z/ (“horses”) /ajz/ (“eyes”)
/dagz/ (“dogs”) /blæNk@ts/ (“blankets”)

Figure 1: Plural forms of nouns commonly spoken by chil-
dren at thirty months of age (Dale and Fenson 1996), written
in phonetic (IPA) form

Figure 2: Three related regression problems. Each regres-
sion problem consists of a set of noisy samples from a si-
nusoidal function. Performing symbolic dimensionality re-
duction upon this data would yield a symbolic description of
this class of functions; in our system, this corresponds to a
program that outputs sinusoidal curves.

48

Knowledge Representation and Reasoning: Integrating Symbolic and Neural Approaches: Papers from the 2015 AAAI Spring Symposium

Representing Knowledge as Programs
Many of the representations most commonly employed in
symbolic AI approaches – frames, grammars, production
systems, etc – admit parsimonious representation as func-
tional programs. Functional programs can also serve as
the underlying representation of statistical machine learn-
ing models, as in probabilistic programming (Goodman et
al. 2008).

In this work, we represent both morphophonological rules
and real-valued functions in polymorphicly typed combina-
tory logic. This representation is a functional language with
previous use in machine learning models of program synthe-
sis (Dechter et al. 2013; Liang, Jordan, and Klein 2010).

Combinatory logic is a close cousin to lambda calculus,
but it is simplified in some respects. In particular, the only
means of combining two expressions in combinatory logic
(written e1, e2) to produce a new one, is function appli-
cation (written (e1 e2)). Every expression in combinatory
logic is also a program that outputs some value. We write
[[e]] to indicate the value e evaluates to. We write e : τ to
indicate that the expression e has the type τ . For exam-
ple, the expressions in Figure 3 and Figure 4 have the types
List(Phoneme) → List(Phoneme) and R → R → R, re-
spectively. For an overview of the typing system, see (Pierce
2002).

Figures 3 and 4 illustrate encodings of morphophonolog-
ical rules and real-valued functions discovered by our sys-
tem, respectively, translated from combinatory logic in to
Scheme. Representations such as these are the output of
symbolic dimensionality reduction.

(lambda (stem)
(append stem
(if (voiced?

(last-one stem))
((cons /z/) null)
((cons /s/) null))))

Figure 3: Representation of a rule for the English plural.
When given the stem of a word (such as /dag/, that is, “dog”)
this expression produces a plural form (such as /dagz/, that
is, “dogs”).

(lambda (a)
(lambda (x)
(* a (sin x))))

Figure 4: Representation of sinusoids with varying ampli-
tude. When provided with a real valued coefficient a this
expression produces a function that computes a sine wave
with amplitude a.

Consider the example of an agent learning the English
plural. This agent takes as input a set of words with the
plural inflection (for example, Figure 1). If it discovers the
representation in Figure 3, then the agent can write down
an expression for each (regular) plural by applying the ex-
pression in Figure 3 to an expression that evaluates to the

corresponding stem. This re-expression of the data (words,
in the case of the plural) as a common expression applied to
a small number of varying arguments (stems, in the case of
the plural) is the primary operation of what we have called
symbolic dimensionality reduction.

Inducing Programs from Data

Suppose our learner is given a set of N datums, {xi}Ni=1,
such as words. Our objective is to find an expression d
(such as those in Figures 3 and 4) allowing us to re-express
each datum with a program, written {ei}Ni=1, satisfying
[[(d ei)]] = xi (each ei evaluating to the stem of a word
in the case of the plural). Intuitively, d corresponds to the
low dimensional subspace of dimensionality reduction, and
each ei indexes the location of xi within that subspace.

Building on the work of (Liang, Jordan, and Klein 2010),
we cast the problem of learning programs as a form of prob-
abilistic inference in a hierarchical Bayesian model. Algo-
rithm 1 specifies our model. Both d and {ei}Ni=1 are drawn
according to a description length prior over expressions in
typed combinatory logic as in (Dechter et al. 2013). This
description length prior is specified by a stochastic grammar
(G0 in Algorithm 1) and depends upon the type of the ex-
pression, similar to the adaptor grammar approach of (Liang,
Jordan, and Klein 2010).

