
Natural Language Access to Data: It Takes Common Sense!

Cleo Condoravdi ∗
Department of Linguistics,

Stanford University
Stanford, California, U.S.A.

Kyle Richardson
Institute for Natural Language Processing,

University of Stuttgart
Stuttgart, Germany

Vishal Sikka
Infosys Ltd.

Palo Alto, California, U.S.A.

Asuman Suenbuel
SAP Labs

Palo Alto, California, U.S.A.

Richard Waldinger
Artificial Intelligence Center, SRI International

Menlo Park, California, U.S.A.

Abstract

Commonsense reasoning proves to be an essential tool
for natural-language access to data. In a deductive ap-
proach to this problem, language processing technology
translates English queries into a first-order logical form,
which is regarded as a conjecture to be established by a
theorem prover. Subject domain knowledge is encoded
in an axiomatic theory equipped with links to appro-
priate databases. Commonsense reasoning is necessary
to disambiguate the query, to connect the query with
relevant tables in the databases, to deal with logical re-
lationships in the query, and to achieve interoperabil-
ity between disparate databases. This is illustrated with
examples from a proof-of-concept system called Quest,
which deals with queries over business enterprise data
for an industrial QA system.

Motivation

We are interested in a particular style of natural language
question answering in which:

• Questions are in ordinary language, not a controlled sub-
language.

• Answers are precise, not just references to Web pages or
documents.

• Answers can be obtained from multiple databases, which
may be disparate; they need not be intended to be used
together.

• Answers need not be present explicitly in any of the
databases; they may be deduced or computed from infor-
mation supplied by several databases.

• Queries may be expressed incrementally; on seeing the
answers from one query, the user may impose restric-
tions or add follow-on questions that refer back to earlier
queries.
∗Author names are listed in alphabetical order.

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

To make the problem more manageable, we allow the fol-
lowing restrictions on the problem.

• Questions are limited to a particular subject domain.

• We access only a known set of databases; we do not seek
new databases when answering a new question.

• All our data is structured; we do not deal with, say, un-
structured English knowledge sources.

In this context, reasoning plays a number of roles:
Natural Language Interpretation: Natural language

queries are highly ambiguous. Even for an apparently simple
query, a parser may find a large space of analyses, most of
which can be discarded with some knowledge of the subject
domain. For instance, in our business enterprise domain, if
we ask the business enterprise system Quest Find me a com-
pany with a debt. It should be high, a person will know that
it is the debt that should be high, not the company, because
in this context we define high debts but not high companies.
Similarly, syntactic ambiguities (e.g. Companies that have
decreasing daily sales outstanding within the last year) can
often be resolved by having background domain knowledge
about relations that hold between entities in the target do-
main.

Finding Answers and Coordinating Databases: Once
the query has been understood and correctly represented,
finding an answer need not be a simple matter of lookup.
There may be a discrepancy between the way the data is rep-
resented in a database (e.g, Company A has 1,000,000 dol-
lars in the “debt” column,) and the way the query is phrased
(The company owes more than 500,000 euros). The answer
may depend on more than one data source, and there may
be a complex inferential link between the information pro-
vided by the sources and the query posed by the user. When
multiple sources must cooperate, we cannot assume that in-
formation provided by one source is in the form required by
another (e.g., one may provide a monetary value in dollars,
while another requires it in euros.) These connections can all
be filled in by reasoning over a declarative knowledge base.

53

Logical Formalizations of Commonsense Reasoning: Papers from the 2015 AAAI Spring Symposium



Logical and Commonsense Reasoning: Reasoning also
helps to deal with logical connectives, quantifiers, and tem-
poral and spatial operators that may appear in a query. We
might want to find a client in Northern Europe that has not
had a high balance in the last two years. We need temporal
reasoning to tell if a debt was contracted within the last two
years, spatial reasoning to determine whether a company is
in Northern Europe, and ordinary reasoning to handle the
negation connective not. If we are looking for a company
that does not have a Spanish subsidiary, we must be able to
deal with quantifiers.

