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Abstract

We consider the problem of interactive machine learning for
rich, structured and noisy domains. We present a recently suc-
cessful learning algorithm and provide several extensions for
incorporating rich, high level, human feedback. We then dis-
cuss some open problems in this area.

Introduction
Research in Artificial Intelligence (AI) has always pursued
two paths - symbolic AI where the focus is on rich represen-
tations and inferences over groups of objects and statistical
AI where the focus has been on using data to develop ro-
bust models in the presence of uncertainty. Recently, there
is a push towards combining the benefits of the two distinct
approaches in developing a research field called Statistical
Relational AI (StaRAI) that uses symbolic representations
to model the underlying rich structure of the domain and
employs statistical techniques to model the uncertainty and
noise present in the data. At the core of StaRAI is Statis-
tical Relational Learning (SRL) (Getoor and Taskar 2007)
that learns rich representations (first-order logic (FOL)) us-
ing statistical techniques (primarily probabilistic methods).

While these models are expressive, learning (i.e., model
selection) in complex, relational domains is a hard task.
Consequently, there is a lot of focus on this problem, primar-
ily in learning the qualitative structure (FOL rules) (Kok and
Domingos 2009; 2010). This is due to the fact that as with
propositional graphical models, every step of learning the
structure involves repeated parameter learning which in turn
involves probabilistic inference. To deal with this issue, re-
cently a technique based on the successful gradient boosting
technique called Relational Functional-Gradient Boosting
(RFGB) (Natarajan et al. 2012; 2011; Khot et al. 2011) was
adapted for probabilistic logic models (PLMs) that learns
structure and parameters simultaneously.

In this work-in-progress paper, we review this body of
work and present the overarching framework for learning
PLMs efficiently. The key idea behind this work is to turn the
problem of model learning into a series of relational regres-
sion models learned in a stage-wise manner. We show that
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while this work is indeed effective in learning large set of
small (probabilistic) rules, there is an over-reliance on purely
the data for inducing these models. One of the key attrac-
tive features of symbolic representations such as FOL is that
these representations make it natural for humans to provide
advice and interact with the system. However, unlike both
purely statistical (Fung, Mangasarian, and Shavlik 2002;
Towell and Shavlik 1994) and purely symbolic (Baffes and
Mooney 1996) learning approaches, there is not much re-
search on developing SRL approaches that can seamlessly
interact with and learn from a human expert.

We present a series of methods that adapt RFGB to ac-
cept and exploit advice from a domain expert. Our first ap-
proach is to explicitly model the trade-off between false pos-
itives and false negatives by modifying the objective func-
tion. Note that class imbalance is an important and pertinent
issue in many real tasks as most relations such as friends,
co-authors, marriedto, and neighbors are false between most
of the groundings of the variables. While this is effective in
learning with such imbalanced data, the expert is restricted
to provide only the cost of the trade-off. So we next extend
the framework to handle richer advice such as label prefer-
ences (or action preferences in the case of sequential deci-
sion making tasks). We show that a similar objective func-
tion can be used to learn from such rich advice that are spec-
ified as FOL clauses to the learning system.

As a final contribution of the paper, we present several
possible future extensions of this direction. Specifically, we
note that while providing label preferences is indeed effec-
tive, the method may not be fully efficient. This is due to
the fact that the expert might be required to provide all the
advice upfront to the learning algorithm, potentially requir-
ing significant effort. To mitigate this problem, we outline
a high-level approach based on active learning so that the
system solicits advice from the expert as necessary instead
of requiring all the advice before learning. We then present
another extension that allows for refinement of human ad-
vice. We also discuss the importance of understanding the
trade-off between data and advice.

Relational Functional-Gradient Boosting
The standard gradient descent learning algorithm starts with
initial parameters θ0 and computes the gradient of the log-
likelihood function (∆1 = ∂

∂θ logP (X; θ0)). Friedman
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(2001) proposed an alternate approach to perform gradient
descent where the log-likelihood function is represented us-
ing a regression function ψ over the examples x and the gra-
dients are performed with respect to ψ(x).

