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Abstract

Methods that use latent representations of data, such as matrix
and tensor factorization or deep neural methods, are becoming
increasingly popular for applications such as knowledge base
population and recommendation systems. These approaches
have been shown to be very robust and scalable but, in con-
trast to more symbolic approaches, lack interpretability. This
makes debugging such models difficult, and might result in
users not trusting the predictions of such systems. To over-
come this issue we propose to extract an interpretable proxy
model from a predictive latent variable model. We use a so-
called pedagogical method, where we query our predictive
model to obtain observations needed for learning a descrip-
tive model. We describe two families of (presumably more)
descriptive models, simple logic rules and Bayesian networks,
and show how members of these families provide descriptive
representations of matrix factorization models. Preliminary
experiments on knowledge extraction from text indicate that
even though Bayesian networks may be more faithful to a
matrix factorization model than the logic rules, the latter are
possibly more useful for interpretation and debugging.

1 Introduction

In many successful machine learning models, a set of latent
vectors is learned by means of minimizing an error function
with respect to training data. These include models of matrix
and tensor factorization and neural architectures. One advan-
tage of these models is their scalability: they can be trained
on massive amounts of data and achieve high accuracy, mak-
ing them attractive for many large-scale, real-world tasks
such as Recommender Systems (Koren, Bell, and Volinsky
2009) and Information Extraction (Riedel et al. 2013). An
increasingly desirable property for machine learning systems
is human interpretability, both to (a) explain the model and
its predictions, and (b) to debug possible mistakes. However,
latent representations that use such dense, real-valued vectors
are notoriously difficult to interpret.

One way to address this lack of interpretability is to em-
ploy hybrid symbolic and probabilistic frameworks such as
Markov Logic (Richardson and Domingos 2006) or Bayesian
Logic Programs (Milch et al. 2005), but in practice these of-
ten suffer from limited scalability. Constraints such as those
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Figure 1: Since the internal representation of latent variable
models (e.g. latent vectors of a matrix factorization model)
are not easy to comprehend by the end-user, we investigate
two simpler but more interpretable proxy models: Bayesian
networks and first-order logic formulae.

imposed in nonnegative matrix factorization make consider-
able steps towards addressing this concern, however they still
lack the interpretability of purely symbolic models in which,
for example, predictions are derived from explicitly stated
rules or from a few features.

In this paper, we still use scalable latent variable mod-
els for prediction, but additionally learn simpler, human-
interpretable descriptive models that can be used to explain
the behavior of these more complex latent models. More con-
cretely, given a latent variable model, we seek to find a more
interpretable proxy model that approximately behaves like
the original model. This problem has been addressed before
in the context of Artificial Neural Networks (Craven and
Shavlik 1996), (Thrun 1995), where a set of logic rules is
extracted from a neural network by either, training on pre-
dictions from the neural network, analyzing its neurons, or
both. The objective of the set of rules learned is to mimic the
behavior of the neural network in order to act as a descriptive
model and provide confidence in the predictions made by
the neural network. To the best of our knowledge, however,
there is no work in knowledge extraction from tensor-based
models; given the wide impact and acceptance of this models,
we consider of big importance to have a descriptive proxy
model that can provide a human-readable description of their
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predictions. In order to find an interpretable version of la-
tent representation models, we need to define the family of
models to search over. Models in this family should be easy
to interpret by the end-user, yet powerful enough to be as
faithful to the original predictive model as possible. Clearly
there is a trade-off here: one can achieve perfect reproduc-
tion by choosing the original model class itself (say matrix
factorization) but then obviously gain no interpretability;
on the other hand, a set of symbolic rules may be quite in-
terpretable, but do not handle noise or provide confidence
measures that makes the original model useful. One can use
probabilistic logic representations such as Markov Logic to
find a sweet-spot, but inference is often intractable in these
frameworks, which makes evaluating their faithfulness to the
original model difficult.