We cannot use conventions such as the unique-name as-
sumption (i.e. that distinct names refer to distinct things)
or the closed-world assumption (i.e. that our data sources
are complete) blindly in this context. For instance, while
we must assume that companies have id numbers that are
unique, we must allow the possibility that different people
or even cities have the same name. We must assume that
our database contains a complete list of clients, but we do
not require that our currency conversion table contains all
the world’s currencies. Thus we must intermix unique-name
and closed-world reasoning with ordinary logical inference.

Outline of Approach

Below is an outline of the approach we are following:

semantic parsing: Natural language queries are parsed and
translated into a formal semantic representation.

logical form: A first-order logical representation is con-
structed from the semantic representation. The entities to
be found are represented by existentially quantified vari-
ables. (If the semantic representation has unresolvable
ambiguities, several logical forms may be constructed).

playback: The logical form is translated back into a pedan-
tic but less ambiguous English, and displayed to the user
for approval or modification.

proof: The selected logical form is submitted as a conjec-
ture to a theorem prover, to show that it is a theorem in a
given subject domain theory.

procedural attachment: Certain relation (and function)
symbols in the theory are linked to tables in selected
databases, which indicate what entities satisfy them.
When these linked symbols arise in the proof search, ex-
istential variables are replaced by the satisfying entities,
and the proof search continues.

answer extraction: When the proof is complete, an an-
swer to the original query is extracted. An English expla-
nation of the answer is constructed, which may serve as a
partial explanation.

The approach we outline centers around using first-order
logic and reasoning. Answering a question in this framework
reduces to the problem of proving a theorem about the ex-
istence of entities that satisfy the conditions of the question,
which are expressed in a formal logic. Such an approach is
within the broader tradition of deductive question-answering
(Waldinger 2007).

Our approach contrasts with approaches that use for-
mal query languages, such as SQL, and database reason-
ers to represent and execute natural language queries (Gior-
dani and Moschitti 2010). One main drawback to these ap-
proaches is that it may be demading to translate a simple
natural language query into a language like SQL, due to
known limitations in the expressive power of database lan-
guages (Androutsopoulos, Ritchie, and Thanisch 1995). Fur-
thermore, the way the user naturally formulates a query may
be quite different from the way the answer is elicited from
the target databases; It may require considerable background
knowledge to connect the formulations. While a full defense
of the logical approach is beyond the scope of this paper, we
argue that the approach has the following advantages:

extensibility: New symbols and background knowledge
can be added on-the-fly using an expressive logical lan-
guage, independently of the target databases. We intend
to allow the domain theory to be extended by translat-
ing declarative natural-language exposition into logical
axioms.

external grounding: Domain symbols and background
knowledge can be arbitrarily linked to database content
via procedural attachments to symbols in the subject do-
main theory.

precision: Logic allows for a principled and deep analy-
sis of logical connectives, negation, quantification, tem-
poral operators, and other constructs not found in standard
database languages.

We discuss our approach in the context of a prototype sys-
tem called Quest, which was developed with SAP for busi-
ness enterprise data access. A similar approach has been pur-
sued in the Quadri system, which was developed with the
Stanford Biomedical Informatics Research Program to an-
swer questions about HIV therapy (Richardson et al. 2011).

Lightweight Semantic Parsing

The system’s knowledge of the subject domain is repre-
sented in an axiomatic theory in first-order logic. The ax-
ioms embody the knowledge of our subject domain experts.
The theory is sorted; every constant is declared to have a
sort; every relation and function symbol is declared to ac-
cept arguments of a specified sort. Function symbols are also
declared as to the sort of values they return.