The approach so far outlined assumes that every single da-
tum may be expressed as the output of a single expression,
d. However, in some domains, we may wish to tolerate ex-
ceptions. In the case of the English plural, these exceptions
correspond to the irregular plurals, such as “teeth” (instead
of “tooths”). To accomodate these exceptions, we introduce
a parameter M corresponding to the probability that a given
datum is expressed using d. Those not expressed using d are
drawn from G0.

In symbolic dimensionality reduction, we seek the MAP
value of d. From Algorithm 1,

d∗ = argmin
d

min
M

(
− lnP·|G(d|G0)

−
∑
i

ln

(
M

∑
ei

[[(d ei)]]=xi

P·|G(ei|G0)

+ (1−M)
∑
ei

[[ei]]=xi

P·|G(ei|G0)

))
.

(1)

Approximate Inference

Exact minimization of Equation 1 is intractable, so we in-
stead perform the sums in Equation 1 over a finite set of ex-
pressions. This finite set of expressions is enumerated from
a proposal distribution learned during a pre-training phase.
The proposal distribution, G, is represented by a nonpara-
metric stochastic grammar over programs. This grammar
is found by performing MAP inference within a generative
model similar to that of (Liang, Jordan, and Klein 2010).
We specify this model in Algorithm 2. Within Algorithm 2,

49

Algorithm 1 Generative model for symbolic dimensionality
reduction

Input: Grammar G0, M ∈ [0, 1]
Output: Values {xi}Ni=1
d ∼ P·|G(·|G0)
for i = 1 to N do
ei ∼ P·|G(·|G0)
w.p. M ,

xi ← [[(d ei)]]
w.p. (1−M),

xi ← [[ei]]
end for

Algorithm 2 A generative model similar to that used in
(Liang, Jordan, and Klein 2010). We use a MAP estimate
of G as a proposal distribution.

Input: Regularization parameter λ, smoothing parameter
α.
Output: Values {xi}Ni=1
G ∼ PG|λ,α(·|λ, α)
for i = 1 to N do
ei ∼ P·|G(·|G)
xi ← [[ei]]

end for

the parameter α corresponds to the number of pseudocounts
identically to (Dechter et al. 2013). The parameter λ speci-
fies a prior over the structure of G, namely,

PG|λ(G|λ) ∝ exp (−λ(# productions in G)) . (2)

We fit the value of G given {xi}Ni=1 using an EM algo-
rithm (Dempster, Laird, and Rubin 1977). Given the fac-
torization of the joint distribution induced by Algorithm 2,
and treating {ei}Ni=1 as missing data, the EM updates are:

qi(ei) ∝ 1I
[
[[ei]] = xi

]
P·|G(ei|Gold)

Gnew = argmin
G

(
− lnPG(G)

−
N∑
i=1

Eqi

[
lnP·|G(ei|G)

])
(3)

Exact computation of the normalizing constant and ex-
pectation in Equation 3 requires summing over the infinite
space of expressions that G generates. To approximate this
expectation, we enumerate the expressions with the highest
prior likelihood under G, and take the corresponding sums
only over those programs.

The expression for Gnew in equation 3 has a natural inter-
pretation as a maximally compressive grammar. Interpreting
negative log probabilities as description lengths, this equa-
tion picks the grammar minimizing the sum of the descrip-
tion length of the grammar, plus the expected description
length of the expressions found to evaluate to the {xi}Ni=1.

