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1 Introduction
In a small laboratory within the Anatomy Department at
the University of Toronto, researchers are delicately peal-
ing muscles off of cadavers, strand by strand. While this
may sound like the type of macabre activity reserved for
oddball television crime shows, these scientists are work-
ing diligently in an effort to discern and record measurable
difference in human bodies. The work is part of a larger
project called the Parametric Human Project (Mogk et al.
2013) whose goal is to create a parametrized digital model
of the human body, ultimately in all its variations, in sup-
port of such tasks as computer animation and surgery plan-
ning. Within this ambitious project is an intriguing knowl-
edge representation and reasoning (KR) challenge: How to
represent our knowledge of human anatomy in a human-
and computer-interpretable form – a sort of queryable digi-
tal anatomy book, in the spirit of the classic Gray’s Anatomy
textbook. However, whereas such books capture the proto-
typical (or “canonical”) human – an idealized human that, in
reality, is like very few if any of us – our objective is to cre-
ate a more inclusive representation of the human anatomy
that fits all of us in some variation.

While more flexible representations of human anatomy
motivate our research, our more general interest is in exam-
ining the principles that underlie the construction of what we
call ontologies in variation – a KR scheme for natural kinds,
objects, concepts – Things, for lack of a better word – in all
their variation. Not unlike a typical machine learning classi-
fier, our assumption is that this variation is derived from sta-
tistical data and that this statistical information is preserved
in the representation. Nevertheless, whereas machine learn-
ing classifiers may represent an object in terms of a set of
low-level features, aggregated together arithmetically, often
with little inherent meaning to a human examining this rep-
resentation, what is unique about the class of ontologies we
explore is that the features we use to characterize Things
are themselves Things of meaning to humans. Further, the
method of association or composition of these features is
intended to be in terms of human-understood, measurable
properties of these Things and the relations between them.

To realize our ontologies in variation, we appeal both to
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first-order logic (FOL) based KR and to statistical represen-
tation of Things from data. While FOL-based KR schemes
are highly expressive along many dimensions, they are im-
poverished in their ability to succinctly capture nuanced
variations in the characterization of concepts, relative to sta-
tistical representations. Indeed, logic-based KR typically
captures necessary, but rarely sufficient, conditions that hold
true for a concept. Variability is largely captured using dis-
junction or through the creation of named subclasses of con-
cepts. The notion of typicality is often only achieved via
nonmonotonic reasoning. When logical languages are used
to describe what can be said about concepts described na-
tively in terms of statistical data, the characterizations are
necessarily weak and afford little inferential power.

There has been significant interest in the merging of logi-
cal and statistical or probabilistic information, e.g., in (Bac-
chus 1990; Domingos et al. 2006; Kuo and Poole 2013;
Poole et al. 2008). A distinguishing feature of our work is an
explicit focus on data, and a frequentist interpretation of sta-
tistical information. This paper outlines our endeavour and
approach, and contrasts it to existing work in the literature.

2 Use Case: Characterizing Human Bones
The desire to create a representation for capturing and under-
standing typical and variable morphology in human muscu-
loskeletal anatomy (Hahmann et al. 2014; Mogk et al. 2013)
motivates and illustrates our research. Building a digital
representation of anatomy is not an entirely new endeav-
our, e.g., the Foundational Model of Anatomy (FMA) on-
tology (Rosse and Mejino Jr. 2003) has accumulated several
thousand classes and over 2 million relationship instances.
However, the FMA represents a single canonical human
deemed free of pathologies – a very abstract notion that is
of little help for understanding human variation and for un-
derstanding how an individual person compares to a larger
populace. Moreover, due to the ontology’s unmanageably
large size and its manual curation, it inevitably contains fac-
tual errors/inconsistencies and misses crucial information.

Other approaches (e.g., Schulz and Hahn 2007), capture
anatomical variability by dividing anatomical knowledge
into levels: one including only the axioms that all humans
(with or without pathologies) satisfy, while the next one adds
axioms that applicable only to the canonical human. Such
a purely symbolic representation faces the same obstacles
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as all logic-based KR approaches: it is ill-suited to capture
nuances of variability. Moreover, it makes the strong as-
sumptions that (1) an a-priori definition of what the canon-
ical conditions are, and that (2) all of these conditions can
be captured manually in a purely symbolic description. We
put these assumptions to test: What is really canonical about
human anatomy, and what portion of this knowledge can be
described axiomatically, and what is better described using
automatic statistical aggregations of data?

