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Abstract

Relational learning can be described as the task of
learning first-order logic rules from examples. It has
enabled a number of new machine learning applica-
tions, e.g. graph mining and link analysis in social net-
works. The CILP++ system is a neural-symbolic system
which can perform efficient relational learning, by be-
ing able to process first-order logic knowledge into a
neural network. CILP++ relies on BCP, a recently dis-
covered propositionalization algorithm, to perform re-
lational learning. However, efficient knowledge extrac-
tion from such networks is an open issue and features
generated by BCP do not have an independent relational
description, which prevents sound knowledge extrac-
tion from such networks. We present a methodology for
generating independent propositional features for BCP
by using semi-propositionalization of bottom clauses.
Empirical results obtained in comparison with the orig-
inal version of BCP show that this approach has compa-
rable accuracy and runtimes, while allowing proper re-
lational knowledge representation of features for knowl-
edge extraction from CILP++ networks.

Introduction
Relational learning can be described as the task of learn-
ing a first-order logic theory from examples (Džeroski and
Lavrač 2001; De Raedt 2008). Differently from proposi-
tional learning, relational learning does not use a set of at-
tributes and values. Instead, it is based on objects and rela-
tions among objects, which are represented by constants and
predicates, respectively. This enables a range of applications
of machine learning, for example in bioinformatics, graph
mining and link analysis in social networks, serious games,
and responsible gambling (Bain and Muggleton 1994; Srini-
vasan and Muggleton 1994; Džeroski and Lavrač 2001;
King and Srinivasan 1995; Dragicevic et al. 2013). Induc-
tive Logic Programming (ILP) (Muggleton and Raedt 1994;
Nienhuys-Cheng and de Wolf 1997) performs relational
learning either directly by manipulating first-order rules or
through a method called propositionalization (Lavrač and
Džeroski 1994; Železný and Lavrač 2006), which brings the
relational task down to the propositional level by represent-
ing subsets of relations as features that can then be used
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as attributes. In comparison with full ILP, propositionaliza-
tion normally exchanges accuracy for efficiency (Krogel et
al. 2003), as it enables the use of fast attribute-value learn-
ers such as decision trees or even neural networks (Quin-
lan 1993; Rumelhart, Widrow, and Lehr 1994), although the
translation of first-order rules into features can incur infor-
mation loss.

Bottom Clause Propositionalization (BCP) (França, Za-
verucha, and Garcez 2013) is a recent propositionalization
method, based on one of the search boundaries used by tra-
ditional ILP learners: bottom clauses. Bottom clauses are
boundaries in the hypothesis search space, first introduced
by Muggleton, 1995 as part of the Progol system, and are
built from one random positive example, background knowl-
edge (a set of clauses that describe what is known) and lan-
guage bias (a set of clauses that define how clauses can
be built). A bottom clause is the most specific clause (with
most literals) that can be considered a candidate hypothesis.
BCP uses bottom clauses for propositionalization because
their body literals can be used directly as features in a truth-
table, simplifying the feature extraction process (Muggleton
and Tamaddoni-Nezhad 2008; DiMaio and Shavlik 2004;
Pitangui and Zaverucha 2012).

The neural-symbolic system CILP has been shown ef-
fective at learning and reasoning from propositional data
in a number of domains (Garcez and Zaverucha 1999;
Garcez, Broda, and Gabbay 2002; Garcez, Lamb, and Gab-
bay 2008). CILP uses background knowledge in the form
of propositional logic programs to build a neural network,
which is in turn trained by examples using backpropagation
(Rumelhart, Widrow, and Lehr 1994). A recent extension of
CILP, called CILP++ (França, Zaverucha, and Garcez 2013),
incorporates BCP as a novel propositionalization method
and, differently from CILP, CILP++ networks are first-order
in that each neuron denotes a first-order atom. Yet, for learn-
ing, CILP++ uses the same neural model as CILP, by trans-
forming each first order example into a bottom clause. Ex-
perimental evaluations reported at (França, Zaverucha, and
Garcez 2013) show that such a combination can lead to effi-
cient learning of relational concepts.

