
Software Document Terminology Recognition

Shuhei Nojiri
Yokohama Research Laboratory, Hitachi Ltd.,

292 Yoshida-cho, Totsuka-ku,
Yokohama-shi, Kanagawa 244-0817 Japan

Christopher D. Manning
Department of Computer Science, Stanford University

353 Serra Mall,
Stanford, California 94305 USA

Abstract

Our goal in this paper is to achieve automatic extraction and
classification of key phrases from software development doc-
uments, such as requirements, specifications, and so on. In
software development projects, creating dictionaries is im-
portant for defining the terminologies used to enable accu-
rate communication between customers and vendors, as well
as among developers. However, each target domain, such as
a medical, financial, transportational, or other field, has its
own particular terminology; moreover, each customer em-
ploys its own terms and their respective meanings. Build-
ing a dictionary of a target domain requires experts’ knowl-
edge in the given domain and considerable effort. To assist in
dictionary building, we are developing a software document
terminology recognizer (SDTR) with the use of named en-
tity recognition (NER) methods. A significant amount of re-
search exists on NER; however, most of it is focused on gen-
eral named entities, such as person names, or biological do-
main named entities, such as names of compounds. However,
the problem of building effective entity recognizers in a new
domain where you have very little supervised data available
is very understudied. There are a lot of small domains each
of them has different terminology because software is used
in various domains and organizations. Also it is impractical
to build taggers by traditional supervised NER methods for
SDTR because the tuning cost in individual software develop-
ment projects is limited. Building method of an SDTR should
cover cross-domain terminologies using small size of corpus;
nevertheless, an SDTR must cope with very specific termi-
nologies for individual projects. In this paper, we propose a
multi-layered SDTR system consisting of an identifier that
uses general features based on the probability of phrases and
spelling conventions, and an identifier that employs a tem-
porary dictionary automatically built into the general feature
identifier. Currently, our prototype achieves a greater than 0.8
F1-value on a small software development project corpus.

Introduction

Automatic information extraction from software documents,
such as requirements, specifications, and so on, is desir-
able for understanding and (re)building software, while a
cross-document terminology dictionary and index are like-
wise desirable for software development projects. A dictio-
nary is helpful in clarifying important terminology to fos-

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ter accurate communications between customers and ven-
dors, as well as among developers. Moreover, an index is
helpful for referencing where relevant descriptions are lo-
cated. Numerous studies on named entity recognition (NER)
exist (Nadeau and Sekine 2007) (Leser and Hakenberg
2005) (Ratinov and Roth 2009). However Most NER re-
search has focused on general named entities, such as person
names, or biological domain named entities, such as names
of compounds, the problem of building effective entity rec-
ognizers in a new domain where you have very little super-
vised data available is very understudied. There are a lot of
small domains each of them has different terminology be-
cause software is used in various domains and organizations.
Also it is impractical to build taggers by traditional super-
vised NER methods for SDTR because the tuning cost in
individual software development projects is limited. NER is
a promising, fundamental technology that enables detection
of important terminology from software documents. The ex-
tracted terminology can be used for creating a dictionary
to define name words and phrases, and an index that refer-
ences the location where each word or phrase is explained in
the particular software. Several NER systems have been re-
cently proposed and are currently available for use, such as
the Stanford NER (Finkel, Grenager, and Manning 2005).
However, most of these systems have been traind and evalu-
ated on large amounts of general domain data; it is therefore
difficult to apply them for use in a software document di-
rectly for several reasons:

1. Name words and phrases depend on target domains, orga-
nizations, and projects.

2. The number of software documents for each project is
limited.

3. Supervised data is lacking.
4. Most technical terms are a combination of common

nouns, not proper nouns; it is difficult to distinguish them.
Figure 1 shows examples of terms excerpted from (Hi-

tachi, Ltd. 2013). These examples focus on terms relating to
“user.” Four names exist that are important to the software
specifications. As shown, each name is composed of com-
mon nouns; in some cases, a name combines partial phrases,
such as the user ID field and user ID. The noun “user” is
only employed as a common noun, such as in the third line.
In addition, although a very general noun, “user,” has been

49

Ambient Intelligence for Health and Cognitive Enhancement: Papers from the 2015 AAAI Spring Symposium

In the User ID field, enter your user ID using ----(snip)---.