A slight generalization of the Neville-Manning algo-
rithm (Nevill-Manning and Witten 1997) permits tractible

t]

Figure 5: Posterior probabilities of different morphophono-
logical rules for the plural as the size of the input word
list increases. (Un)voiced: Appends (un)voiced allophone.
Voiced+Unvoiced: Conditional branch for voiced and un-
voiced allophones. (Un)voiced+Strident: The correct lin-
guistic rule for the regular English plural.

approximate minimization in Equation 3. Concretely, an ex-
pression e is a member of Gnew iff

N∑
i=1

Eqi [c(e, ei)] ≥ λ (4)

where c(e, ei) is the number of times that expression e oc-
curs in ei. After deciding which expressions to incorporate
in to Gnew, the production probabilities are estimated using
the inside-outside algorithm (Lafferty 2000).

Experiments

English Inflectional Morphophonology

English possesses eight classes of inflectional affixes: the
plural, past tense, past participle, genitive, 3rd person singu-
lar, progressive, comparative, and superlative. For each in-
flectional affix, we compiled a word list, drawn from (Dale
and Fenson 1996), of words modified to use said affix. Each
word was represented as a sequence of phonemes.

The G0 parameter in the model included English
phonemes, predicates upon phonological properties of the
phones, and Lisp-style list manipulation primitives, such as
append and cons. Our symbolic dimensionality reduc-
tion system was trained on each of these word lists individ-
ually. We included a separate preprocessing step that ex-
tracted stems of words and added them as primitives to the
proposal distribution G.

Some inflectional rules, such as that of the superlative,
modify all (regular) stems in the same manner. In these
cases, our system recovered the correct regular inflection.
For the superlative, this inflection consists of appending /@st/
to the stem.

Other inflectional rules, such as that of the plural, have
multiple conditional branches. Our system recovered two
out of the three conditional branches of the plural.

50

f(x) = ... Example input data Learned Expression

g(ax), a ∈ {0, 1, ..., 9},
g ∈ {sin, cos, square} λgax.g(a× x)

a · g(x), a ∈ {0, 1, ..., 9},
g ∈ {sin, cos, square} λgax.a× g(x)

(ax+ b)2, a ∈ {0, 1, ..., 9},
b ∈ {0, 1, ..., 9} λabx.(ax+ b)2

(ax+ b), a ∈ {0, 1, ..., 9},
b ∈ {0, 1, ..., 9} λabx.(ax+ b)

Figure 6: Learned representations in the form of expressions for different sets of functions. Expressions were translated
from combinatory logic to lambda calculus. For each set of functions (left column), the system sees a set of noisy samples
(circles/crosses/stars in middle column) of the function’s value at predetermined points. From these noisy samples, it recovers
the underlying functional forms of each curve (solid/dashed/dotted curves in middle column) and then forms a representation
of this class of functions (right column).

51

Why does our system not recover the full regular rule for
the plural inflection? The problem lies with the difficulty
of the inference. When we provide our model with a cor-
rect expression for computing the plural, it achieves higher
posterior probability than the expression found by our MAP
search.

To demonstrate this preference of the model for the cor-
rect linguistic rule, we assembled four candidate rules for
the plural inflection (d in the model Algorithm 1 specifies)
of varying complexity. We varied the size of the input word
list and computed (unnormalized) posterior probabilities for
each of the four candidate rules. These posterior probabil-
ities are plotted in Figure 5. The salient observation from
this figure is that, as the word list grew in size, the system
preferred more and more complicated morphophonological
rules, converging upon the correct regular rule.

Synthetic Regression Problems

Suppose one encounters a set of regression problems all
sharing some sort of structure – for example, all being poly-
nomials of degree two or all being drawn from a Fourier
basis. Application of symbolic dimensionality reduction to
these regression problems should recover a program that
maps the underlying degrees of freedom (eg, coefficients in
the Fourier example) to the corresponding curve.

We augment the generative model in Algorithm 1 with a
Gaussian noise model as follows: after evaluating the ex-
pression (eg, computing [[(d ei)]] or [[ei]]) we apply said ex-
pression to a series of test points and compute the resulting
real number, to which noise is added. Thus, the output of the
generative model is no longer a set of expressions, but a set
of vectors of real numbers.