As an initial step (Hahmann et al. 2014), we tested our
ideas on characterizing classes of bones (starting with tibias)
by identifying, relating, and quantifying anatomical land-
marks on the bones’ geometric surfaces, extracting invari-
ants and variability of each class of bones. We relied on an
ontology based on the Terminologia Anatomica (TA) (FI-
PAT 2011), which standardizes anatomical nomenclature
internationally and which overlaps significantly with the
FMA’s taxonomy of classes. The TA-based ontology names
the classes of bones we wanted to characterize, such as
tibia, fibula, sternum and more general classifications such
as long, short, flat, or irregular bone (generally: the classes
of Things), and the anatomical landmarks (also Things),
properties, and relations we would rely on for this charac-
terization. The anatomical terms are complemented by spa-
tial terms from (Hahmann 2013), which are largely lacking
in the FMA, including names for classes (e.g. surface areas,
ridge lines), relations (e.g. overlaps, on the boundary of),
and properties (e.g. volume, length, distance).

We wanted to determine the typicality and variation
within each class of bones, eventually answering the follow-
ing kinds of questions: What do all tibias have in common –
which anatomical landmarks are always present, which spa-
tial relations always hold between them hold, and what are
lower/upper limits for the landmarks’ measurements (such
as a ridge’s minimal length or the minimal ratio between
two named surface areas)? What are the modes of variations
(the pathologies)? What does a typical tibia look like? We
also wanted to be able to classify new Things, to complete
an incomplete description of a Thing with suitable missing
Things/relations/properties, to extract a set of Things that
satisfy certain conditions, or to compare a subpopulation’s
variability (defined by a narrower reference class, e.g., all
Inuit Females of age 20-29) to that of a broader population.

This use case has evoked a number of questions useful for
evaluating whether our proposed solution adequately rep-
resents typicality and variability in human anatomy: What
schemes of axiomatic knowledge1 can be identified? Does
the inferred axiomatic knowledge correspond to the textual
descriptions of bone classes in the TA? What kind of medi-
cal/anatomical queries are expressible in the language? Are
their answers easily interpretable by domain experts? Can
we computationally verify and refine descriptions like “The
shape of the shaft most frequent in both the white male and
the female is that of a prism. About three-fifths of all tibiæ
are of this variety, [. . . ]” (Hrdlicka 1898) used to summarize

1We use the term axiomatic knowledge to distinguish knowl-
edge that is definite – over which there is no designated uncertainty.
In our use case these are conditions satisfied by all humans.

manual examinations of 2,000 tibias?
Answers to these domain-specific questions will indicate

whether the proposed solution can potentially address the
much more general problem of capturing typicality and vari-
ability of Things, no matter the domain.

3 Approach
The beauty of FOL-based knowledge representation is that
– by design – the nonlogical language, i.e., the vocabulary
used to talk about a domain, closely resembles the terms
that humans use when talking about that domain. Thus, any
logical inferences are generally human-comprehensible and
humans have explicit access to the representation, allow-
ing them to effect changes in the representation by altering,
adding, or deleting axioms. The caveat is that it is extremely
difficult to express all nuances of variability within classes in
a logical representation. To capture variability, some statis-
tical representation is required. To benefit from logic-based
and statistical representations, we are naturally inclined to
combine them into a single more powerful representation.
The question is how exactly to combine them?

Our proposed formalism is guided by the various ways in
which we envision it being utilized: It is not only designed
to find applications in a variety of knowledge domains but
is also meant to support a broad range of different kinds of
inference/retrieval tasks, for example (t denotes a particular
Thing and X and Y particular classes):

1. Object Classification Tasks: What is the most suitable
class for t? How likely does t fit class X? Is it consistent
to classify t as being in X? What additional information is
needed to reliably classify t? What additional data would
be most useful to confirm or rule out a classification for t?
What information prevents t be classified as X?

2. Purely Logical Reasoning: Is X a subclass of Y? Can
Things in X be related by relation r to Things in Y? May
Things in X have a certain property p?

3. Statistical Querying: What are the mean/min/max values
for property p of Things in X? How many (mean/min/
max) relations r have Things in X to Things in Y?

4. Object Retrieval Tasks: What are all the instances of X?
What are all the instances of X that have property p in a
specific range (absolute or relative to its statistical infor-
mation)? What is a representative sample of X? What are
extreme cases of X? What Things are most similar to t?

5. Inductive Reasoning: What aspects of t are likely to be
“abnormal” given what we know about t? How do Things
in X differ from other Things in its superclass? Given
what we know about t, what other properties and relations
is it most likely to have (object completion)?