The Edit user window appears. -----(snip)----

Whether users can change passwords depends on a setting

 in the User management property file.

����������	�
���������� ������������

��������������������

�����������

����������	
�

Figure 1: Examples of terms in software documents

explained, this type of challenge occurs in each domain and
in each organization‘s lexicon. To overcome the above dif-
ferences between NER for general use and NER for software
documents, we are developing a software document termi-
nology recognizer (SDTR).

Software Document Terminology Recognition

Based on NER technologies, an SDTR is a type of NER sys-
tem that is specialized for software documents. An SDTR
recognizes the names of software elements, such as actors,
roles, dates, functions, class names, and so on, from soft-
ware documents published in particular organizations. An
NER, on the other hand, recognizes proper names, such as
organizations, persons, places, and so on, from general pub-
lications. Owing to the above difference between SDTR and
NER, it is difficult to apply existing and distributed NERs
to software document directories. Table 1 shows the results
of applying the Stanford NER to a software document with
no changes. The tag “BN” is attached to the word of a name
beginning, the tag “IN” is attached to the word of a name
following BN if the name is a phrase. Unfortunately, the
BN and IN recall scores are not good because the language
model of the Stanford NER (Finkel, Grenager, and Manning
2005) is trained for proper names, not for names of software
elements. We must therefore train a language model that is
suitable for SDTR.

Tag Precision Recall F1 Support
- 0.73 0.99 0.84 6539
BN 0.81 0.14 0.24 1238
IN 0.73 0.05 0.09 1502
Average 0.74 0.73 0.64 9279 (Total)

Table 1: Name tagging results using the Stanford NER

However, two contradictory problems in training an
SDTR language model exist. The first problem is the dif-
ficulty of building a generalized model. This challenge
is founded in the nature of software development as a
cross-domain activity. Each software development project is
domain- and organization-specific; moreover, the respective
vocabulary and terminologies are unique. Thus, it is diffi-

cult to build a cross-domain language model. Meanwhile,
the consumable costs of each software development project
are limited. It is therefore challenging to remunerate the
significant costs for making supervised data as well as for
project-specific features in individual projects. An individ-
ual software development project requires a versatile and
non-supervised SDTR; nevertheless, the challenges remain,
as noted above. Thus, the SDTR should minimize the prepa-
ration of supervised data and modification of features. To
solve these problems, we hypothesize the following:

• Domain- and organization-specific knowledge can be
eventually implemented as a list of names.

• Because the essential types of names relating to software
specifications such as actors, functions, and data can be
unified, a method can be developed to enable the sharing
of name candidates between particular projects.

If the first hypothesis is realized, the project-specific features
can be implemented, just like a dictionary matcher, for each
project. If the second hypothesis is realized, the supervised
data can be gathered and used to train greater data than indi-
vidual training. Based on the above hypotheses, we propose
a two-phased SDTR, which is elaborated in the following
sections.

Research Questions

Outlined below are the three SDTR research questions of
this paper.

RQ1 Is using a project-specific name candidate list effec-
tive for the F1-value of the SDTR?

RQ2 Can it build the name list based on general features;
i.e., domain-independent features?

RQ3 Is the automatically built name list helpful in improv-
ing the SDTR?

Phased Software Document Terminology

Recognizer

We propose a two-phased SDTR that is (semi)supervised.
Figure 2 depicts its architecture. The names included in
its required training document should be tagged “BN” and
“IN.” After training, the SDTR receives non-tagged tar-
get documents and then outputs named tagged documents.
These two phases are described below.