We further augment this generative model to accommo-
date representations (d of Algorithm 1) of higher arity.
For fixed arity A, and each datum xi, a set of expres-
sions {e1i , · · · , eAi } are drawn from G0. Then, xi is set to
[[(d e1i · · · eAi)]]. We consider A = 1 and A = 2.

We compiled four sets of functions, shown in Figure 6
along with their learned representations. For each set of
functions, we evaluated each member of the set at 11 points
and added Gaussian noise. These sampled points were pro-
vided to our system. The set of programs considered in-
cluded primitives for sinusoids, addition, and multiplication.
The system recovers a correct representation in these cases.

Discussion

This work introduces the problem of symbolic dimensional-
ity reduction, which combines program synthesis with repre-
sentation learning. One candidate for future research in this
area is the application of modern program synthesis tech-
niques to the problem of performing inference in our prob-
abilistic model. Such techniques could permit the recovery
of, for example, the correct regular rule for inflections with
several conditionals.

Much prior work has been done on the use of programs
as a representation for AI systems. Our approach draws pri-
marily from (Dechter et al. 2013; Liang, Jordan, and Klein
2010), but also from Estimation of Distribution algorithms

in the genetic programming literature (Poli, Langdon, and
McPhee 2008) and from work in Cognitive Science termed
logical dimensionality reduction (Katz et al. 2008).

What we have presented is not sufficient for the general
purpose acquisition of morphophonological rules. Notably
absent from our models is any form of semantics. The lit-
erature upon unsupervised learning of morphological and
phonological rules is vast; see (O’Donnell 2015) for reviews
of some of these models. But, we hope that models that use
programs as a representation, such as ours, could be useful
for language, nonlinguistic domains, and even continuous
domains.

References

Dale, P. S., and Fenson, L. 1996. Lexical development
norms for young children. Behavioral Research Methods,
Instruments, & Computers 28:125–127.
Dechter, E.; Malmaud, J.; Adams, R. P.; and Tenenbaum,
J. B. 2013. Bootstrap learning via modular concept discov-
ery. In Proceedings of the Twenty-Third International Joint
Conference on Artificial Intelligence, IJCAI ’13, 1302–
1309. AAAI Press.
Dempster, A. P.; Laird, M. N.; and Rubin, D. B. 1977. Maxi-
mum likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 39:1–22.
Goodman, N. D.; Mansinghka, V. K.; Roy, D. M.; Bonawitz,
K.; and Tenenbaum, J. B. 2008. Church: a language for gen-
erative models. In UAI 2008, Proceedings of the 24th Con-
ference in Uncertainty in Artificial Intelligence, Helsinki,
Finland, July 9-12, 2008, 220–229.
Katz, Y.; Goodman, N. D.; Kersting, K.; Kemp, C.; and
Tenenbaum, J. B. 2008. Modeling semantic cognition as
logical dimensionality reduction. In Conference of the Cog-
nitive Science Society, 71–76.
Lafferty, J. 2000. A Derivation of the Inside-outside Algo-
rithm from the EM Algorithm. Research report. IBM T.J.
Watson Research Center.
Liang, P.; Jordan, M. I.; and Klein, D. 2010. Learning
programs: A hierarchical bayesian approach. In Fürnkranz,
J., and Joachims, T., eds., ICML, 639–646. Omnipress.
Nevill-Manning, C. G., and Witten, I. H. 1997. Identifying
hierarchical structure in sequences: A linear-time algorithm.
J. Artif. Int. Res. 7(1):67–82.
O’Donnell, T. J. 2015. Productivity and Reuse in Language:
A Theory of Linguistic Computation and Storage. The MIT
Press.
Pierce, B. C. 2002. Types and programming languages. MIT
Press.
Poli, R.; Langdon, W. B.; and McPhee, N. F. 2008.
A field guide to genetic programming. Published via
http://lulu.com and freely available at http://www.gp-field-
guide.org.uk. (With contributions by J. R. Koza).

52