Our approach relies on translating each English query into
a sentence in the language of the subject domain theory,
first by creating a semantic representation of the query and
then by translating that representation into a structured log-
ical form. Our system performs this mapping via a simple
pattern- or template-matching approach (Unger et al. 2012),
and exploits rich subject domain knowledge to guide the
analysis. The matching is done by using a set of ordered (lo-
cal) rewrite rules (Crouch 2005) defined on abstract syntac-
tic patterns and dictated by the background subject domain.

The sample rewrite rule shown in Figure 1.1 encodes a
relation company-has-debt between entities company
and debt. The rule is run over the output of a syntactic
parser, which is rewritten to the flat semantic representation

54



1. (NP (NP companyx) (.? .? (... debty)))
=>
(company-has-debt companyx debty)

i. (NP (NP companycompany)
(PP withP (NP debtdebt))) ...

ii.(NP (NP firmscompany)
(WHNP thatWDT

(S owe_moneydebt))) ...

2. (? (NP debtx) (.? .? (... money amounty)))
=>
(debt-has-value debtx money amounty)

Figure 1: Example rewrite rules for mapping abstract syntac-
tic patterns (on the left of the rule) to flat semantic clauses
(on the right). Matching patterns for (1) are shown in (1i-ii.)

on the right when both entities are found inside a matching
syntactic configuration. As shown by the regex-like opera-
tors ?, ., ..., such rewrites can be written at varying levels of
abstraction, allowing a rule to generalize over various types
of syntactic forms (see the matching fragments in 1i-ii) and
skip over certain details in the syntactic analysis. In addi-
tion to those matching patterns from the subject domain the-
ory, rules can be created for modeling other linguistic con-
straints.

This transduction procedure is implemented in a proto-
type parser called SAPL, which is built on top of compo-
nents from the SAP Inxight text analytics engine. At an early
stage of processing, the text analytics engine performs entity
and part-of-speech tagging, and maps each entity token to a
variable. SAPL then uses a bottom-up chart parser and in-
crementally matches rewrite rules to syntactic patterns anno-
tated with their entity types and stores each resulting seman-
tic representation in a chart. During the parsing, knowledge
from the theory can be used to guide the analysis and elimi-
nate certain syntactic ambiguities. For example, in the frag-
ment in (1i.), the attachment between company and debt
is licensed by knowledge that companies and debts relate to
one another, and this knowledge can be used to block fur-
ther attachments encountered later in the search. Once the
parser is finished, the representation can be extracted from
the chart. One can deal with ambiguity by solving for the
most probable or k most probable representations (or trees)
using standard methods from parsing (Huang and Chiang
2005).

The full output of SAPL applied to a particular example is
shown in Figure 2. In this case, the query has multiple ques-
tions, and the second question is a follow-up to the first. En-
tities in the query are expressed as logical variables with ap-
propriate sorts and quantification, and the relations (includ-
ing logical connectives and scopal relations) among them
are expressed in a flat form which mirrors the local syntac-
tic structures from which the patterns are rewritten. In this
example, all the quantifiers are existential, because the vari-
ables all stand for entities to be found. Some information,
such as the coreference between variables and background
knowledge, is left underspecified and resolved at a later rea-
soning stage (described in the subsequent sections).

((input Show a company with a debt of
more than 100 million dollars.
What is the nationality of the client?)

(top-level company5 0)
(top-level company6 0)
(definite company6)
(definite nationality8)
(desired-answer company5)
(quant exists debt3 sort debt)
(quant exists company5 sort company)
(quant exists nationality8 sort nationality)
(quant exists company6 sort company)
(quant

(complex-num
more than 100000000 dollar)

dollar4 sort money-amount)
(exists-group ex-grp45

(debt3 nationality8))
(scopes-over nscope company5 ex-grp45)
(in nscope debt3

(company-has-debt company5 debt3))
(in nscope dollar4

(debt-has-value debt3 dollar4))
(in nscope nationality8

(nationality-of
company6 nationality8)))

Figure 2: Output of the SAPL semantic parser for a multi-
sentence query. Relations are first expressed in a flat clausal
form.