First phase: Creating the Name Candidate List

The objective of the first-phase tagger is to create a name
candidate list for a particular software project for the second-
phase tagger. High recall is an important criterion for first-
phase taggers, even though it sacrifices precision. Because
a name candidate list is expected to function as domain-
specific knowledge of target documents, it is preferable
that the list includes all names in target documents. In
addition, first-phase taggers should comprise domain- or
organization-independent features because first-phase tag-
gers are expected to be trained to improve recall by us-
ing cross-domain or cross-organization data. Each software

50

Software Documents Terminology Recognizer

1st Phase Taggers 2nd Phase Tagger

Text Style Feature
Tagger

POS Feature
Tagger

Context Feature
Tagger

Semantic Feature
Tagger

Dictionary

Text Style Feature

Knowledge Feature

���������
�	
����

������
�	
����

������
�	
����

POS Feature

Context Feature

Semantic Feature

Figure 2: Architecture of the two-phased SDTR

development project includes domain- and organization-
specific terminology, as mentioned earlier. Therefore, if a
tagger is trained as a project-specific tagger, it constitutes
over-training when reusing it for other project documents.
By omitting domain- or organization-specific features, these
taggers can be trained by a large amount of cross-project
data to obtain a high-quality name candidate list. Some
non-domain- and non-organization-specific features are em-
ployed in four feature aspects: text style, structure, context,
and semantics. To build a high-recall name candidate list,
four taggers are composed using each of the feature aspects.
The four taggers individually tag names to input documents;
the SDTR then detects the names from the tagged documents
and inputs them into the name candidate list.

Text Style Features Text style features of written letters
include capitalization, prefixes, suffixes, bold facing, itali-
cization, and so on.

Structure Features Structure features focus on structural
information of the word in a sentence. One of the most com-
mon structure features is the part of speech. The position of
a word in a sentence, such as at the beginning or end, or its
relative order, could be a structure feature.

Context Features Context features focus on the relation-
ship of neighbor words. Features based on n-gram (Brown et
al. 1992) probability have often been used in previous stud-
ies.

Semantic Features Semantic features focus on word
meanings. It is difficult to directly express a words mean-
ing; therefore, a word vector and group of synonyms may be
substituted for the expressed meaning.

Second Phase: Performing Project-specific Tagging

The second-phase tagger provides conclusive tagging to the
target documents using the name candidate list that was out-
put in the first phase. The role of the second phase is to
output name-tagged documents to SDTR users. This phase
therefore requires both high recall and high precision. Ac-
cordingly, the criterion of the second-phase tagger is the
F1-value. To obtain a high F1-value result, both project-
specific and non-project-specific features are employed for
the second-phase tagger. Ideally, it is desirable to calculate
the project-specific features based on domain and organiza-
tion knowledge analyzed by experts. However, this is labor-
intensive. We do not employ manually created knowledge
resources; rather, we attempt to use the name candidate list
from the first-phase tagger. For our second phase tagger, we
combine those five feature into one tagger.

Knowledge Features Knowledge features focus on the
word or phrase is known to or used as a entity name in par-
ticular domain. Matching with the name list, such as a dic-
tionary, could be an implementation of these features.

Experiments

To evaluate the applicability of our proposed SDTR, we
built prototypes of the first-phase and second-phase taggers.
We employed Python 2.7.3 and the Python-crfsuite (Peng
and Korobov 2014), which is a Python binding to CRF-
suite (Okazaki 2007), as an implementation of conditional
random fields (Lafferty, McCallum, and Pereira 2001) for
these prototypes. For the sample software document, we
used a software user manual (Hitachi, Ltd. 2013) from which
we excerpted Chapters 1, 2, and 3 and manually tagged
names. Table 2 shows a summary of the sample data. In this

51

paper, we report the results with Chapter 2 used for super-
vising data and with Chapter 3 used for test data.

Chapter Number of Words Remarks
1 3586
2 859 training data
3 9279 test data

Table 2: Size of the training and test data

The feature setups that we built for the prototypes are de-
scribed below.

Text Style Features: Capitalization The text style fea-
tures of our prototypes are the following:

• If the target word is capitalized.

• If the next word is capitalized.

• If the previous word is capitalized.

Structure Features: Part of Speech The part-of-speech
structure features of our prototypes are the following:

• Part-of-speech tag of the target word.

• Part-of-speech tag of the next word.

• Part-of-speech tag of the previous word.

For calculating the part of speech, we employ a
part-of-speech tagger of the Natural Language Toolkit
(NLTK) (NLTK Project 2014).