When dealing with relational learning, it is mandatory
to be able to generate rules that can describe what has
been learned (Muggleton and Raedt 1994). Therefore, a
propositionalization-based system must be able to extract
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rules from the learned model. However, efficient knowl-
edge extraction on neural networks is an open issue and fea-
tures generated by BCP do not have a relational descrip-
tion, which unables sound knowledge extraction on such
networks. In this paper, we present a methodology for gen-
erating independent propositional features for BCP which
can be described by a first-order clause, by using semi-
propositionalization. We call this approach BCPsemi−prop.
The notion of semi-propositionalization, first introduced by
an extension of the ILP system LINUS (Lavrač and Flach
2001) (henceforth called Extended LINUS in this paper), of-
fers a way of obtaining sets of independent clauses which are
semantically equivalent to a given clause. Our approach ex-
tracts such sets of independent clauses from bottom clauses
and uses them as features. Empirical results show that our
approach has comparable accuracy and runtimes with the
original BCP. This indicates that efficiency results from
(França, Zaverucha, and Garcez 2013) can be maintained
while enabling, as future work, sound extraction from such
networks and reasoning in a relational level, by applying a
propositional rule extractor from neural networks such as
TREPAN (Craven and Shavlik 1995).

BCP and CILP++
The first step of relational learning with CILP++ is BCP.
Each instantiated target clause such as target(a1, . . . ,an) is
converted into a numerical vector that an ANN can use
as input. In order to achieve this, each example is trans-
formed into a bottom clause and mapped onto features on
an attribute-value table, and numerical vectors are generated
for each example. Thus, BCP has two steps: bottom clause
generation and attribute-value mapping.

In the first step, each example is given to Progol’s bottom
clause generation algorithm (Tamaddoni-Nezhad and Mug-
gleton 2009) to create a corresponding bottom clause repre-
sentation. To do so, a slight modification is needed to allow
the same hash function to be shared among all examples, in
order to keep consistency between variable associations, and
to allow negative examples to have bottom clauses as well;
the original algorithm deals with positive examples only.

We are going to illustrate Progol’s bottom clause gen-
eration with an example. Consider the well-known fam-
ily relationship example (Muggleton and Raedt 1994), with
background knowledge B = {mother(mom1, daughter1),
wife(daughter1, husband1), wife(daughter2, husband2)},
with positive example motherInLaw(mom1, husband1), and
negative example motherInLaw(daughter1, husband2). It
can be noticed that the relation between mom1 and hus-
band1, which the positive example establishes, can be alter-
natively described by the sequence of facts mother(mom1,
daughter1) and wife(daughter1, husband1) in the back-
ground knowledge. This states semantically that mom1 is
a mother-in-law because mom1 has a married daughter,
namely, daughter1. Applied to this example, the bottom
clause generation algorithm of Progol would create a clause
⊥= motherInLaw(A,B)← mother(A, C), wife(C, B). Com-
paring ⊥ with the sequence of facts above, we notice that
⊥ describes one possible meaning of mother-in-law: “A is
a mother-in-law of B if A is a mother of C and C is wife

of B”, i.e. the mother of a married daughter is a mother-in-
law. This is why, in this paper, we investigate learning from
bottom clauses. However, Progol generates only one bottom
clause, for limiting its search space. To learn from bottom
clauses, BCP generates one bottom clause for each (positive
or negative) example e, which we denote as⊥e. At the end of
the bottom clause generation process, we end with a bottom
clause set

E⊥ = {motherInLaw(A,B) :−mother(A,C),wi f e(C,B);
∼ motherInLaw(A,B) :−wi f e(A,C)}.