(exists ((company5 :sort company))
(exists ((nationality8 :sort nationality))
(exists ((debt3 :sort debt))
(exists ((dollar4 :sort money-amount))
(and
(is-debt debt3)
(is-company company5)
(nationality-of company5 nationality8)
(company-has-debt company5 debt3)
(more-than dollar4 (* 100000000 dollar))
(debt-has-value debt3 dollar4)))))))

:answer
(ans
company5 nationality8 debt3 dollar4)

Figure 3: Normalized logical form for the flat semantic rep-
resentation in Figure 1. The ans list shows the variables that,
when instantiated during the proof, constitute an answer to
the query.

there exists a nationality8 such that
there exists a debt3 such that
there exists a dollar4 such that
there exists a company7 such that
company7 is a company,
debt3 is a debt,
the nationality of company7 is nationality8,
company7 has debt3,
dollar4 is more-than 100000000 dollars and
the amount of debt3 is dollar4

Figure 4: Playback for the logical form in Figure 3, ex-
pressed in quasi-English for the user to inspect.

55



The SAPL parser is based on earlier work that used the
PARC XLE parser and the packed rewrite system (Crouch
2005; Bobrow et al. 2007), for parsing questions about HIV
treatment (Richardson et al. 2011; Bobrow et al. 2011). The
overall method bares resemblance to recent work (Purtee
and Schubert 2012) on using tree-to-tree transducers for
modeling syntax-semantics correspondences, as well as re-
cent work in NLP on data-driven semantic parsing. In the
later case, such work has focused on learning interpretation
rules from parallel data (Mooney 2007), often by employ-
ing techniques and formal models from statistical machine
translation (Wong and Mooney 2006) and statistical parsing
(Zettlemoyer and Collins 2007). Given enough data, such
techniques could be used to learn the rules we describe, cut-
ting out the need for hand-coding some of the rewrite rules.

The idea of using semantic knowledge to disambiguate
natural language and guide interpretation is not a new one,
and has been explored in a variety of different settings
(Allen, Swift, and De Beaumont 2008). It is a key compo-
nent to the classic work by (Woods 1978) on the Lunar QA
system. Such an idea has also gained some traction in recent
NLP work on semantic parsing. For example, (Berant et al.
2013) look at using knowledge from the large Freebase on-
tology (Bollacker et al. 2008), as well as answers, to learn
representations for open-domain questions.

Logical Form

The resulting semantic representation produced in the previ-
ous step is flat, but it contains the information necessary to
construct a nested logical form. Quantifiers in the formula
are put at the outermost level, and variables from follow-
up questions are captured by quantifiers from the original
question. A normalized logical form constructed from the
representation in Figure 2 is shown in Figure 3.

Answering this question involves finding a company that
has a debt of more than 100 million dollars, and returning
the nationality of this company. Note that the condition of
the second question:

(nationality-of company5 nationality8).

falls within the scope of the company quantifier from the first
question. In fact, the logical form for each question in the
sequence falls within the scope of the same quantifiers. This
convention allows us to refer in later questions to entities
that occur in earlier questions in the sequence, and resolve
certain types of anaphora.

For the logical form in Figure 3 we generate the playback
in Figure 4, which is shown to the user for approval. Mis-
translations may be evident when the query is presented in
this way.

Theorem Proving

The logical form is submitted to a theorem prover to be
proved. The proof is conducted in the same axiomatic
subject-domain theory that was used in the semantic pars-
ing phase. The axioms of the theory define the meaning of
the concepts in our query, specify the capabilities of our

data sources, and provide the background knowledge nec-
essary to relate them. The logical form is decomposed and
expanded according to these axioms.