6. Clustering: Are there meaningful ways to divide the
Things in X into two or more disjoint subclasses? What
properties/relations would differentiate the clusters?

In addition to human-comprehensibility, our desider-
ata include logical consistency, and elaboration tolerance.
Defining the former is more complex than pure logical con-
sistency, while achieving the latter may be elusive.
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4 Outline of our Formalism
Broadly speaking, we augment FOL with statistical func-
tions ranging over special terms (data collection terms) that
denote finite collections of Things (class instances), relation
instances, or property instances rather than individuals. Ap-
plying statistical functions to such collections allows us to
make statistical claims about them. For example, we may
define a data collection consisting of all Things classified as
tibias and having a convex posterior surface.

Our starting point is (a) an ontology that provides the
shared vocabulary for describing the classes of interest as
well the relations between them and their properties and (b)
a dataset containing raw datapoints.

The ontology captures a-priori knowledge about the tax-
onomic relationships between the classes of Things in the
domain and about the relations and properties the members
of each class can participate in, formalized either in FOL or
in a more restricted language such as OWL, furnishing at
least the following information.

• a set of class names C and taxonomic relations between
them that specify subclasses and disjointness and exhaus-
tiveness conditions. Thing ∈ C denotes the universal
class of which all Things are a member of;

• a set of n-ary (with n ≥ 2) relation names R and associ-
ated typing constraints, which state which classes’ mem-
bers can participate in a specific place in a relation;

• a set of n-ary property names P and associated typing
expressions (as for relations) for the places 1 to n − 1 of
each property, as well as a typing of the kind of acceptable
measurement values (place n) for each property;

The ontology may include arbitrary additional axioms.
Relations will hold between instances of the ontology’s
classes (classes of Things), while properties assign numeric,
Boolean, or labeled values to instances of Things. In our
use case, relations are primarily of mereonomic (part-of) or
spatial nature, including the partOf, surfaceOf, bounds, and
attachedTo relations, while properties are either quantitative
measurements (assigning a numeric value to, e.g., length,
volume, curvature, or distanceBetween) or qualitative cate-
gories (assigning labels, e.g., conical, cylindrical, or pris-
matic to the property principal shape or Boolean values to
the properties flat or closed). The ontology forms a logical
shell for the domain, elaborated by the datasets (microdata)
and their statistical aggregations (macrodata).

Datapoints are facts about particular Things – similar to
tuples in a database table. Logically, each datapoint is an
atomic term of the form X(c1, . . . , cn) where X is a pred-
icate – either a unary predicate denoting a class name or a
predicate with higher arity (denoting a relation or property
name) – and c1 to cn are constants. We distinguish object
constants, each denoting one Thing, from measurement con-
stants denoting the values that properties can take on. The
standard measurement constants include numbers (integers,
reals), Boolean values, or sets of labels. All parameters in a
data point must be object constants, except if X is a prop-
erty name, then cn must denote a measurement constant. No
variables may occur in datapoints.

Datasets are collections of datapoints collected under
controlled conditions2, such as all the data collected within a
single experiment or study. This ensures that the individual
datapoints in the data set are comparable and thus amend-
able to meaningful statistical aggregation. For simplicity
we assume datasets to be noise-free and sufficiently large
to contain a representative sample of Things of each class.

Data collection terms specify subcollections of Things,
relation instances (a relation collection), or property in-
stances (a property collection) from a dataset. Each data col-
lection term only allows specifying subcollections of a sin-
gle dataset so that incomparable datapoints are never mixed
up3. We can construct data collections by naming individ-
ual Things (using object constants) or by referring to named
classes of Things, as well as through intersections, unions,
and differences of such collections. Collections can also be
restricted to certain values of a property.

While we can determine the size of any collection, only
the property values of property collections can be evaluated
statistically. For example, a collection of the “length” values
of all tibias in a dataset can be statistically evaluated with re-
spect to, e.g., the min/mean/max length value. But to statisti-
cally evaluate a relation collection, it must be first converted
into a property collection using a distinguished aggregate
function, which operates on a relation or property collection
and an associated list of the parameters that will be kept dis-
tinct (the select part of a group-by construct in SQL). The
aggregate function results in a property collection with the
property value being a count of the distinct property/relation
instances that are grouped together.