We present our ideas in context of interpreting a matrix
factorization (MF) model for information extraction (Riedel
et al. 2013), and investigate two types of descriptive model
classes, (1) (limited) first-order logic formulae, and (2) a
Bayesian network (BN) tree (see Figure 1). The former is at
the “most interpretive” end of the spectrum, but accurately re-
production of the MF model predictions is difficult. The latter
sacrifices interpretability (and explicit coverage of all correla-
tions the factorization model captures), but provides a model
that is a better fit to the original model, while still allowing
efficient learning and inference. We use predictions of the
matrix factorization model as training data for the descriptive
models and evaluate the fidelity of the descriptive models by
comparing their predictions to those by matrix factorization.
We observe that the rule-based model is indeed a poorer fit
than Bayesian network, however it is able to identify errors
in the factorization model that are only captured indirectly in
the Bayesian network. This raises several interesting research
questions for the research community to investigate.

2 Background

We will first give a brief description of the matrix factoriza-
tion model. Then we will discuss two possible model families
that can serve as more interpretable proxy models.

2.1 Matrix Factorization

We work with a variant of the matrix factorization model
for knowledge base completion (Riedel et al. 2013). Given
a sparse high-dimensional matrix where rows P correspond
to entity-pairs and columns R to OpenIE-like surface pat-
terns and structured Freebase relations, the aim is to learn
k-dimensional distributed vector representations for entity-
pairs and relations that approximate given factual knowledge
and generalize to unobserved facts (see left half of Figure
1). Once we have learned vector representations of entity-
pairs and relations, any fact can be predicted efficiently by
applying the sigmoid function to the dot product of the cor-
responding vector representations. However, explaining the
behavior of a matrix factorization model by direct inspection
of these vector representations is difficult and such a model,
albeit yielding state-of-the-art performance for knowledge
base population, does not provide a user with an explanation
why a certain fact has been predicted. In the following sec-

tions we introduce two human-interpretable proxy models
for matrix factorization, and contrast them with each other.

2.2 First-Order Logic

As the simplest proxy to a latent variable model, we con-
sider simple first-order implication formulae of the form
∀x, y : rs(x, y) ⇒ rt(x, y), where the predicates are de-
fined over the columns of the matrix. For example, ∀x, y :
professorAt(x, y) ⇒ employeeAt(x, y) states that every pro-
fessor is also an employee at his or her university. Such
formulae are intuitive, making them a good candidate for ex-
plaining complex latent representation models. On the other
hand, their deterministic nature leads to a brittle and poor
reproduction of the probability distribution over words de-
fined by the matrix factorization model, and thus restricts
their faithfulness to the original model.

2.3 Bayesian Networks (BNs)

A Bayesian network is a graphical representation of the set of
conditional dependencies that hold for a joint probability dis-
tribution over a set of random variables, P(X1 , ...,Xn). A lo-
cal influence of a variable Xi over a variable Xj is represented
as Xi → Xj , and is associated with a conditional probability
distribution (CPD), P(Xj |Xi). Moreover, the joint proba-
bility distribution of the complete Bayesian network can be
factorized as the product of local CPDs: P (X1, ..., Xn) =∏

i Pi(Xi|Parents(Xi)) where Parents(Xi) is the set of par-
ents of the variable Xi . For matrix factorization models, we
use the columns of the matrix (the relations) as the set of
random variables to discover dependencies between. This
representation defines which local influences are indepen-
dent of each other, making Bayesian networks easy to read.
However, conditional probability tables are not intuitive to
interpret for non-experts, restricting their interpretability.

2.4 Related Work

Previous work considered knowledge extraction from Arti-
ficial Neural Networks, for example (Lehmann, Bader, and
Hitzler 2005; Thrun 1995; Kim et al. 2006). More recent
approaches have tackled the same problem for Support Vec-
tor Machines (Barakat and Bradley 2010). In both scenar-
ios knowledge is extracted in the form of either first-order
logic or propositional formulae with the objective of behavior
interpretation. One example of symbolic knowledge extrac-
tion from neural networks using a pedagogical approach is
the method by (Craven and Shavlik 1996), where the neu-
ral network is used as an oracle in order to obtain training
instances for learning a decision tree. Structure learning is
often used to extract causal, interpretable structures directly
from data (Sangüesa and Cortés 1997), and we employ such
techniques to find a proxy model in Section 3.2.