Context Features: BM25 Scores of Uni- and Bi-grams
The following are context features of our prototypes:

• Normalized and step-wised values of the uni-gram
BM25 (Robertson, Zaragoza, and Taylor 2004) score for
the target word.

• Normalized and step-wised values of bi-gram BM25
scores for the target word and neighbor words.

Semantic Features: Similar Words Based on Word Vec-
tor The following are semantic features of our prototypes:

• The top ten similar words of the given term.

• The top ten similar words of the neighbor words, the next
two words, and the previous two words.

For calculating similarity, we employed WordVec-
tor (Mikolov et al. 2013); we used word2vec (word2vec
project) as an implementation of WordVector. In addition,
we used the sample document for the corpus of calculating
WordVector. Accordingly, the corpus size was 13,724 words.

Knowledge Features: Matching with Name Candidate
List The following are knowledge features of our proto-
types:

• If an exact phrase match, including the target word, with
a window size up to five, exists in the name candidate list.

• If a partial phrase match, including the target word, with
a window size up to five, exists in the name candidate list.

Experiment One

To examine the utility of the project-specific name candi-
date list, we first composed second-phase taggers using an
ideal name candidate list and applied them to our test data.
The ideal name candidate list included all name words and
phrases extracted from the sample document that we tagged.

Table 3 shows the results of the oracle second-phase tag-
ger which use an ideal name candidate list. The first line
presents the results of applying a tagger implemented only
with knowledge features; i.e., feature matching with the
name candidate list. The second line presents the results of
using a tagger that combines text style, structure, context, se-
mantic, and knowledge features. The third line provides the
results of the best mixed tagger of this experiment. This tag-
ger incorporated text style, structure, semantic, and knowl-
edge features, but not context features.

Experiment Two

We then applied to our test data the prototype of the first-
phase tagger using the above features. The purpose of this
experiment was to examine the feasibility of automated
name candidate list extraction based on our proposed ar-
chitecture. Table 4 shows the statistical results of each first-
phase tagger.

After the completion of name tagging, we created the
name candidate list from each result tagged document by
extracting the name words and phrases and eliminating du-
plications. We then obtained the first-phase name candidate
list by merging the four name candidate lists. Table 5 shows
a summary of extracted names candidate lists. The first four
lines present the results of elemental taggers; the bottom line
presents the results of the merged name candidates list.

Source Correct FN FP
Text Style: Capitalize 175 281 361
Structure: Part of Speech 158 298 174
Context: 1,2-gram BM25 173 283 310
Semantics: Similar Words 172 284 271
Merged 175 281 361

Table 5: Summary of extracted name candidate list using
each first-phase tagger. FN denotes false negatives; FP rep-
resents false positives.

Experiment Three

Finally, to evaluate the SDTR performance, we applied the
prototypes of the second-phase tagger using the name can-
didate list, which was extracted by the first-phase taggers
in Experiment Two. We attempted all combinations of the
above features and compared the performances. Table 6
shows the statistical results of the second-phase tagger pro-
totypes. The first line presents the results tagged by only
knowledge features; the second line presents the results by
the tagger that included all features implemented at this
time; and the bottom line presents the best result tagger that
included every feature except context features.

52

- BN IN Average
Features P R F1 P R F1 P R F1 P R F1
Only Knowledge 0.94 0.97 0.95 0.87 0.64 0.74 0.89 0.98 0.93 0.92 0.93 0.92
Use all 0.95 0.92 0.96 0.85 0.70 0.77 0.93 0.96 0.95 0.93 0.93 0.93
Without Context 0.95 0.97 0.96 0.88 0.71 0.78 0.93 0.97 0.95 0.94 0.94 0.94

Table 3: Results of the oracle second-phase tagger. P denotes precision, R denotes recall, and F1 denotes the F1-value.

