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Abstract

We present a novel probabilistic model and specifica-
tion language for spatial relations. Qualitative spatial
logics such as RCC are used for representation and rea-
soning about physical entities. Our probabilistic RCC
semantics enables a more expressive representation of
spatial relations. We observe that reasoning in this new
framework can be hard. We address this difficulty by us-
ing a factored representation based on Markov Random
Fields.

We provide a logic for representing and reasoning about spa-
tial elements, in the presence of uncertainty. Our framework
combines a high-level approach based on qualitative spatial
reasoning, that avoids the pitfalls and complexities of pixel-
level reasoning, with a probabilistic semantics, able to deal
with and quantify uncertainty.

Reasoning about space at the pixel level requires too com-
plex computations and does not capture higher-level proper-
ties of objects. As a solution, higher-level qualitative calculi
have been introduced, such as Region Connection Calculus,
or RCC (Randell, Cui, and Cohn 1992); however, in such
calculi there are no shades of gray in representing uncer-
tainty. We take the flexible, high-level approach of qualita-
tive spatial reasoning, RCC-8 in particular, and define prob-
abilistic models.

Using our probabilistic spatial calculus, we are able to an-
swer more accurately questions about the relations between
regions: in classic RCC, uncertainty with respect to the base
relation that holds between two regions means that some
base relations are possible. There is no cue as to which of
these relation is more likely. In the worst case, the entire
base relation is possible. However, generally, in real world
situations, some relations might be more probable than oth-
ers; using our probabilistic calculus, one can find the prob-
abilities for all the base relations between the two regions
and then get, rather than a set of relations, the most probable
base relation.

An example of an application for our calculus is recreat-
ing a spatial landscape, consisting of all spatial relations that
hold between all entities, from a natural language descrip-
tion. The landscape description can be analysed to extract
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an initial set of spatial relations as the first, incomplete, land-
scape, and then the most likely complete image can be recre-
ated using inference in probabilistic RCC. The techniques
used here could be extended to other spatial formalisms, that
are able to capture other meaningful relations between enti-
ties. Reconstructing a spatial landscape from text can be use-
ful to answering deeper understanding queries regarding the
text. This kind of queries can nowadays be answered in the
context of natural language processing by means of textual
entailment (Sammons, Vydiswaran, and Roth 2010). Here,
either one uses only lexical cues, which can only lead to
a shallow understanding of the text, or one learns to infer
deeper, semantic relations implied by the text by training on
large corpora of annotated textual entailment pairs. In the
latter case, much effort is spent on annotating a corpus and
feature engineering. By using qualitative spatial reasoning,
one only needs to spend effort in extracting the obvious spa-
tial relations from the text, whereas the deeper understand-
ing queries can be answered by reasoning in the underlying
spatial logic.

The paper is structured as follows: first, we present some
background notions on RCC. Then, we describe the syntax,
semantics, and inference for our calculus. Next, we present
the factored representation and inference. Finally, we give
an overview of related work and conclude.

Background
Qualitative Spatial Reasoning (Cohn 1997) is a term used
for any relational reasoning technique for which the objects
are spatial entities.

Region Connection Calculus (RCC), introduced by Ran-
dell, Cui and Cohn in 1992 (Randell, Cui, and Cohn 1992),
is a qualitative spatial calculus used to reason about the re-
lations between regions. The distinction between base rela-
tions is made based on either connectedness or the mereo-
logical ’part of’ relation. The two definitions are equivalent,
as the two relations can be defined by means of each other.
Given the possible distinctions and additional information
considered (e.g., whether the region borders are taken into
account or not), the space of possible relations is broken into
a set of jointly exhaustive and pairwise disjoint, or JEPD,
base relations.

The RCC-8 base relations are: disconnected (DC), ex-
ternally connected (EC), partially overlap (PO), tangen-
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tial proper part and its inverse (TPP, TPPI), non-tangential
proper part and its inverse (NTPP, NTPPI), and equivalent
(EQ).

For RCC-5, the border information is not considered, and
consequently B is {DC,O,EQ,PP,PPI}.

Probabilistic RCC
We are given a set of regions in a topology, a set of region
names or region constants, and a set of spatial constraints
on them expressed as a formula. We want to answer queries
regarding the probability of certain relations to hold between
certain pairs of regions.

Syntax
The signature of probabilistic RCC is a first-order logic sig-
nature of a particular form, containing: a set of constants C
(the region names); and a set of arity 2 relations B (the base
relations).

Two probabilistic RCC-8 (RCC-5) signatures may differ
from each other on their set of constants, so:

Definition 1 A PRCC signature is a set of region constants.