We use SRI’s open-source first-order reasoner SNARK
(Stickel, Waldinger, and Chaudhri 2000). SNARK is fully
automatic and uses machine-oriented inference rules, such
as resolution for general-purpose reasoning and paramod-
ulation for reasoning about equality. It has special facili-
ties for accelerated reasoning about space and time; a sort
mechanism for internalizing the reasoning about sorts or
types; a procedural-attachment mechanism for linking se-
lected relation and function symbols to external procedures,
especially accessing an external database; and an answer-
extraction mechanism for constructing an answer to a query
from a completed proof. Although SNARK is ideally suited
and has been successfully used in other deductive question-
answering tasks (Shrager et al. 2007), any theorem prover
with comparable features could be used.

SNARK is a refutation procedure, it looks for inconsis-
tencies in a set of logical sentences. When trying to prove
that a conjecture holds in a given theory, it negates the con-
jecture, adds it to the set of axioms of the theory, and tries to
find a contradiction in the resulting set. For this purpose, it
will apply inference rules, which deduce new sentences, and
adds those to the set. The process continues until no further
inferences are possible or a contradiction is obtained—this
shows that the negated conjecture is inconsistent with the ax-
ioms of the theory and, hence, the conjecture itself is valid
in the theory.

The order in which inference rules are applied depends on
a set of heuristic principles which are under the control of
the developer of the theory. Weights can be assigned to sym-
bols, which causes SNARK to focus attention on “lighter”
sentences in its set. Also, an ordering is applied to sym-
bols, which causes SNARK to focus on particular parts of
of a sentence; typically, symbols will be replaced by other
symbols that follow them in the ordering. Since first-order
theorem proving is undecidable and the search can go on
forever, we give SNARK a time limit on proving a given
theorem. This is set empirically—for the examples in this
paper, a limit of six seconds was sufficient, although most of
the theorems were proved much more quickly.

The answer-extraction mechanism, developed for pro-
gram synthesis applications (Manna and Waldinger 1980),
associates with each sentence in the set an answer term,
such that if the sentence can be falsified, the corresponding
instance of the answer term will satisfy the original query.
When a contradiction is obtained, the corresponding answer
term will be an answer to the query. Typically there are many
proofs of a given theorem, each leading to a possibly differ-
ent answer. These can be assembled and presented to the
user.

The procedural-attachment mechanism links selected re-
lation and function symbols in the theory with external
procedures, which indicate how the linked symbol can be
computed. Typically those procedures will involve access-
ing an external database. In the QUEST theory, the sym-
bol company-record is linked to an external database
of companies, so if the name of a client company is given,

56



the other attributes of the company (e.g. the size, the na-
tionality, and the amount the client owes) can be looked up.
When the company-record occurs in the proof search
and a concrete company name is supplied, the other argu-
ments of the relation can be filled in by database lookup, and
the proof continues. Other symbols can be linked to other
databases, such as currency conversion. The procedural-
attachment mechanism allows the theorem prover to access
not only the knowledge that resides in its axioms, but also
information that is stored in external procedures.

If, after the question is answered, there is a follow-up
question, the query sequence is reparsed, a new logical form
is constructed, and a new proof is sought. New questions at
the end of a query add conditions to the conjecture, which
can force us to discard proofs that satisfied the original
query, so earlier proofs cannot be reused.
;; expansion axiom
(<=> (company-has-debt ?company ?debt)
(exists (?country-code ...)
(and
(company-record
?company ?debt ?country-code ...)

(positive ?debt)))).

;; nationality axiom
(iff
(nationality-of ?company ?nationality)
(exists
(?country ?country-code ?debt ...)
(and
(nationality-for-country
?nationality ?country)

(country-code-of-country
?country ?country-code)

(company-record
?company ?debt ?country-code ..)))

;; uniqueness axiom
(implies
(and
(company-record ?company ?debt1 ...)
(company-record ?company ?debt2 ...))