Functional gradient descent starts with an initial function
ψ0 and iteratively adds gradients ∆m. Each gradient term
(∆m) is a regression function over the training examples
and the gradients at the mth iteration can be represented
as 〈xi,∆m(xi)〉 where xi ∈ training examples. Also rather
than directly using 〈xi,∆m(xi)〉 as the gradient function,
functional gradient boosting generalizes by fitting a regres-
sion function ψ̂m (generally regression trees) to the gradi-
ents ∆m. The final model ψm = ψ0 + ψ̂1 + · · · + ψ̂m is a
sum over these regression trees.

This method has been extended to various relational mod-
els for learning the structure (Natarajan et al. 2012; Karwath,
Kersting, and Landwehr 2008; Kersting and Driessens 2008;
Natarajan et al. 2011). The examples are ground atoms
of the target predicate such as workedUnder(x, y). The
ψ function is represented using relational regression trees
(RRT) (Blockeel 1999). But since these are relational mod-
els, the ψ function depends on all the ground atoms and
not just the grounding of the target predicate. For example,
the probability function used by Natarajan et al. (2012) to
learn the structure of Relational Dependency Networks was:
P (xi)= sigmoid(ψ(xi;Pa(xi))) where Pa(xi) are all the
relational/first-order logic facts that are used in the RRTs
learned for xi. They showed the functional gradient of like-
lihood for RDNs as

∂logP (X = x)

∂ψ(xi)
= I(yi = 1)−P (yi = 1;xi, Pa(xi)) (1)

which is the difference between the true distribution (I is
the indicator function) and the current predicted distribution.
For positive examples, the gradient is always positive and
pushes theψ function value (ψ0+∆1+· · ·+∆m) closer to∞
and the probability value closer to 1. Similarly the gradient
for negative examples is negative and hence the ψ function
is pushed closer to −∞ and probability closer to 0.

Relational Advice Framework
Incorporating advice in propositional domains to improve
the learning process has been explored in several directions
(Kunapuli et al. 2013; 2010; Towell and Shavlik 1994).
Commonly, in all these methods, a single piece of advice
is defined over some set of the ground feature or example
space. Traditionally advice in SRL methods have not been
expressive and mainly consisted of hand-coding the struc-
ture and possibly even the parameters of the model. While
such techniques have been successful, the learning algorithm
does not modify the structure of the model. As a result, they
do not introduce potentially novel interactions based on the
training data.

A recent approach to handle expert advice in SRL mod-
els (Yang et al. 2014) used expert-specified costs for false
negatives and false positives to learn relational models using
RFGB. To this effect, inspired by regularization approaches
in log-linear models (Gimpel and Smith 2010) this approach

added a penalty term in the objective function that allowed
trading-off between the false positives and false negatives.
Gradients were derived based on this objective function that
looked similar to the ones presented above except for allow-
ing an extra term 1 to explicitly model the trade-off. Yang
et al (2014) showed that this term reduced the need for sub-
sampling negatives and instead learned from the full imbal-
anced data set.

While effective, this approach is limited in the scope of
the advice it can handle. Another relational method (Natara-
jan et al. 2013) used learned models from a source domain as
initial models in the target domain and boosted the gradients
based on examples from target domain. The same approach
can be used to handle expert advice, but if the training data
is sub-optimal, it is possible that the learning algorithm will
refine the model away from the advice. We instead seek to
use the advice throughout the learning process and thereby
handle noisy examples.

Following earlier work, we consider human interaction
through expert-specified horn clauses. As opposed to treat-
ing advice as an initial model, our framework aims to use the
advice throughout the learning process leading to a more ac-
curate, robust model. We first introduce our first-order logic
advice and then discuss our advice-learning framework.