Henceforth we will refer to RCC-8 only; the results can
easily be applied to RCC-5.

Definition 2 The basic sentences of probabilistic RCC-8
are defined inductively as follows:
• atoms are of the form r(a, b), where a, b ∈ C and r ∈ B;
• if φ and ψ are basic RCC-8 sentences, then φ ∨ ψ and
φ ∧ ψ are also basic RCC-8 sentences;
• if φ is a basic RCC-8 sentence, then ¬φ is also a basic

RCC-8 sentence

A basic sentence encodes the constraints for the problem
and is just a ground FOL sentence. The queries are on the
probability of a relation to hold between two regions. This
relation may be either a base relation (EC) or a general rela-
tion (a disjunction of base relations). For example, ’part-of’
is the disjunction of EQ, TPP, and NTPP.

One property of PRCC sentences, that stems from JEPD-
ness, namely the fact that the negation of a literal can be
rewritten as a positive disjunction, is the following:

Property 1 Any basic sentence of probabilistic RCC-8 can
be written as a positive sentence

A conditional query-type sentence expresses the probabil-
ity of a relation given a basic type sentence: this is the kind
of sentence that generally encodes a full problem. The se-
mantics of these sentences is defined using the semantics of
non-conditional query-type sentences.

In the following, α is the probability we are looking for:
pα(∨r∈Bqr(a, b)) has the intuitive meaning that the proba-
bility that r(a, b) holds is α.

Definition 3 If 0 ≤ α ≤ 1, a, b ∈ C, Bq ⊂ B and φ is a
basic sentence, then:
• pα(∨r∈Bq

r(a, b)) is a non-conditional query-type sen-
tence or a query-type atom;

• pα(∨r∈Bq
r(a, b) | φ) is a conditional query-type sen-

tence.

Definition 4 A probabilistic RCC-8 sentence is either a ba-
sic sentence or a query-type sentence.

Semantics
A model of a PRCC signature will specify the topology, a
subset of this topology (the ’working’ regions), the set of
interpretations of region constants in the ’working’ region
set and a probability distribution on these interpretations.

Let T be a topology on some universe U and let X ∈ R
be a closed set in T . In the following, let Int(X) be the
interior of X and Γ(X) = X − Int(X) be the border of X .

Definition 5 Given an RCC-8 signature C, a model M is a
structure of the form M = (U, T,R,W, P ), where:

• U is a (possibly infinite) universe of points;
• T is a topology on U ; the closed regular sets in T are

regions;
• R ⊂ T is a finite set of regions;
• W = {(Uw, w) | w : C ]B → Uw ] (Uw ×Uw)} is a set

of possible worlds, where for each possible world w:
– Uw = R is the world universe;
– w|C : C → Uw is an interpretation of constant symbols

as regions;
– w|B : B → Uw × Uw is an interpretation of base rela-

tion symbols
and the interpretation of base relation symbols w|B is
such that ∀X,Y ∈ Uw:
– w(DC)(X,Y ) iff X ∩ Y = ∅;
– w(EC)(X,Y ) iff Int(X)∩ Int(Y ) = ∅ and X ∩Y 6=
∅;

– w(PO)(X,Y ) iff Int(X) ∩ Int(Y ) 6= ∅ and X * Y
and Y * X;

– w(EQ)(X,Y ) iff X = Y ;
– w(TPP )(X,Y ) iff X ( Y and X * Int(Y );
– w(TPPI)(X,Y ) iff w(TPP )(Y,X)

– w(NTPP )(X,Y ) iff X ⊆ Int(Y );
– w(NTPPI)(X,Y ) iff w(NTPP )(Y,X).

• P : W → [0, 1] (with Σw∈WP (w) = 1) is a probability
distribution over the set of interpretations.

These properties also ensure that the set w(B) forms a
partition over Uw × Uw, or in other words the relations in
w(B) are JEPD.

In what follows, we will assume the topological space
fixed. The interpretation of base relations in this space will
be the same for all models so we will omit both of these
elements. Moreover, for all models we will have the set of
interpretations to be the entire set of functions from C to R,
so W will be completely defined by R and can be omitted
as well (restrictions to a subset of I can be made by forcing
the probability of the missing interpretation functions to 0).