3 Finding Interpretable Models

Three main techniques have been applied in existing work to
extract knowledge from complex models: pedagogical, de-
compositional, and eclectic. In the pedagogical approach, the
model is treated as a black-box that is queried with a subset
of observations (such as relational facts). The objective is to
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model the behavior of the system without any knowledge of
its internals (Craven and Shavlik 1996). In a decompositional
approach the aim is to “strip” the complex model and analyze
each of its parts. In the case of Artificial Neural Networks,
for example, the model components consist of both the neu-
rons (activation thresholds) and the weights (Thrun 1995).
An eclectic approach is a combination of both, pedagogical
and decompositional.

In this work, for simplicity and universality, we focus
on the pedagogical approach, leaving decompositional and
hybrid methods for subsequent investigation. We first use the
matrix factorization model to predict confidence values for
all the cells of the matrix. These values are then thresholded
at 0.5 to yield a set of true and false facts to learn from,
resulting in a “training set” DMF of generated facts that is
used to identify the proxy model. The obtained training data
consists of 4111 random variables and 39864 true facts. We
now describe how this data is used to identify appropriate
models for each of the model families from Section 2.

3.1 Extracting First-Order Formulae

We learn a set of first-order formulae from the predictions of
the matrix factorization model. Each formula is of the form
∀x, y : b(x, y) ⇒ h(x, y) where the predicates/relations b
and h are the body and the head of the formula, respectively.
Thus, we restrict the formulae to implication rules and re-
quire arguments of the body to also be arguments of the head.
To select rules we measure point-wise mutual information
between body and head predicates in the training set DMF

generated by the MF model, and select all rules with scores
above a certain threshold. Clearly other metrics are conceiv-
able, such as probability of formula being true in the data,
or scoring functions used in Inductive Logic Programming.
Here we opt for the simplest method, and will investigate
alternative metrics in future work.

To measure the fidelity of this model we need to evaluate
its predictions under a set of observed facts. We define the set
of predictions to be the transitive closure of the rules applied
to the observed facts. That is, inference is done by simply
propagating truth assignments of the body bi of each rule Ri

to the head hi until no new facts can be predicted.

3.2 Extracting Bayesian Networks

Learning the structure of a Bayesian Network (BN) is NP-
hard in general (Chickering 1996). This means that we can
either resort to approximate algorithms, or restrict the set of
possible structures. In preliminary experiments we found it
extremely difficult to learn useful, interpretable BNs with
approximate learning schemes, primarily due to the scale of
the data (we have more than 4000 variables).

In this work we constrain the structure of the BN to be a
tree. In this case, learning the structure reduces to finding a
maximum spanning tree with respect to mutual information
between variables (i.e. relations) in the training set DMF

generated by the MF model. This problem that can be solved
optimally in O(N2) using Prim’s algorithm, where N is
the number of variables. Once we learn the structure, we
use a smoothed maximum likelihood estimate for the BN
parameters (the conditional probability distributions).

come from ⇒ move from
play ⇒ win against

play ⇒ lose to
win against ⇒ victory over
professor at ⇒ expert at
move to ⇒containedby

Table 1: Subset of rules learned from matrix factorization

A:parent→ B:child p(B = 1|A = 1) p(B = 0|A = 0)

trip to → visit to 0 .7432 0 .9977
negotiate with → agree with 0 .6713 0 .9925
official → chief in 0 .5765 0 .9959

Table 2: A subset of local conditional probability distribu-
tions from the Bayesian network tree learned from the matrix
factorization model.