Applying statistical functions such as median, mean,
min, max, or standard deviation to a property collection
forms a statistical term, which denotes again an individual
measurement constant (e.g., an average or minimal value).
Thus, statistical terms can be embedded into more complex
FOL formulas like any other ordinary FOL terms. Then,
we can logically express the statement “bone X’s length is
smaller than the mean length of tibias in dataset Y” or that
“the mean length of tibias is smaller in dataset Y (for Inuit
Females) than in dataset Z (for Caucasian Females). These
statistical terms describe variability of a class, though some
of them (such as those about the min/max number of rela-
tions that members of a particular class participate in, such
as “every human has at least one heart” or min/max values
of properties) impose strict logical conditions – definite con-
straints – that describe the canonical human.

5 Related Work
There is a large body of work that explores various synergies
between logic-based and statistical/probabilistic KR meth-
ods (Demey et al. 2009), which we do not do justice to in
this paper. While, superficially, a number of formalisms ap-
pear suitable to our endeavour, we discuss how they deviate
from our objectives and/or approach.

2Datasets here are similar to those of (Poole et al. 2008).
3The language still supports logical statements that statistically

compare, e.g., a property’s mean value, between datasets.
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A fundamental characteristic of our work is that the char-
acterizations of variability are derived from data and as such
the provenance of that statistical knowledge – the datasets
– is directly associated with the ontology. This reliance on
empirical data directs us towards a frequentist view of prob-
abilities as statistical assertions about proportion or relative
frequency, as opposed to the popular interpretation of prob-
abilities as degrees of belief seen in most of the related work
(see, e.g., (Halpern 1990; Bacchus et al. 1996) for a discus-
sion of related issues.) In this regard, Bacchus’ work on a
logic for representing and reasoning with statistical knowl-
edge (Bacchus 1990) shares commonalities with our work,
although a key contribution of that work was the represen-
tation of qualitative statistical knowledge. Further, Bacchus
makes no explicit connection with empirical data.

Most approaches to integrating logic and statisti-
cal/probabilistic knowledge rely on adding a probabilistic
semantics to a classical logic by assigning each sentence in
the logic’s object language a probability value or subinterval
in the interval [0, 1] instead of a Boolean truth value. More-
over, such approaches rely exclusively on probabilistic in-
ference even when dealing with only axiomatic knowledge.
Rather, we restrict the kind of statistical information we sup-
port in favour of a concise representation and more efficient
reasoning. While we severely restrict reasoning with statis-
tical knowledge, we do so in ways that preserve statistical
information relevant to a concept’s variability.

One of the most popular recent formalisms that integrates
logic and probability is Markov Logic Networks (MLN)
(e.g. Domingos et al. 2006), a probabilistic logic that in-
corporates Markov Networks into FOL to support reasoning
under uncertainty. In MLN, FOL formulae are assigned a
real-valued weight that indicates the certainty of a formula;
axiomatic knowledge is treated as a special case of proba-
bilistic knowledge. MLN is a powerful framework for uni-
fying axiomatic and probabilistic knowledge, but because of
its generality, the conciseness of logic is lost and reason-
ing/querying is often more difficult than necessary. More-
over, we are unaware of proposals that ground MLN in real
data. Similar to MLN, various probabilistic extensions to
description logics have been proposed (Predoiu and Stuck-
enschmidt 2010). All of these extensions assign numeric
probabilities or probability intervals to logical sentences, but
do not explicitly distinguish between axiomatic (i.e., “defi-
nite”) sentences and sentences with some uncertainty.

Poole and collaborators’ work on KR for Relational Se-
mantic Science (e.g., Kuo and Poole 2013; Poole et al. 2008)
is similar to our work in two regards: (1) it extends an
ontology with a statistical/probabilistic representation and
with data, and (2) it uses the ontology as the source for the
classes, properties, and relations of interest. Nevertheless,
Poole’s focus is on probabilistic inference for inductively
testing how likely a hypothesis is to be true for a given set of
observations. In contrast, our work is concerned with devel-
oping hybrid characterizations of classes for a broader range
of applications, which include statistical queries as well as
probabilistic reasoning (cf. Sec. 2). Furthermore, Poole et
al.’s work assumes that the ontology provides the names of
all properties and relations, but, much like MLN, restric-

tions on them are expressed probabilistically. Classes, on
the other hand, seem to be rigidly defined. In contrast, our
approach focuses on flexible definitions of classes while al-
lowing purely logical restrictions if the data supports them.

6 Conclusions
We have outlined an approach to developing Ontologies in
Variation: human-comprehensible representations of what
is typical and variable among the instances of natural kinds,
objects and concepts. Our formalism’s novelty lies in the
strategic complementation of axiomatic knowledge by sta-
tistical knowledge such that classical logical inferences are
maintained while also precisely and explicitly describing
variable aspects garnered from datasets.
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