For basic sentences, sentence satisfaction is defined for
every possible world, inductively on the structure of the sen-
tence, as in any fragment of FOL. A sentence is satisfied if
it is satisfied in every world that has a non-zero probability.
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Definition 6 Given model M = (R,W, P ), the satisfaction
of a basic formula in a possible world w ∈ W is defined
inductively as:
• w |= r(a, b) iff (w(a), w(b)) ∈ w(r);
• w |= φ ∧ ψ iff w |= φ and w |= ψ;
• w |= ¬φ iff w 2 φ;
• w |= φ ∨ ψ iff w |= ¬(¬φ ∧ ¬ψ);
We say a model M = (R,W, P ) satisfies a basic formula φ
and write M |= φ iff w |= φ for all w ∈W with P (w) > 0.

Next, we will show how to answer queries, given a model
and a set of constraints. The intuition is that, when we are
presented with a new piece of information about the world,
we constrain our model of the world so as to discard all in-
terpretations that are not consistent with the new piece of
information. The model we end up with is what we will call
the restriction of a model via a basic-type sentence. Restrict-
ing the model via a sentence lowers to 0 the probabilities of
all the interpretations that do not satisfy the sentence, and
scales the other probabilities such that they still sum to 1.

Definition 7 Let φ be a basic formula and M = (R,W, P )
a probabilistic RCC-8 model; then we can define the restric-
tion of M via φ as M |φ = (R,W, P |φ), where:

• P |φ(w) = P (w) · 1
Z(φ) if w |= φ;

• P |φ(w) = 0 if w 2 φ
and Z(φ) = Σw|=φP (w) is the normalization constant.

Thus M |φ is intuitively the largest submodel of M that
satisfies φ.

In order to answer the query given a set of constraints, we
restrict the model to satisfy the set of constraints, and then
we sum the probabilities of the interpretations that satisfy
the query. So, the satisfaction of a query-type sentence by a
model M is defined as follows:

Definition 8 Given model M = (R,W, P ), basic sentence
φ, a, b ∈ C, Bq ⊂ B and 0 ≤ α ≤ 1, the satisfaction of
query-type sentence pα(∨r∈Bqr(a, b) | φ) is defined as:
• M |= pα(∨r∈Bq

r(a, b)) iff Σw|=∨r∈Bq r(a,b)
P (w) = α;

• M |= pα(∨r∈Bqr(a, b) | φ) iffM |φ |= pα(∨r∈Bqr(a, b)).

It is worth noting that we are really not interested in what
exactly the interpretations of constant symbols in a possible
world look like, but in their relative position. So we can re-
strict our attention to equivalence classes of possible worlds,
under the equivalence relation ' given by the set of base
RCC relations that hold in these worlds:

w1 ' w2 iff for each pair a, b ∈ C and for each r ∈ B
w1 |= r(a, b)⇔ w2 |= r(a, b) (1)

Inference in Probabilistic RCC
Using definitions 6 and 8, we can derive the following al-
ternative condition for the satisfaction of conditional query-
type sentences - M |= pα(∨r∈Bq

r(a, b) | φ):

α =
Σw|=φ and w|=∨r∈Bq r(a,b)

P (w)

Σw|=φP (w)
(2)

It is straigthforward to implement an algorithm that finds
α using this formula. If N is the size of φ, R is the number
of regions and C is the number of constant symbols in the
signature, this algorithm would require O(RC+1) space and
O(N ·RC) time.

Notice that this algorithm requires us to know P , the prob-
ability distribution over possible worlds. If we don’t know it,
the proper probability distribution to use is the one with the
maximum entropy, according to the principle of maximum
entropy. The set of possible worlds being a discrete and fi-
nite domain, the maximum entropy probability distribution
is the uniform probability distribution.

Using this observation and equation (2), we can compute
α in pα(∨r∈Bq

r(a, b) | φ) as:

α =
|{w ∈W | w |= φ and w |= ∨r∈Bq

r(a, b)}|
|{w ∈W | w |= φ}|

(3)

Factored Representation of PRCC
Given a signature C and model M = (R,W, P ), for each
pair of distinct constant symbols a, b ∈ C, let Xa,b

B be the
random variable encoding the base relation that holds be-
tween the regions named by a and b. Then, the probability
distribution P over possible worlds induces a joint probabil-
ity PB distribution over {Xa,b

B }a,b∈C,a6=b:

PB(Xp1
B = r1, ..., X

pN
B = rN ) = Σw|=∧1≤i≤Nri(pi)P (w)

(4)
where N =

(
C
2

)
, {p1, ..., pN} = {{a, b} ∈ C | a 6= b} and

ri ∈ B for 1 ≤ i ≤ N .
If we consider the model consisting of equivalence classes

of possible worlds, we can recover the probability distribu-
tion over these equivalence classes from the joint probability
PB , as:

P ([w]r1(p1),...,rN (pN )) = PB(Xp1
B = r1, ..., X

pN
B = rN )

(5)
where [w]r1(p1),...,rN (pN ) = {w ∈ W | w |= r1(p1) ∧ ... ∧
rN (pN )}.

