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Abstract

We improve the state-of-the-art in checking the satisfia-
bility of large real world qualitative constraint networks
(QCNs), by exploiting the loosely connected structure
of their underlying graphs. We propose a simple decom-
position scheme that retrieves the smaller QCNs that
correspond to the biconnected component subgraphs of
the underlying graph of a given large QCN, and show
that our approach is sound for a qualitative constraint
language that has a particular constraint property for
atomic QCNs, namely, patchwork. Experimental eval-
uation shows that state-of-the-art reasoners can signifi-
canlty benefit from adopting this approach.

Introduction

Qualitative Reasoning is a major field of study in Artificial
Intelligence, particularly in Knowledge Representation, that
deals with continuous aspects of the physical world, such
as space and time, using qualitative information. This field
has gained a lot of attention during the last few years as it
extends to a plethora of areas and domains that include am-
bient intelligence, dynamic GIS, cognitive robotics, and spa-
tiotemporal design (Hazarika 2012).

Qualitative knowledge can be modelled as a qualita-
tive constraint network (QCN), which can be seen as the
infinite-domain variant of a Constraint Satisfaction Prob-
lem (CSP) (Dechter 2003). For instance, we can have in-
finitely many time points or temporal intervals on the time
line and infinitely many regions in a two or three dimen-
sional space. In this context, an emphasis has been made in
recent literature on the satisfiability problem of large real

world QCNs (Nikolaou and Koubarakis 2014; Sioutis and
Condotta 2014; Sioutis 2014). The satisfiability problem is
deciding if there exists a solution of a given QCN. Large
real world datasets have already been, and are to be, offered
by the Semantic Web community and scale up to millions of
nodes (Nikolaou and Koubarakis 2014; Sioutis and Condotta
2014). Further, there is an ever increasing interest in cou-
pling qualititave reasoning techniques with linked open data
that are constantly being made available and are expected to
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Figure 1: The RCC8 constraint language

encode a huge amount of qualitative constraints (Koubarakis
et al. 2011). Thus, there is a real emergent need for scal-
able implementations of algorithms that can tackle large
real world QCNs efficiently (Koubarakis et al. 2011; Niko-
laou and Koubarakis 2014; Sioutis and Condotta 2014;
Sioutis 2014).

In this paper, we propose a simple decomposition scheme
that exploits the loosely connected structure of large real
world QCNs. In particular, we extract the smaller QCNs that
correspond to the biconnected component subgraphs of the
underlying graph of a given large QCN, and show that the
overall approach is sound for a constraint language that has
patchwork (Lutz and Milicic 2007) for atomic QCNs. Intu-
itively, patchwork ensures that the combination of two sat-
isfiable QCNs that completely agree on the constraints be-
tween their common variables continues to be satisfiable.
Our approach allows for reasoning with the smaller bicon-
nected QCNs completely separately, in a parallel or serial
fashion, which, as our experimentation suggests, signifi-
cantly decongests search when solving non-tractable QCNs.

Preliminaries

A (binary) qualitative temporal or spatial constraint lan-
guage is based on a finite set B of jointly exhaustive and

pairwise disjoint (JEPD) relations defined on an infinite do-
main D (Ladkin and Maddux 1994), called the set of base
relations. The set of base relations B of a particular quali-
tative constraint language can be used to represent the defi-
nite knowledge between any two entities with respect to the
given level of granularity. B contains the identity relation Id,
and is closed under the converse operation (�1). Indefinite
knowledge can be specified by unions of possible base rela-
tions, and is represented by the set containing them. Hence,
2B represents the total set of relations. 2B is equipped with
the usual set-theoretic operations (union and intersection),

119

Proceedings of the Twenty-Eighth International Florida Artificial Intelligence Research Society Conference



the converse operation, and the weak composition opera-
tion denoted by ⇧ (Renz and Ligozat 2005). As illustration,
the set of base relations of RCC8 (Randell, Cui, and Cohn
1992) is the set {dc, ec, po, tpp, ntpp, tppi, ntppi, eq},
where eq is the identity relation. These eight relations rep-
resent the binary topological relations between regions that
are non-empty regular subsets of some topological space, as
depicted in Figure 1 (for the 2D case). We can capture such
qualitative knowledge using qualitative constraint networks
(QCNs), which are defined as follows.

Definition 1 A QCN is a pair N = (V,C) where: V is a

non-empty finite set of variables; C is a mapping that asso-

ciates a relation C(v, v0) 2 2B to each pair (v, v0) of V ⇥V .

C is such that C(v, v) = {Id} and C(v, v0) = (C(v0, v))�1
.