Relational Advice
Our relational advice has the advantage of being generalized
(as against targeting a specific example), described using pa-
rameterized properties (as against example identifiers), pref-
erential (i.e., must avoid quantifying the importance of some
of these properties as these numbers are hard to be eluci-
dated by the expert) and in the same representation as that
of the learning algorithm.

To achieve this, the advice we consider consists of two
parts:
• horn clauses in the form ∧ifi(xi) ⇒ label(xe), where
∧ifi(xi) specifies the conjunction of conditions under
which the advice applies on the example arguments xe.
• Sets of preferred (l+) and non-preferred (l−) labels

Given the label preferences, the goal is to learn a model
that has higher probabilities for the preferred labels as com-
pared to the avoided labels , ie ∀si ∈ s, P (l+(si)) ≥
P (l−(si)) where s is the set of training examples to which
the advice applies. Thus our advice corresponds to IF-THEN
rules where IF consist of some relational features and THEN
consist of a preference over the target labels. Similar rules
have been found to be more easily understood by human ex-
perts (Kulhmann et al. 2004).

Consider the problem of predicting whether an actor has
worked under a director. A potential advice would be that
if an actor, a, has acted in a movie which was directed by
director, d, then it is likely that a has worked under d. This
advice could be represented by the following rule:
Example 1. actor(a) ∧ director(d) ∧ movie(m, a) ∧
movie(m, d) ⇒ label(a, d), l+ = workedUnder and
l− = ¬workedUnder.

1This term was I − λP instead of I − P in the original RFGB
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Figure 1: An advice model in the IMDB domain for predicting
if an actor has worked under a director. Each node is a relational
condition and leaf nodes identify whether or not advice will apply.

Resulting in, for any actor a and director d that
appear in the same movie, P (workedunder(a, d)) ≥
P (¬workedunder(a, d)).

Figure 1 shows the relational advice constraints as a rela-
tional tree for a similar example. Advice applies to examples
which reach the green node (not the red node).

Objective Function
As mentioned earlier, the goal of this advice-based frame-
work is to faithfully and seamlessly integrate the advice into
the learning model (learning from both training data and ad-
vice). We achieve this by modifying the objective function
and including a cost to account for explicitly considering the
expert advice. Inspired by prior work of Gimpel and Smith
(2010), we introduce a cost function in the denominator of
the log-likelihood function. While they employ the use of a
regularization term for a log-linear model, we employ this
as a penalty term for violating the advice provided by the
expert. This modified log-likelihood (MLL) function using
the functional representation is given as,

MLL(x,y) =
∑
xi∈x

log
exp

(
ψ(xi; yi)

)
∑

y′ exp
(
ψ(xi; y′) + cost(yi, y′, ψ)

)

(2)

Our cost function is used to penalize the model that does
not fit to the advice. Since the cost function penalty depends
only on the advice and the current model, and not on the
example labels y and y’; we can redefine it as cost(xi, ψ).
We define the cost function as

cost(xi, ψ) = −λ× ψ(xi)× [nt(xi)− nf (xi)] (3)

We use nt to indicate the number of advice rules that prefer
the example to be true and nf to be the number of rules that
prefer it to be false. We use λ to scale the cost function and
ψ(xi) is the current value of the ψ function for the xi.

Intuitively when the example label is the preferred target
in more advice rules than the avoided target, nt −nf is pos-
itive. Higher (positive) regression value, in this case, will
result in a lower (negative) cost function. Since a high pos-
itive regression value corresponds to higher probability of
example being true, the cost function is lower when the re-
gression function aligns with the advice. On the other hand,
if the regression value is negative, the cost is positive since
the regression function doesn’t align with the advice. Sim-
ilarly, when nt − nf is negative, negative regression value
will have a lower negative cost and positive regression value
will have a positive cost.

Figure 2: Standard RFGB is shown inside the black square (α =
0) where relation regression trees are learned in a stage-wise fash-
ion. When provided advice, the gradients for each example for
which the advice applies are pushed in the direction of the advice.