(= ?debt1 ?debt2))

;; duration axiom (time)
(=
(duration
(make-interval
?time-point1 ?time-point2))

(minus-time ?time-point2 ?time-point1)

Figure 5: Example Snark axioms from the Quest business domain.
See text for details

Proof

As an example, we walk through the steps involved in prov-
ing the logical form in Figure 3. The negated conjecture con-
tains (after the quantifiers are removed by skolemization) the
following subcondition:
(company-has-debt ?company7 ?debt3)

The variables, indicated by the prefix ?, are implicitly
quantified existentially; they can be replaced by terms dur-
ing the proof. The axiomatic subject-domain theory contains

the expansion axiom shown in Figure 5 which expands the
above condition to a company-record symbol.

The resulting company-record relation symbol has
a procedural attachment to the database of companies; we
omit most of its many arguments. (Note that the data, based
on actual SAP data, has been garbled to protect the privacy
of clients.) While the database does not contain the national-
ity of each company, it does contain a two-character country
code. For instance, for the company SL Foods Inc., the
code is CH, which stands for Switzerland. We distinguish be-
tween countries such as Switzerland and nationalities such
as Swiss. We require that for a company to have a debt, the
amount owed must be positive.

Applying the resolution rule to this axiom and the negated
conjecture causes a new sentence to be deduced, containing
the subcondition

(company-record
?company7 ?debt3 ?country-code8 ...).

Because the relation symbol company-record has
a procedural attachment, SNARK can at this point con-
sult the linked database of companies. Of course, many
companies will match this. One of them is the company
SL Foods Inc., which has a debt of around 105 million
dollars.

Two other conditions in the conjecture that relate to the
value of the target debt are

(debt-has-value ?debt3 ?dollar5).
(> ?dollar5 100000000).

In a way similar to the transformation of the relation
company-has-debt, the relation debt-has-value
is expanded to a formula involving the relation
company-record; the company database is con-
sulted, and the actual debt of each company in the database
is retrieved and entered into the proof search, replacing
the variable ?dollar5. It remains to prove the second
greater-than condition above using the value of ?dollar5
obtained from the database. Because a hundred million is
quite a large debt, all companies but SL Foods Inc. fail
to satisfy the inequality.

It also remains to establish the nationality of the company.
The logical form contains the condition shown below, which
is transformed into the nationality axiom shown in Figure 5.

(nationality-of company5 nationality8).

The relations nationality-for-country and
country-code-of-country that result from the ax-
iom are equipped with procedural attachments that allow
them to consult external websites which link Swiss with
Switzerland and Switzerland with CH, respectively.
This allows us to answer that the nationality of our company
SL-Foods-Inc. is Swiss.

Other Capabilities

In this section we show other ways in which reasoning is
essential for natural language database access.

57



disambiguating queries: The query sequence Get a com-
pany with a debt. It should be high. will yield companies
with high debts. The sequence Get a company with a debt.
It should be Swiss. will yield a Swiss company. The sub-
ject domain theory defines high debts but not high compa-
nies; it defines Swiss companies but not Swiss debts. In each
case, subject domain reasoning allows us to discard interpre-
tations that are plausible syntactically but make no sense se-
mantically. This sort of processing is related to some of the
problems in the Winograd Schema Challenge, 1 an elabora-
tion of the Turing Test.

logical operators: Reasoning is necessary when the query
contains logical connectives or quantifiers. For example, the
disjunction operation allows us to answer queries such as
What companies have a high debt or a long-term debt? Con-
cepts such as high and low or long- or short-term are defined
by axioms.

In Every company does not have a negative debt, Quest
can answer immediately in the affirmative because the defi-
nition of debt requires that debts be positive; Quest does not
need to consult the database.

The question What companies do not have a low debt?
requires reasoning about negation. The logical form, after
negation and skolemization, contain the skolem condition

(company-has-debt ?company1
(debt-sk ?company1).

for all companies ?company1. Here

(debt-sk ?company1)

is a skolem term that stands for an arbitrary debt of the com-
pany. We also assume (after negation and skolemization) the
lowness condition (low (debt-sk ?company1)).
The uniqueness axiom shown in Figure 5 implies that
debts of companies are unique. The procedural attachment
searches through the database and finds companies that have
high debts, e.g.,

(company-record
beck-sports <some-high-debt> ...).