After the creation of the E⊥ set, the second step of BCP is
as follows: each element of E⊥ (each bottom clause) is con-
verted into an input vector vi, 0≤ i≤ n, that a propositional
learner can process. The algorithm for that, implemented by
CILP++, is as follows:

1. Let |L| be the number of distinct body literals (an-
tecedents) in E⊥;

2. Let Ev be the set of input vectors, converted from E⊥, ini-
tially empty;

3. For each bottom clause ⊥e of E⊥ do
(a) Create a numerical vector vi of size |L| and with 0 in all

positions;
(b) For each position corresponding to a body literal of⊥e,

change its value to 1;
(c) Add vi to Ev;
(d) Associate a label 1 to vi if e is a positive example, and
−1 otherwise;

4. Return Ev.

After BCP is applied on the relational (first-order) exam-
ples, CILP++ training is next. Following CILP, CILP++ uses
backpropagation. Given a bottom clause set Etrain

⊥ , the steps
below are followed for training:

1. For each bottom clause ⊥e ∈ Etrain
⊥ , ⊥e = h :- l1, l2, ..., ln,

do
(a) Add all li,1 ≤ i ≤ n, that are not represented yet in the

input layer as new neurons;
(b) If h does not exist yet in the network, create an output

neuron corresponding to it;
2. Add new hidden neurons, if required for learning;
3. Make the network fully-connected, by adding weights

with zero value;
4. Apply backpropagation using each ⊥e ∈ Etrain

⊥ .

Additionally, notice that BCP does not combine first-
order literals to generate features like Extended LINUS: it
treats each literal of a bottom clause as a feature. The hid-
den layer of the ANN can be seen as a (weighted) com-
bination of the features provided by the input layer. Thus,
ANNs can combine propositional features when processing
the data, but doing so dynamically (during learning), due to
small changes of real-valued weights.

After training, CILP++ can be evaluated. Firstly, each test
example etest from a test set Etest is propositionalized with
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BCP, resulting in a propositional data set Etest
⊥ , where each

etest ∈ Etest has a corresponding ⊥test
e ∈ Etest

⊥ . Then, each
⊥test

e is tested: each input neuron corresponding to a body
literal of ⊥test

e receives input 1 and all other input neurons
(input neurons which labels are not present in ⊥test

e ) receive
value 0. Lastly, a feedforward pass through the network is
performed, and the output will be CILP++’s answer to ⊥test

e
and consequently, to etest .

BCPsemi−prop: Extracting Independent

Features from Bottom Clauses

The CILP++ system has scope for improvements due to its
limited ability to perform knowledge extraction from the
trained network:

• Since an ANN, which is a propositional system, will be
used to learn from BCP-propositionalized examples, most
relational information regarding input-output properties
of bottom clause literals (i.e., BCP features) will be lost;

• Propositional rules extracted from the ANN, after learn-
ing, will not have a relational meaning, not allowing rela-
tional reasoning after learning.

Tackling those issues is the main goal of the work pre-
sented here, and it is done by ensuring that each BCP feature
has an independent relational description.

In this section, an approach that tackles the issues de-
scribed above is presented, based on Extended LINUS.
The propositionalization methodology of Extended LINUS
groups first-order literals in order to define a propositional
feature, by using the definition of semi-propositionalized
rules. In a nutshell, semi-propositionalized rules are rules
that cannot be decomposed into a set S of two or more rules
that have equivalent semantic meaning as the original first-
order rule.

Definition 1 (Semi-Propositional Rules). (Lavrač and
Flach 2001) The variables occurring in the head (consequent
of a clause) of the rule are called global variables. Variables
occurring only in the body are called local variables. A Pro-
log rule (i.e., a definite horn clause) in which there are no
local variables is called constrained; a constrained rule in
which every global variable occurs once in every literal is
called semi-propositional.

Definition 2 (First-Order Features). (Lavrač and Flach
2001) For any two body literals L1 and L2 of a given rule, L1
and L2 belong to the same equivalence class, L1 ∼lv L2 iff
they share a local variable. Clearly,∼lv is reflexive and sym-
metric, and hence its transitive closure =lv is an equivalence
relation inducing a partition on the body. The conjunction of
literals in an equivalence class is called a first-order feature.

