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Abstract
Systems that build general knowledge bases from con-
cept definitions mostly focus on knowledge extraction
techniques on a per-definition basis. But, definitions
rely on subtext and other definitions to concisely encode
a concept’s meaning. We present a probabilistic infer-
ence process where we systematically augment knowl-
edge extracted from several WordNet glosses with sub-
text and then infer likely states of the world. From those
states we learn new semantic relations among proper-
ties, states, and events. We show that our system learns
more relations than one without subtext and verify this
knowledge using human evaluators.

Introduction
Word definitions contain information useful for building an
ontology of conceptual common sense knowledge. (Allen et
al. 2013) shows that causal relations between word senses
can be automatically extracted from logical forms (LF) of
WordNet glosses with high precision. However, this ap-
proach was limited to deriving relations directly from the
gloss LFs or through basic logical inferences over the re-
sulting knowledge base (KB).

Glosses are meant primarily for human readers, so they
tend to be vague and leave a lot of knowledge unstated. For
example, the definition for Stay up is, “not go to bed”; if
taken literally, a person can stay up while sleeping because
they are not currently going to bed. The reliance of defi-
nitions on subtext and other definitions limits what can be
done with logical inference because the LF of a gloss is not
guaranteed to provide sufficient information about a con-
cept.

In this paper we explore the possibility of learning more
semantic relations from axioms in a KB built from LFs of
WordNet glosses. We concern ourselves with the tempo-
ral relationships among word senses representing proper-
ties (e.g., Asleep), states (e.g., Sleeping), and the events
that affect those states and properties (e.g., Wake up). We
augment previously learned concept knowledge with as-
sumptions about the subtext of their source definitions. We
then use the resulting KB to build a Markov Logic Net-
work (MLN) and generate scenarios - artificially created
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sequences of events and states. Sets of scenarios provide
a means to estimate the likelihood of certain semantic re-
lationships between concepts that logical inference would
miss. Relationships with a high likelihood can then be added
to the original KB.

Related Work
(Jiang, Lowd, and Dou 2012) uses MLNs to improve the
accuracy of knowledge extracted by NELL (Carlson et al.
2010). By considering the joint probability of several facts
they can identify and remove those that are unlikely. Al-
though NELL differs in approach from (Allen et al. 2013),
the goal of (Jiang, Lowd, and Dou 2012) is similar to ours:
improve existing KBs through probabilistic reasoning.

(Beltagy et al. 2013) performs semantic textual similarity
and textual entailment by representing LFs in an MLN to
infer likely entailments of the text. Similarly, we also use
LFs to create an MLN and find likely entailments.

Modeling Scenarios
Scenarios are probabilistic sequences of events, states, and
property ascriptions inferred from a set of initial assertions
(see Figure 1). They are used to find correlations among
temporal concepts and are not meant for general inference;
so, our model is considerably simpler than the LFs found in
(Allen et al. 2013). We use only three concepts representing
events, properties/states, and time.

• Event - telic processes that affect properties (Wake up)

• Property - properties, states, and atelic processes that ob-
jects may be ascribed (Asleep, Sleeping)

• Time - a discrete span of time; a time step

We use a temporal theory inspired by (Allen 1984); albeit
much less expressive. The biggest departure from (Allen
1984) is that time steps cannot overlap - they can only be

1.0 ¬hold(Sleep, 1) hold(Sleep, 2)
P= .9 ¬hold(Stay up, 2)

.8 occur(Go to bed, 1) ¬hold(Awake, 2)

Figure 1: Scenario inferred by asserting: ¬hold(Sleep,1) and
hold(Sleep,2).

126

Logical Formalizations of Commonsense Reasoning: Papers from the 2015 AAAI Spring Symposium



consecutive. Events occur during a single time step; the
starting conditions of the event are true at the same time the
event occurs and the effects of the event are true at the next
time step. Unlike (Beltagy et al. 2013), we further simplify
our model by not representing objects - that is, something
that causes or is affected by an event or has a property. In-
stead we consider all properties to belong to a single unrep-
resented object and all events to affect it.

The following predicates are used to describe a scenario.
• occur(Event,Time) - an event occurs at a certain time. By

convention, when an event takes place at time t its pre-
conditions are true at t and its effects are true at t+1

• hold(Property, Time) - something has a property or is in a
state at a certain time

• meets(Time,Time) - two time steps are consecutive
Finally, we make the assumption that properties do not
spontaneously change (i.e., an event must have caused the
change):
hold(p,t) ∧ ¬hold(p,t+1) ∨ ¬hold(p,t) ∧ hold(p,t+1)→ ∃e.
occur(e, t).