- BN IN Average
Features P R F1 P R F1 P R F1 P R F1
TextStyle: Capitalize 0.77 0.94 0.84 0.69 0.30 0.42 0.54 0.27 0.36 0.72 0.74 0.71
Structure: Part of Speech 0.91 0.91 0.90 0.70 0.60 0.65 0.74 0.85 0.79 0.85 0.85 0.85
Context: 1,2-gram BM25 0.71 0.93 0.80 0.30 0.08 0.13 0.21 0.05 0.08 0.57 0.67 0.60
Semantics: Similar Words 0.86 0.95 0.90 0.69 0.43 0.53 0.79 0.67 0.72 0.83 0.84 0.72

Table 4: Tagging results of each first-phase tagger. P denotes precision, R denotes recall, and F1 denotes the F1-value.

Evaluation

In this section, we evaluate our research questions based on
the results obtained by the above experiments.

For RQ1

If a suitable list is provided, using a project-specific name
candidate list is effective. According to Table 3, the best
average F1-value was 0.94. Even though the tagger used
only knowledge features, the average F1-value was 0.92.
This result implies that the features using project-specific
knowledge, such as our name candidate list, are effective for
SDTR.

However, when focusing on the BN results, it is evident
that the recall scores were not very high; i.e., up to approxi-
mately 0.71. This means that our current SDTR missed 30%
of the beginning of names. This adversely affected the per-
formance of automated name extraction; therefore, we must
develop supplemental features that can improve BN recall.

For RQ2

It seems feasible to build the name candidate list using gen-
eral features, that is, the first-phase taggers in our SDTR.
However, the performances of the first-phase prototypes
were not sufficient. According to Table 5, the final merged
name candidate list had 145 correct names; however, it
missed 284 names. That is, the recall of the extracted
name candidate list was not much more than 40There are
three types of extraction errors: missing, over-extracted, and
under-extracted. Missing errors occur when the tagger can-
not tag any words of a name; over-extraction occurs when
the tagger tags one or more excess words of the head or tail
of a name; and under-extraction occurs when the tagger tags
a segment shorter than the radical length of a name. By an-
alyzing the extracted name candidate list, it was determined
that the list included several over- and under-extractions.
These extraction errors caused a decrease in recall. Hence,
we require further development of features that can cope
with over- and under-extractions. In addition, a re-design
and re-examination of the first-phase tagging architecture

are required. In designing the first-phase taggers for this pa-
per, we employed a structure that uses four plain taggers and
merges each extracted name into the name candidates list, as
shown in Figure 2. We presumed that the performances of
each tagger would not be very high; however, we expected
that the combination of the results from different viewpoints
could improve the recall. Nevertheless, belying our expec-
tation, one feature dominated. In this experiment, the name
candidate list by text style features contained all name can-
didates of the three other features. Consequently, the top and
bottom records of Table 5 present the same values.

For RQ3

Even though the automatically extracted name candidates
list did not have high recall, the results of our second-phase
tagger seem meaningful. According to Table 6, the best av-
erage F1-value was 0.87. For the tagger using only knowl-
edge features, the average F1-value was 0.82. Given that the
extracted name candidate list included only 40% of correct
names, these results are surprisingly high. We estimate that
is because there were a number of over- and under-extracted
name candidates in the name candidate list; furthermore, the
knowledge features matched with those nearly names like a
correct names.

Discussion

In this section, we explain the findings from our experi-
ments.

Part-of-Speech Features

It is noteworthy that the part-of-speech features performed
well with respect to their plain and common setups. As
shown in Table 4, the results of “Structure: Part of Speech”
do not appear considerably weak against the final results pre-
sented in Table 6. Understandably, the results of the elabo-
rated features were better than those for the part-of-speech
features. However, the setup of the features was very sim-
ple and current part-of-speech taggers are maturing. In addi-
tion, (Chuang, Manning, and Heer 2012) also reported use-
fulness of part-of-speech patterns for extracting terminolog-

53

- BN IN Average
Features P R F1 P R F1 P R F1 P R F1
Only Knowledge 0.90 0.88 0.89 0.64 0.56 0.60 0.66 0.80 0.73 0.83 0.82 0.82
Use All 0.92 0.90 0.91 0.69 0.66 0.67 0.76 0.85 0.80 0.86 0.86 0.86
Without Context 0.92 0.91 0.92 0.70 0.68 0.69 0.77 0.85 0.80 0.87 0.87 0.87

Table 6: Results of the second-phase tagger using the name candidate list extracted by the first-phase taggers. P denotes preci-
sion, R represents recall, and F1 denotes F1-value.

ical phrases. Thus, it seems it would be sufficiently helpful
to use in further trials the software documents of some de-
velopment projects.