In what follows, given a QCNN = (V,C) and v, v0 2 V ,
N [v, v0] will denote the relation C(v, v0). Given two QCNs
N = (V,C) and N 0 = (V 0, C 0), N [ N 0 denotes the
QCN N 00 = (V 00, C 00) where V 00 = V [ V 0, N 00[u, v] =
N 00[v, u] = B for all (u, v) 2 (V \ V 0) ⇥ (V 0 \ V ),
N 00[u, v] = N [u, v] \ N 0(u, v) for every u, v 2 V \ V 0,
N 00[u, v] = N [u, v] for every u, v 2 V \V 0, and N 00[u, v] =
N 0[u, v] for every u, v 2 V 0 \V . Given a QCNN = (V,C),
N is said to be trivially inconsistent iff 9v, v0 2 V with
N [v, v0] = ;. A solution of N is a mapping � defined
from V to the domain D such that for every pair (v, v0) of
variables in V , (�(v),�(v0)) can be described by N [v, v0],
i.e., there exists a base relation b 2 N [v, v0] such that
the relation defined by (�(v),�(v0)) is b. A sub-QCN N 0

of N , denoted by N 0 ✓ N , is a QCN (V,C 0) such that
N 0[v, v0] ✓ N [v, v0] 8v, v0 2 V . If b is a base relation, {b}
is a singleton relation. An atomic QCN is a QCN where each
constraint is a singleton relation. A scenario S of N is an
atomic satisfiable sub-QCN of N . The constraint graph of a
QCN N = (V,C) is the graph (V,E), denoted by G(N ),
for which we have that (v, v0) 2 E iff N [v, v0] 6= B.

Definition 2 A QCNN is satisfiable iff it admits a solution.

Checking the satisfiability of a QCN is NP-hard in gen-
eral for the most well-known and interesting calculi such as
RCC8 (Renz and Nebel 1999) and IA (Nebel and Bürckert
1995). However, there exist maximal tractable subclasses
A ✓ 2B containing all singleton relations for which the
satisfiability problem becomes tractable through the use
of ⇧-consistency. A QCN N is ⇧-consistent or closed un-

der weak composition iff 8v, v0, v00 2 V we have that
N [v, v0] ✓ N [v, v00]⇧N [v00, v0]. Given a QCNN = (V,C),
⇧-consistency can be applied in O(|V |3) time. We have that
not trivially inconsistent and ⇧-consistent QCNs defined on a
maximal tractable subclass A ✓ 2B containing all singleton
relations are satisfiable. For example, the maximal tractable
subclasses for RCC8 and IA are Ĥ8, C8, and Q8 (Renz and
Nebel 2001), and HIA (Nebel 1997), respectively.

We now recall the definition of the patchwork property
that was originally introduced in (Lutz and Milicic 2007), in
the context of qualitative constraint languages.

Definition 3 A constraint language has patchwork, if for

any finite satisfiable QCNs N = (V,C) and N 0 = (V 0, C 0)
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Figure 2: A graph G (top) with its biconnected components
(middle) and its tree decomposition (bottom)

defined in this language such that 8u, v 2 V \ V 0
we have

that N [u, v] = N 0[u, v], network N [N 0
is satisfiable.

Intuitively, patchwork ensures that the combination of two
satisfiable constraint networks that completely agree on the
constraints between their common variables continues to
be satisfiable. From (Lutz and Milicic 2007), we have that
patchwork holds for atomic QCNs of RCC8 and IA. Huang
further showed that ⇧-consistent QCNs defined on one of the
maximal tractable subclasses Ĥ8, C8, and Q8 for RCC8, and
HIA for IA, have patchwork (Huang 2012). In what follows
in this paper, the former result will be sufficient.

A Simple Decomposition Algorithm

In this section we present a simple decomposition scheme
that is based on exploiting the sparse and loosely connected
structure of real world qualitative costraint networks, which
have been of high interest in recent literature (Nikolaou and
Koubarakis 2014; Sioutis and Condotta 2014; Sioutis 2014).

First, we recall a definition from (Dechter 2003) regarding
biconnected graphs.
Definition 4 A connected graph G = (V,E) is said to have

an articulation vertex u if there exist vertices v and v0 such

that all paths connecting v and v0 pass through u. A graph

that has an articulation vertex is called separable, and one

that has none is called biconnected. A subgraph with no ar-

ticulation vertices is called a biconnected component.
Intuitively, an articulation vertex is any vertex whose re-

moval increases the number of connected components in a
given graph. From (Dechter 2003) we also have the follow-
ing property.
Property 1 Any graph G has a tree decomposition (Dies-

tel 2012) (T, {X1, . . . , Xn}) where Xi ✓ V (G) induces a

biconnected component of G for every i 2 {1, . . . , n}.
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Algorithm 1: Decomposer(N )
in : A QCN N = (V,C).
output : �, a collection of biconnected QCNs.

1 begin

2 S {g | g 2 BCSubgraphs(G(N )); and |V (g)| > 2};
3 � ;;
4 while S 6= ; do

5 g S.pop();
6 Vg  V (g);
7 Cg  map({((v, v0) : B) | v, v0 2 Vg});
8 foreach (v, v0) 2 E(g) do

9 Cg(v, v
0) C(v, v0);

10 � � [ {(Vg, Cg)};
11 return �;

Let us now view the discussed notions in an example.

Example 1 Figure 2 depicts a graph G, along with its bi-

connected components, and its tree decomposition. Vertices

in grey are the articulation vertices of G. The tree decompo-

sition comprises a tree T and a cluster Xi for every node i
of that tree, e.g., Xa = {v0, v1, v4, v5}.