Besides being easy to learn, a BN tree is also easy to inter-
pret in that each variable can have at most one parent, and the
complete model is described using only N edges. In addition,
inference in BN trees is linear in N , which makes it easy to
evaluate the fidelity of the model by computing its predictions
on DMF . To the best of our knowledge, there is no existing
work on extracting a Bayesian network representation from
predictive models. We believe this may be in part due to the
complexity of learning and inference in such models.

4 Experiments

To evaluate the two proxy models, we train them on pre-
dictions of a matrix factorization model for information ex-
traction and measure mean average precision on the test set.
Since the data matrix is quite sparse, we use a low threshold
of 0.1 on the mutual information score for accepting a for-
mula for the logic based proxy model, obtaining 4086 such
formulae. For learning the BN tree we use mutual informa-
tion as scoring function, followed by maximum likelihood
estimation of local conditional probability distributions. Each
surface pattern and relation appears as a node in the tree.

To illustrate the obtained proxy models, we list a subset
of the extracted rules in Table 1, and show some of the local
conditional probability distributions of the BN in Table 2.
Figure 2 shows the precision-recall curves of each descriptive
model with respect to the MF model as a measure of fidelity.
Precisely, we treat the predictions on the test set from the MF
model as true facts, and measure accuracy of the descriptive
models in respect to them.

5 Discussion

The two main objectives in generating a proxy model from a
MF model are interpretability and fidelity. These factors are
often at odds with each other: More powerful model families
often use complex representations that are difficult to intuit,
while more interpretable models are quite restrictive.

First-order rules, as we can see from Table 1, are clearly
easy to read and understand. Along with being useful for the
model to explain its predictions, these rules can also be used
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Figure 2: Fidelity of the descriptive models to the MF model.

to identify errors in the model. For example, the rules indi-
cate the model learns an incorrect entailment of the Freebase
containedby relation when move to is observed as a sur-
face pattern (a connection not found by the BN proxy model).
On the other hand, it is not clear how much these explana-
tions apply to the original model, since Figure 2 indicates
that the rules are not necessarily an accurate representation
of the original model. As we mention before, this is possibly
caused by the deterministic, brittle nature of simple rules, and
we would like to explore more powerful but still interpretable
alternatives such as probabilistic logic in the future.

Bayesian networks, instead, learn a probabilistic, graph-
ical representation of the original model. As we can see in
Figure 2, this more expressive formulation results in a much
superior predictive performance than that of the rule-based
system. For interpretation, Bayesian networks provide a use-
ful overview of the influences that the relations have over
each other. On the other hand, due to their use of many poten-
tially large conditional probability tables, Bayesian networks
are harder to interpret at fine-grained level.

6 Conclusions

In this position paper we highlighted the problem of finding
interpretable proxies for high-performance latent variable
models. While this problem has been discussed before, we
believe it is time for the community to revisit it. The reasons
are both the recent successes of latent variable models, and
the increasing complexity of the tasks they address. In partic-
ular, in this work we looked at matrix factorization models
for knowledge base population, a more complex task than the
classification problems considered in existing literature.

As the starting point we proposed two proxy representa-
tions, simple rule-based systems and Bayesian Network trees.
Both provide complementary advantages, and we have only
begun to investigate and contrast these. More importantly, in
this work several open questions emerged. For example:
• What are good proxy representations for factorization mod-

els? BNs and rules have benefits, but there are several other
options (such as MLNs, Sum-Product Networks). How
does this choice of the proxy family depend on the prob-
lem domain, the original model family, expertise of the
users, and their needs (debugging versus explanability)?

• How do we evaluate the utility of a proxy representation?

Is there a natural “downstream evaluation”? How can we
measure whether a proxy is useful for debugging models?

• Should a proxy representation be coupled with a means to
change the predictive model according to user feedback?

In future work we will investigate these questions, and aim
to address them with respect to several predictive models
(such as tensor factorizations or neural tensor networks) and
datasets from different domains.
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