Word Vector Feature

The performances of the semantics features, i.e. similar
words calculated by WordVector, were also noteworthy. In
most related works on WordVector, the corpus sizes were
millions or more; however, we provided a mere 13,000
words in this paper. Although this was an insufficient
amount of corpus, the semantics features worked well, as
demonstrated by the result of “Structure: Part of Speech” in
Table 4. For future work, we will prepare a large software
document corpus and research the performances of Word-
Vector features.

Context Features

Context features, with a uni-gram and bi-gram BM25 score,
unfortunately did not seem to work well in our experiment.
As evidenced in Tables 3 and 6, the context features de-
graded the performances in both cases. We suspect that the
n-gram window size was not sufficiently large and that the
training data amount was inadequate. The cause will be in-
vestigated in future work.

Conclusion

In this paper, we presented a two-phased SDTR in which the
first phase extracts the name candidate list using general fea-
tures; the second phase provides tagging using the extracted
name candidate list as project-specific knowledge. Based on
experimental results, we confirmed the availability of the
features using the name candidate list and achieved an aver-
age 0.87 F1-value of name tagging using the extracted name
candidate list. Nevertheless, the performance of the name
candidate list extraction was insufficient and requires further
study. Moreover, the experiments in this phase were only for
proof of concept; thus, the test data size was small. In fu-
ture work, we will conduct experiments based on a greater
amount of test data.

References

Brown, P. F.; Desouza, P. V.; Mercer, R. L.; Pietra, V. J. D.;
and Lai, J. C. 1992. Class-based n-gram models of natural
language. Computational linguistics 18(4):467–479.
Chuang, J.; Manning, C. D.; and Heer, J. 2012. ”without
the clutter of unimportant words”: Descriptive keyphrases
for text visualization. ACM Trans. on Computer-Human In-
teraction 19:1–29.

Finkel, J. R.; Grenager, T.; and Manning, C. 2005. Incor-
porating non-local information into information extraction
systems by gibbs sampling. In Proceedings of the 43rd An-
nual Meeting on Association for Computational Linguistics,
ACL ’05, 363–370. Stroudsburg, PA, USA: Association for
Computational Linguistics.
Hitachi, Ltd. 2013. Job Management Partner 1/Integrated
Management - Service Support Operator’s Guide. Hitachi,
Ltd., 3021-3-365(e) edition.
Lafferty, J. D.; McCallum, A.; and Pereira, F. C. N. 2001.
Conditional random fields: Probabilistic models for seg-
menting and labeling sequence data. In Proceedings of the
Eighteenth International Conference on Machine Learning,
ICML ’01, 282–289. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc.
Leser, U., and Hakenberg, J. 2005. What makes a gene
name? named entity recognition in the biomedical literature.
Briefings in Bioinformatics 6(4):357–369.
Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013. Ef-
ficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781.
Nadeau, D., and Sekine, S. 2007. A survey of named entity
recognition and classification. Lingvisticae Investigationes
30(1):3–26.
NLTK Project. 2014. Natural language toolkit.
http://www.nltk.org/index.html.
Okazaki, N. 2007. Crfsuite: a fast imple-
mentation of conditional random fields (crfs).
http://www.chokkan.org/software/crfsuite/.
Peng, T., and Korobov, M. 2014. python-crfsuite.
http://python-crfsuite.readthedocs.org/.
Ratinov, L., and Roth, D. 2009. Design challenges and mis-
conceptions in named entity recognition. In Proceedings of
the Thirteenth Conference on Computational Natural Lan-
guage Learning, 147–155. Association for Computational
Linguistics.
Robertson, S.; Zaragoza, H.; and Taylor, M. 2004. Simple
bm25 extension to multiple weighted fields. In Proceed-
ings of the Thirteenth ACM International Conference on In-
formation and Knowledge Management, CIKM ’04, 42–49.
New York, NY, USA: ACM.
word2vec project. word2vec.
https://code.google.com/p/word2vec/.

54