Also, by the skolem condition and the expansion axiom, we
have

(company-record
beck-sports (debt-sk ?company1) ...).

The uniqueness axiom can then be applied to
show that <some-high-debt> is equal to
(debt-sk company1), contradicting the lowness
of the skolem term. Hence the company Beck Sports will be
among the answers.

temporal reasoning: In the query Show companies with a
high debt within the last two years, the logical form will de-
mand the existence of a temporal interval that represents the
last two years; it has a duration of two years and ends at the
time point (now), the time at which the question is being

1http://commonsensereasoning.org/winograd.html

asked. The duration of a time interval is defined by the dura-
tion axiom in Figure 5. In other words, the duration of a time
interval is the difference between its end points. SNARK
uses a procedural attachment to a date arithmetic procedure
to compute the difference between two time points.

interoperability The subject domain theory provides a
lingua franca between the query and the various data bases
and information sources. Terms from any of these sources
will be translated into whatever representation is preferred
by the subject domain theory. For instance, if we ask What
is a Swiss company that has a debt of more than 10 million
euros within the last 100 weeks, SNARK can use external
tables to translate from Swiss to Switzerland and then to the
two letter code CH; it will translate the 100 week duration to
seconds to compare with the debt of the selected companies;
and it will use a currency conversion website to translate eu-
ros, the currency of the query, into dollars, the currency of
the database.

amalgamation questions: Some queries require us to find
more than one answer and then perform a deduction or com-
putation on the answers. For instance, the query What com-
pany has the lowest debt within the last two years requires us
to find all the companies that have debts within the last two
years and then select the company with the lowest. We may
then add additional conditions to the query, such as Consider
only companies with a debt of more than 50 dollars. What
is the nationality of the company? Note that the additional
condition causes the earlier company to be replaced, if it has
a debt of less than 50 dollars.

Current and Future Work

Our treatment of amalgamation questions is currently ad hoc
and is done procedurally outside of the subject domain the-
ory. To get the full advantage of a theorem prover, we would
be better off being able to represent the full set (or list) of
answers to the query within the theory itself. We would then
be able to use axioms as well as procedures to answer amal-
gamation questions. Although in our work up to now first-
order logic has been adequate, it would be advantageous to
have higher-order logic to characterize the set of all answers
to a query.

We are currently looking at question answering in an en-
tirely different domain, that of Linux programming. This
involves reasoning about operations, like program instruc-
tions, that can cause changes of state. There is a program
synthesis aspect—how to construct a program to cause cer-
tain specified effects. And there is also a more standard
question-answering aspect, such as searching documenta-
tion to diagnose programming errors in Linux scripts.

In all of our applications of deductive question answer-
ing we have relied on a hand-crafted subject domain theory.
Developing and testing such a theory is labor intensive and
requires specialized expertise. We hope to facilitate this task
by allowing a subject domain expert to extend an axiomatic
theory, or develop a new one, by writing new axioms in nat-
ural language and having them translated into logical form,

58



much as we do now with queries. This would mean that the
subject domain expert could extend the theory without hav-
ing any knowledge of logic or programming. Theorem prov-
ing tools could be brought to bear to detect inconsistencies
in the expanded theory.

Acknowledgements

Thanks to Matthias Anlauff, Butch Anton, Danny Bobrow,
Ray Perrault, the late Mark Stickel, James Tarver, Mabry
Tyson, Michael Wessel, and David Wilkins for providing ex-
pertise and ideas. Research in this paper was supported by a
contract from SAP.