Proposition 3 (Decomposition of Rules). (Lavrač and
Flach 2001) Let R be a Prolog rule, and let R’ be constructed
as follows. Replace each first-order feature F in the body of
R by a literal L consisting of a new predicate with R’s global
variable(s) as argument(s), and add a rule L : − F. R’ to-
gether with the newly constructed rules is equivalent to R,
in the sense that they have the same success set. R’ is also a
semi-propositional rule.

The methodology we propose in this paper is to transform
bottom clauses into semi-propositional rules by applying
Proposition 3 and thus, obtaining features with a first-order
description. To illustrate this, consider the following bottom
clause R⊥ (with the addition of the concept brother/2):

motherInLaw(A,B) :−parent(A,C),wi f e(C,B),
wi f e(A,D),brother(B,D)

The original version of BCP would generate four features from
R⊥: parent(A,C), wife(C,B), wife(A,D), brother(B,D), i.e., the lit-
erals themselves are the features. Therefore, neurons of the input
layer of the underlying ANN of CILP++ would represent bottom
clause body literals. A relational example e would cause an input
neuron in activation only if its correspondent bottom clause⊥e con-
tains the literal represented by in. Figure 1 exemplifies how an ex-
ample propositionalized with the original BCP is used for training.

On the other hand, only one possible set of first-order features
(see Definition 2) for R⊥ can be found:

F1 = {parent(A,C),wi f e(C,B)}
F2 = {wi f e(A,D),brother(B,D)}

BCPsemi−prop will treat each decomposition as a feature, instead
of assuming that literals are features. In the example above, two
clauses would be generated from the decomposition of R⊥:

L1(A,B) :−parent(A,C),wi f e(C,B)
L2(A,B) :−wi f e(A,D),brother(B,D)

Therefore, R⊥ can be rewritten as the following semi-
propositional rule R′⊥:

motherInLaw(A,B) :−L1(A,B),L2(A,B)

In this case, neurons of the input layer of the underlying ANN
of CILP++ would represent the features Li. A relational example e
would cause an input neuron in activation only if its correspondent
bottom clause ⊥e contains all the body literals of the feature Ln,
represented by in. Figure 1 illustrates this process.

BCPsemi−prop has also been tested empirically and results over
ten-fold cross validation can be seen on Table 1, showing that using
BCPsemi−prop provides comparable accuracy and runtimes over the
original BCP. Moreover, fewer features are generated and thus, a
smaller network is built.

Concluding Remarks
In this paper, we have presented a new methodology for BCP,
by generating propositional features with a relational descrip-
tion, through semi-propositionalization of bottom clauses, called
BCPsemi−prop. Experimental results show that the features gener-
ated with the semi-propositionalization of bottom clauses are com-
parable with the original BCP, in terms of both accuracy and run-
times, although our approach generates features with a relational
description. Therefore, as future work, we will automatically ex-
tract relational rules from the trained neural network by using
TREPAN in the domain of responsible gambling, where we have
access to data and domain expertise as part of the BetBuddy re-
search project.
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Figure 1: Illustration of CILP++’s training step when using
the original BCP (1) and our new approach for BCP (2).
The shown output values are the labels which are used for
backpropagation training. Notice that our approach leads to
a more compact neural network.

Table 1: Accuracy results (with standard deviation), run-
times and number of features for the Alzheimers benchmark
(accuracies in the first line, runtimes in the second line, and
number of features in the third line). BCPsemi−prop has ob-
tained comparable accuracy and runtimes with BCPoriginal ,
although generating less features.

Alz-ami Alz-ace Alz-mem Alz-tox

BCPoriginal 78.82(±5.25) 65.34(±4.6) 67.41(±5.7) 80.5(±4.83)
0:19:49 0:23:21 0:25:11 0:17:41

721 875 856 799

BCPsemi−prop 81.72(±2.12) 67.98(±2.13) 70.11(±4.12) 80.44(±3.84)
0:17:54 0:22:43 0:19:08 0:17:11

716 644 567 618
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