Therefore, reasoning in probabilistic RCC can be reduced
to reasoning with such joint probability distributions:
Theorem 1 Given model M = (R,W, P ), basic sentence
φ, expressed as a conjunction of atoms, a, b ∈ C, r ∈ B
and 0 ≤ α ≤ 1, the satisfaction of query-type sentence
pα(r(a, b) | φ) can be computed as follows:

• M |= pα(∨r∈Bq
r(a, b)) iff PB(Xa,b

B = r) = α;

• M |= pα(∨r∈Bq
r(a, b) | φ) iff PB(Xa,b

B = r | φ) = α;

Furthermore, since for every Xa,b
B , the events Xa,b

B = r

and Xa,b
B = r′ are disjoint for every r 6= r′ ∈ B:

Corollary 1 Given model M = (R,W, P ), basic sentence
φ, expressed as a conjunction of atoms, a, b ∈ C, Bq ⊂ B
and 0 ≤ α ≤ 1, the satisfaction of query-type sentence
pα(∨r∈Bq

r(a, b) | φ) can be computed as follows:

• M |= pα(∨r∈Bq
r(a, b)) iff Σr∈Bq

PB(Xa,b
B = r) = α;

• M |= pα(∨r∈Bq
r(a, b) | φ) iff Σr∈Bq

PB(Xa,b
B = r |

φ) = α.
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Figure 1: Compact representation of a model

Markov Random Fields
We can represent the joint probability distribution PB as a
Markov Random Field (MRF), using the observation that
the base relation that holds between two regions named a
and b is independent of any other relation that holds in the
world, given the relations that hold between region named a
and any other region, and the relations that hold between any
other region and region named b, and these relations’ duals:

I(Xa,b
B , X

ci,cj
B | Xa,C

B ∪Xb,C
B ∪XC,a

B ∪XC,b
B ) (6)

where Xa,C
B = {Xa,c

B | c ∈ C} and XC,a
B = {Xc,a

B | c ∈ C}.
This observation does not hold for all PRCC models, and

we will only be able to use this compact representation for
those models that do have this property. Intuitively, this is
the case if we don’t have any prior knowledge of the space of
regionsR, and indeed in this case, using the naı̈ve algorithm
described in the previous section is infeasible.

The MRF representation for unstructured models is illus-
trated on a simple example in Figure 1. Notice that if (6)
holds, then we only have edges between nodes that share a
symbol.
Lemma 1 If the assumption 6 holds for a model M , then
in the MRF representation of M , there is an edge between
nodes Xp

B and Xq
B if pairs p, q share a constant symbol, i.e.

|p ∩ q| = 1.
Theorem 2 Let C be a probabilistic RCC signature and let
PB(Xp1

B = r1, ..., X
pN
B = rN ) be the probability distri-

bution over the base relations that hold between the inter-
pretations of every two constant regions, given an unstruc-
tured model M . Then, in the MRF representation of PB , the
largest clique has size C − 1.

Intuitively, every node Xa,b
B (a 6= b ∈ C) in the MRF

representation is connected to two cliques of size C − 1:
one containing all the pairs that share symbol a, and one
containing all the pairs that share symbol b. Other cliques
that appear in the MRF are triangles representing the rela-
tions that hold between any three regions. The interactions
represented by those latter cliques stem from the constraints
imposed by RCC relation composition.

Let X̄a,?
B = (Xa,b

B )b6=a,b∈C be the tuple containing the
nodes in the clique sharing symbol a, and let Xa,b,c

B =

Xa,b
B , Xb,c

B , Xc,a
B . For an unstructured model, one can have

any combination of base relations between a region and all
the other regions, i.e., we can assume φ(X̄a,?

B ) a constant and
therefore ignore it in the factorization. Therefore the proba-
bility distribution can be written as:

PB(Xp1
B = r1, ..., X

pN
B = rN ) =

1

ZB
Πφa,b,c(X

a,b,c
B ) (7)

Inference in the Factored Models
In the following we will assume we know the factors
φa,b,c(X

a,b
B , Xb,c

B , Xc,a
B ) in the joint probability distribution.