References

Allen, J. F.; Swift, M.; and De Beaumont, W. 2008. Deep se-
mantic analysis of text. In Proceedings of the 2008 Confer-
ence on Semantics in Text Processing, 343–354. Association
for Computational Linguistics.
Androutsopoulos, I.; Ritchie, G. D.; and Thanisch, P. 1995.
Natural language interfaces to databases - an introduction.
Natural Language Engineering 1(1):29–81.
Berant, J.; Chou, A.; Frostig, R.; and Liang, P. 2013. Se-
mantic parsing on freebase from question-answer pairs. In
Proceedings of EMNLP, 1533–1544.
Bobrow, D. G.; Cheslow, B.; Condoravdi, C.; Karttunen, L.;
King, T. H.; Nairn, R.; de Paiva, V.; Price, C.; and Zaenen,
A. 2007. PARCs bridge and question answering system. In
Proc. of the GEAF 2007 Workshop.
Bobrow, D. G.; Condoravdi, C.; Richardson, K.; Waldinger,
R.; and Das, A. 2011. Deducing answers to English ques-
tions from structured data. In Proceedings of the 16th in-
ternational Conference on Intelligent User interfaces, 299–
302. ACM.
Bollacker, K.; Evans, C.; Paritosh, P.; Sturge, T.; and Taylor,
J. 2008. Freebase: a collaboratively created graph database
for structuring human knowledge. In Proceedings of the
2008 ACM SIGMOD International Conference on Manage-
ment of Data, 1247–1250.
Crouch, R. 2005. Packed rewriting for mapping semantics
to KR. In Proceedings of the 6th International Workshop on
Computational Semantics, 103–14.
Giordani, A., and Moschitti, A. 2010. Semantic mapping
between natural language questions and sql queries via syn-
tactic pairing. In Natural Language Processing and Infor-
mation Systems, 207–221.
Huang, L., and Chiang, D. 2005. Better k-best parsing.
In Proceedings of Workshop on Parsing Technology, 53–64.
Association for Computational Linguistics.
Manna, Z., and Waldinger, R. 1980. A deductive approach
to program synthesis. ACM Trans. Program. Lang. Syst.
2(1):90–121.
Mooney, R. J. 2007. Learning for semantic parsing. In Pro-
ceedings of Computational Linguistics and Intelligent Text
Processing. Springer. 311–324.

Purtee, A., and Schubert, L. 2012. TTT: A tree transduc-
tion language for syntactic and semantic processing. In Pro-
ceedings of the EACL Workshop on Applications of Tree Au-
tomata Techniques in Natural Language Processing, 21–30.
Richardson, K.; Bobrow, D. G.; Condoravdi, C.; Waldinger,
R. J.; and Das, A. 2011. English access to structured data. In
Proceedings of IEEE International Conference on Semantic
Computing, 13–20.
Shrager, J.; Waldinger, R.; Stickel, M.; and Massar, J. 2007.
Deductive biocomputing. PloS One 2(4):e339.
Stickel, M. E.; Waldinger, R. J.; and Chaudhri, V. K. 2000.
A guide to SNARK.
Unger, C.; Bühmann, L.; Lehmann, J.; Ngonga Ngomo, A.-
C.; Gerber, D.; and Cimiano, P. 2012. Template-based ques-
tion answering over rdf data. In Proceedings of the 21st
International Conference on World Wide Web, 639–648.
Waldinger, R. 2007. Whatever happened to deductive ques-
tion answering? In Logic for Programming, Artificial Intel-
ligence, and Reasoning, 15–16.
Wong, Y. W., and Mooney, R. J. 2006. Learning for semantic
parsing with statistical machine translation. In Proceedings
of HTL-NAACL, 439–446.
Woods, W. A. 1978. Semantics and quantification in natural
language question answering. Advances in computers 17(3).
Zettlemoyer, L. S., and Collins, M. 2007. Online learning
of relaxed CCG grammars for parsing to logical form. In
Proceedings of EMNLP-CoNLL.

59