Knowledge-based RFGB
We will use functional-gradient boosting to maximize our
modified objective function (MLL). Omitting the derivation,
the gradients of MLL will be represented as

η ·∆(xi) = α · (I(yi = 1)− P (yi = 1;ψ))

+(1− α) · [nt(xi)− nf (xi)]

Notice that the gradient can be decomposed into two
parts: (I − P ) which gives the gradient from the data and
(nt−nf ) which gives the gradient with respect to the advice.
This is similar to other advice-based frameworks (Towell
and Shavlik 1994; Fung, Mangasarian, and Shavlik 2002).

Intuitively when the example label is the preferred tar-
get in more advice models than the avoided target, nt(xi)−
nf (xi) is set to be positive. This will result in pushing the
gradient of these examples in the positive direction (towards
+∞). Conversely when the example label should be avoided
in more advice models, nt(xi)−nf (xi) is set to be negative
which will result in pushing the gradient of this example in
the negative direction (towards −∞). Examples where the
advice does not apply or has equally contradictory advice,
nt(xi) − nf (xi) is 0. Hence, our approach can also handle
conflicting advice for the same example.

The RRTs are learned stagewise as explained in the pre-
vious section and shown in Figure 2. The strength of our ap-
proach not only comes from the concise way that our method
is able to handle advice, but also that this advice is used to
improve the model throughout the learning process (at each
stage). Furthermore, our framework allows for the advice to
be changed at each iteration (for each tree learned).

Extensions
We now discuss several of the potential extensions to advice-
based learning through the framework presented previously.

Advice Seeking: While advice-based learning can be suc-
cessful in robust learning from noisy data, there is a substan-
tial reliance on the advice-providing expert. The expert must
take the time to not only understand the domain, but also un-
derstand where the data is noisy and thus where advice can
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be most useful. An ideal learning algorithm should make an
effort to understand where advice could be most useful.

Significant work has been done in active learning (Set-
tles 2012) which seeks to find the most useful example to
be labeled. While it seems that many active learning tech-
niques could be applied to solicit advice, there are some is-
sues. First, as advice can be general, we need advice over a
set of states unlike active learning which only considers a la-
bel for a single example. This means that the potential possi-
ble advice is exponential with respect to the size of the state
space. Second, we need to identify a set of states that are
similar in the sense that a single advice will apply (same or-
dering over the labels). Finally, even if similar sets of states
are identified, the data can have systematic noise that the ad-
vice must correct. This means that the algorithm may not be
uncertain in the noisy areas of the state space where the ad-
vice is vital. These issues increase the difficulty in creating
active techniques for advice-based learning.

Advice Refinement: Another important direction is to re-
lax the implicit assumption that expert-advice is optimal.
Even a benevolent expert may give over-generalized advice
or may forget about key exceptions to a given rule. Explor-
ing the ideas from theory refinement (Richards and Mooney
1995), such sub-optimal advice could potentially be modi-
fied by the algorithm in order to suggest improvements to
the advice. This could not only improve the accuracy of the
model but also be an essential tool for allowing experts to
understand how to improve their own expertise.

Advice-Data Trade-off: The advice-based learning
framework described previously allows for a parameter (α)
that trades-off between the influences of the advice and the
data. Each individual advice can have a different value for
α. These parameters can have a significant impact on the
learned model and determining the best way to set these pa-
rameters is not straightforward as it depends on the quality
of the data and the advice as well as any other advice.

Conclusion
We discuss a framework that fosters a rich interaction be-
tween experts and a probabilistic logic learning algorithm
that allows learning of more accurate, robust models from
noisy data. We are interested in how this algorithm might
understand the areas of the state space where advice might
be most useful, ensuring the most efficient use of the ex-
perts time. We are also interested in understanding how the
framework might be able to cope with noisy advice.
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