We can infer the probability α of ∨r∈Bqr(a, b) as the sum
of probabilities of each r(a, b), given an evidence φ =
r1(a1, b1) ∧ ... ∧ rk(ak, bk):

α =
Σr∈Bq

P (r(a, b), r1(a1, b1), ..., rk(ak, bk))

Σr∈BP (r(a, b), r1(a1, b1), ..., rk(ak, bk))
(8)

If we further assume

φa,b,c(X
a,b
B , Xb,c

B , Xc,a
B ) = wa,b,cfa,b,c(X

a,b
B , Xb,c

B , Xc,a
B )

where the value of the feature fa,b,c is 1 if the configuration
specified by the relations between a, b and c is possible and
0 otherwise, we can use any MRF learning algorithm to in-
fer the set of weights {wa,b,c}a,b,c. For the current work we
assume that all factors are known, or all weights are 1.

Theorem 3 Variable Elimination for the factored model of
PRCC has a time complexity of O(2C

3

).

Related Work
Another way to do probabilistic reasoning in RCC is to use
the language of Markov Logic Networks (Richardson and
Domingos 2006). This amounts to representing PRCC as an
MLN built from an axiomatization (Randell, Cui, and Cohn
1992) of classic RCC. What we do here is to give proba-
bilistic RCC an individuality of its own, with its own well-
defined syntax and semantics. We also encode the PRCC
models directly as MRFs, taking advantage of the particu-
lar independence assumptions that stem from the spatial do-
main.

(Cohn and Gotts 1995) address the problem of reasoning
in the presence of vague topological information, in the case
where the regions have vague boundaries. They introduce
the ’egg-yolk’ representation, where each region is divided
into its crisp, certain subregion (the ’yolk’) and a surround-
ing vague part (the ’white’). The intuition is that the actual
region lies anywhere within the borders of the ’white’ and
necessarily covers the ’yolk’. In this work there is no quan-
tification for the degree of uncertainty.

(Schockaert and De Cock 2007) and (Schockaert et al.
2008) also deal with vague regions and add quantifiable un-
certainty. Rather than work in a probabilistic setting, as in
our approach, or divide each region, as in the previous ap-
proach, they develop a framework based on fuzzy logic.
They take the ’connected’ relation to mean the degree to
which regions are connected, not a crisp truth value as in the
classical RCC. With this, they redefine the entire set of base
relations of RCC and subsequently the RCC framework. In
contrast, we keep the classic logical framework of RCC and
give it a probabilistic semantics.

In order to deal with uncertainty regarding regions, (Bit-
tner and Stell 2001) represent approximate regions by re-
lating them to a frame of reference consisting of a set of
unit regions. The definition of approximation makes qual-
itative distinctions based on the coverage of those unit re-
gions. They then define an approximate region as a set of
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regions with the same approximation. With this definition,
they rewrite the RCC framework to work with approximate
regions.

All of these lines of work look at dealing with or quan-
tifying vagueness rather than quantifying the likelihood of
relations.

Probabilistic logic programming, or PLP (Lukasiewicz
1998), resembles our work mainly in the way they define
the satisfaction of probabilistic sentences. One major differ-
ence is that, in PLP, each probabilistic formula (representing
the probability of a conditional event) is assigned a probabil-
ity interval - we are reasoning over single probabilities, not
probability intervals. Another important difference is that
any sentence in PLP is a probabilistic sentence; in our case,
only the queries are probabilistic, whereas the knowledge
base consists only of sentences expressed in classic RCC.

A maximum entropy semantics has also been defined for
PLP (Yue, Liu, and Hunter 2008); that definition is based
on the notion of degree of satisfaction. Since we do not use
probabilistic sentences in our knowledge base, our maxi-
mum entropy model is much more simple.

(Kontchakov, Pratt-Hartmann, and Zakharyaschev 2010)
have proved the sensitivity to the underlying topological
space of the complexity of reasoning in a superset of RCC-8,
enriched with a unary conectedness predicate and Boolean
functions over regions. They also prove NP- completeness
of satisfiability for the calculus enriched with connected-
ness only, as well as EXPTIME-hardness of the full superset.
Further results (Kontchakov et al. 2011) prove reasoning in
the 2D Euclidean space RE-hard for the case when Boolean
functions are allowed over regions. We do not make assump-
tions on the underlying topological space, and we do not talk
about Boolean functions over regions.

Conclusions and Further Work
We showed PRCC syntax, semantics, and compact repre-
sentation using Markov Random Fields to model the joint
probability distribution over spatial relations.

One problem we don’t address is how to handle disjunc-
tive evidence. One way to look at this, is that, writing the ev-
idence in disjunctive normal form, every clause serves as ev-
idence for a possible abstract image of the world. We would
then want to combine the probabilities of base relations that
result from each of these possible images. One could take an
optimistic approach and use the maximum of these probabil-
ities, for every query, but this does not accurately represent
the probability distribution encoded by the model. We will
explore ways to look at disjunctive evidence in future work.
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