Adding Subtext
We now look at two ways we add some of the subtext of a
definitions to our axioms. The first way is a simple heuristic
regarding concepts that entail the prevention or otherwise
non-occurrence of an event - e.g. Stay up - “not go to bed”
or Keep up - “prevent from going to bed”. We assume that
if something is kept up then it must be possible to go to bed;
i.e. it entails the conditions necessary for going to bed: “not
sleeping”. Generally, if something prevents an event, e, then
it entails whatever holds at the start of e.

We also tried to add subtext by treating definitions as pos-
sibly sufficient conditions of the concept they define. Con-
cepts entail their definition; however, always assuming def-
initions entail their concept is problematic. In some cases it
is desirable, like in Sleeping - “the state of being asleep” we
can safely assume that anything that is in “the state of being
asleep” is Sleeping. However, we cannot do that in the case
of Unconscious - “not conscious”. An object can arguably
be both not Conscious and not Unconscious - e.g. being
dead or otherwise non-living. We chose to use an MLN be-
cause it allows us to add uncertainty to the converse of a
definition via weighted soft constraints. When creating a
hard axiom from a definition we also create a soft converse
axiom with some weight, [w]. In effect, we weaken our be-
lief in the converse axioms and stronger contrary evidence
can overcome the rule. With this model we can describe
a scenario where a generic actor goes from sleeping to not
sleeping and then infer the rest of the scenario(see Figure 1).
• Hard Necessary Conditions:

– hold(Sleeping, t) → hold(Asleep, t).
– occur(Awaken, t) → hold(Sleeping, t) ∧
¬hold(Sleeping, t+1).

• Soft Sufficient Conditions:
– [w] hold(Asleep, t) → hold(Sleeping,t)
– [w] hold(Sleeping, t) ∧ ¬hold(Sleeping, t+1) →

occur(Awaken, t)

Inferring Semantic Relationships
We intend to infer three types of semantic relations from
sets of scenarios created from definitions; the relations are
among the most important to common sense about events
and states.

• entailsP(p,p′): ∀t. if holds(p,t) then holds(p′,t)
• preCondition(e,p): ∀t. if occurs(e,t) then holds(p,t)

• postCondition(e,p): ∀t. if occurs(e,t) then holds(p,t+1)

We use if/then statements and estimate each relation by,
P(conclusion | premise)·P(¬premise | ¬conclusion) - in-
stead of P(¬premise∨conclusion). Doing so lowers the
chance we draw conclusions from weak evidence by reduc-
ing the baseline probability of a relationship between two
concepts from p=.5 to p=.25. Furthermore, this fits our intu-
ition that most properties and events are likely unrelated.

Instead of collecting observations from corpora or some
other real-world source, we generate basic combinations
of asserted conditions and then use our model to infer
the likely state of the scenario. For each property, p, we
generate sets of assertions for scenarios of a certain length
by permuting all possible sequences of p holding and p
not holding. Generating scenarios from events differs
slightly in that we do not allow an event to occur twice
consecutively as that would cause a contradiction in most
cases. To remain tractable, we limit the maximum time
steps in the scenarios and only use a subset of interrelated
axioms in our MLN. For example, given a property, p, and
a max length of two we create six scenarios: {¬hold(p,1)},
{hold(p,1)}, {¬hold(p,1), ¬hold(p,2)}, {¬hold(p,1),
hold(p,2)},{hold(p,1), ¬hold(p,2)},{hold(p,1), hold(p,2)}

From these sets of scenarios we estimate the probabilities
of the relations introduced above. Scenarios best character-
ize only the concepts used in their original assertions. This
means that Figure 1 only characterizes the relationships in-
volving Sleep. To properly estimate the probability of R(c1,
c2) we only consider the scenarios that were generated from
both c1 and c2. More formally we estimate the probability
of a relation like so:

Let R be a binary relation and PC(R(x, y)) give the prob-
ability of R(x, y) estimated using all of the scenarios gener-
ated from concept C.

P(R(x, y)) =
Px(R(x, y)) + Py(R(x, y))

2

Experiment
We created a small micro-theory of sleep from hand selected
concepts in WordNet related to Sleep. We then hand con-
verted the LFs of the concepts’ glosses into several axioms
and chose 2.0 for the weight of the soft axioms. Example
hard axioms are shown below, soft axioms can be inferred.

• occur(Wake up,t)→
hold(Sleeping,t) ∧ ¬hold(Sleeping,t+1).

• hold(Sleeping,t)→ hold(Asleep,t).

• hold(Sleep,t)→ ¬hold(Conscious,t) ∧ hold(Rest,t).
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Question Property
If something is sleepingx then
it is asleepy .

entailsP(x,y)

If something wakes upx then
it is sleepingy immedi-
ately before.

preCondition(x,y)

If something awakensx then it
is unconsciousy immedi-
ately after.

postCondition(x,y)

Table 1: Sample questions with corresponding property.

Response System Criteria Value
definitely .8 ≤ P(R(x,y)) 5
likely .6 ≤ P(R(x,y)) < .8 4
likely not .6 ≤ P(R(x,¬y)) < .8 2
definitely not .8≤ P(R(x,¬y)) 1
maybe otherwise 3

Table 2: Possible responses, conditions for the system to
respond that way, and the values assigned for evaluation.

• hold(Awake,t)→ hold(Conscious,t) ∧ ¬hold(Sleep,t).

• hold(Kip,t)→ hold(Asleep,t).

• occur(Go to bed,t)→ ¬hold(Kip,t) ∧ hold(Kip,t+1).

• occur(Knock out,t)→
¬(hold(Unconscious,t) ∨ hold(Senseless,t)) ∧
(hold(Unconscious,t+1) ∨ hold(Senseless,t+1)).

• hold(Unconscious,t)→ hold(Conscious,t).

• hold(Stay up,t)→ ¬occur(Go to Bed,t) ∧ ¬hold(Kip,t).

For each concept we generated several scenarios of
lengths one, two, and three and then used Alchemy (Kok
et al. 2005) to infer the likely state based on our model. We
then estimated the probability of each of the three semantic
relations - entailsP, preCondition, and postCondition. Figure
2 shows some of the knowledge inferred about Sleep.

To evaluate the approach, we created surveys with three
types of questions each corresponding to one of the three
relations (see Table 1). Each question asks the respondent
to fill in a blank in the sentence with one of five responses.
The respondent was given glosses for both concepts but was
asked to use their own knowledge when answering.

Figure 2: Some inferred relationships and their probabili-
ties. Events are boxes and properties are ovals. A relation
ending in “Neg” indicates that the sink is negated. As in
postCondition(Wake up,¬Sleep)

To test the effectiveness of both subtext heuristics intro-
duced above, we created another model using only hard ax-
ioms derived from the LFs without subtext added. Table 2
shows the possible answers and the criteria for both models
to give that response. For human comparison, we created
two surveys, each had 25 unique questions which were cho-
sen equally among the set of system responses as well as the
set of question types, i.e., all of the system responses are uni-
formly distributed as are the question types. The first survey
had six respondents while the second had only five.

To compare system responses to human responses we as-
signed each possible response a value (see Table 2) and for
each question we took the average value of all of the re-
sponses. The human answers were fairly consistent: the av-
erage standard deviation for each question being about .67.
We count a system response as correct only if the difference
between it and the average human response is < 1.

Table 3 compares the average human response with re-
sults from the model using the subtext heuristics with the
model using only the axioms derived literally from LFs. Ac-
curacy is simply the number of correct answers divided by
the number of answers. Precision only considers the ques-
tions that the system did not respond, “maybe”.

The heuristic system has a high accuracy compared to the
LF-Only system. The LF-Only system gives more false neg-
atives by answering “Maybe” 17 times more often. Among
just those 17 questions, the heuristic system’s precision was
.76 (13 out of 17 were correct). Meaning, the heuristic sys-
tem added more knowledge albeit with lower precision.

Conclusion
While the results reported here are encouraging there is
much to be done before such a system can generate a KB
from all of WordNet. At the forefront is the creation of an
automated way of converting LFs to axioms. Recent experi-
ments show that this likely can be accomplished by defining
patterns in the LF graph and the relationships they represent;
like, “x stops y” : changeFrom(x,y).Furthermore, a Word-
Net scale MLN is unlikely to be tractable. We have to de-
vise a way to only use knowledge relevant to whichever con-
cept we want to learn about. (Jiang, Lowd, and Dou 2012)
addressed a similar issue by breaking their KB into differ-
ent domains. We will likely follow suit and build micro-
theories about a concept by looking at nearby concepts in
the LF graph. Completing both these tasks will allow us to
run much larger experiments and further improve our model.

Acknowledgements
This work was supported in part by the Nuance Foundation
and the Office of Naval Research (Grant #N000141110417).

Heuristic LF-Only
Acc. Prec. Acc. Prec.

34

50
= .68

31

37
= .84

20

50
= .4

17

20
= .85

Table 3: Results with and without heuristic subtext axioms
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