We can obtain the following proposition.

Proposition 1 Let N be a QCN defined on a language that

has patchwork for atomic QCNs, and let {G1, . . . , Gk} be

the biconnected components of its constraint graph G(N ).
Then, N is satisfiable iff Ni is satisfiable for every i 2
{1, . . . , k}, where Ni is the QCN that corresponds to Gi.

Proof By Property 1, the constraint graph G(N ) of N has a
tree decomposition (T, {X1, . . . , Xk}), where cluster Xi in-
duces Gi for every i 2 {1, . . . , k}. We can also infer by Def-
inition 4, that 8i, j 2 {1, . . . , k}, V (Gi)\V (Gj) contains at
most one vertex u (an articulation vertex). If Ni is satisfiable
for every i 2 {1, . . . , k}, we will have by Definition 2 a so-
lution �i, that in its turn will yield a scenario (i.e., an atomic
satisfiable QCN) Si, for every i 2 {1, . . . , k}. For any possi-
ble solutions, and, thus, any possible scenarios, we will have
that Si and Sj will always agree on the single unary con-
straint that is defined by a single vertex u 2 V (Gi)\V (Gj)
for every i, j 2 {1, . . . , k}, as by Definition 1 we have that
Si[u, u] = Sj [u, u] = {Id} 8u 2 V (G(N )). By Defini-
tion 3, we can apply patchwork to patch together all atomic
QCNs Si for every i 2 {1, . . . , k} in a tree-like manner and,
thus, derive the satisfiability of N . If N is satisfiable, then,
clearly, Ni will be satisfiable for every i 2 {1, . . . , k}. a

It is important to note that the proof of Proposition 1
is based on tree decompositions whose nodes correspond
to clusters that share at most one vertex with one another.
In any other case, the QCNs induced by the clusters need
not only be satisfiable, but not trivialy inconsistent and ⇧-
consistent, as it is done in (Sioutis and Koubarakis 2012) and
(Chmeiss and Condotta 2011) for RCC8 and IA respectively.
A simple algorithm for obtaining a collection of QCNs that
correspond to the biconnected components of the constraint
graph of a given QCN is shown in Algorithm 1. Function
BCSubgraphs(G) in line 2 returns the biconnected com-
ponents of a graph G = (V,E) and has a complexity of

network # of nodes # of edges avg. degree

nuts 2 236 3 176 2.84

adm1 11 762 44 833 7.62

gadm1 42 750 159 600 7.47

gadm2 276 728 590 443 4.27

adm2 1 733 000 5 236 270 6.04

Table 1: Characteristics of real RCC8 networks

network # of components max order median order min order

nuts 64 52 8 3

adm1 5 11 666 30 3

gadm1 166 19 864 6 3

gadm2 2 285 2 371 18 3

adm2 2 889 22 808 579 4

Table 2: Biconnected components of real RCC8 networks

O(|E|) (Dechter 2003), which dominates the overall com-
plexity of the algorithm. Note that in line 2 we also keep
only the components of order > 2, as we need to have a net-
work of at least 3 vertices to perform ⇧-consistency. In what
follows, we always consider components of order > 2.

Experimentation

In this section we are concerned with the dataset of real
RCC8 network instances that was originally introduced
in (Nikolaou and Koubarakis 2014). However, we do not
consider the accompanying reasoner of (Nikolaou and
Koubarakis 2014) in the evaluation to follow, as it has been
found to perform very poorly (Sioutis 2014) and it is also
not sound (Sioutis, Salhi, and Condotta 2015).

The characteristics of these networks are presented in Ta-
ble 1. As it can be seen, the networks vary in size, but they
are all relatively sparse. This comes as no surprise, as many
real world networks seem to present a scale-free structure
(Barabasi and Bonabeau 2003), which as a consequence
makes them sparse (Del Genio, Gross, and Bassler 2011).
Thus, we expect them to be loosely connected and yield a
high number of biconnected components. We can view in-
formation regarding biconnected components of these net-
works in Table 2. The findings are quite impressive, in the
sense that the maximum order among biconnected compo-
nents is significantly smaller than the order of the initial
graph. For example, the biggest real RCC8 network, namely,
adm2, has order 1 733 000, but its biggest biconnected com-
ponent has a number of just 22 808 vertices.

As (Nikolaou and Koubarakis 2014) suggests, some state-
of-the-art reasoners, such as GQR (Gantner, Westphal, and
Wölfl 2008), use a matrix to represent a QCN. It would be
impossible to store a graph of the order of adm2 in a matrix
as we would need ⇠ 3TB of memory. Even if memory was
not the issue, the complexity of ⇧-consistency alone would
explode, while the backtracking algorithm that is typically
used for tackling non-tractable QCNs and makes use of ⇧-
consistency as a forward checking step would suffer from
an increased search space. Heuristics for the backtracking
algorithm would also have a hard time distinguishing be-
tween biconnected components. Consider for example a sit-
uation where the backtracking algorithm backtracks from an
instatiation of a constraint in a biconnected component to an
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solver nuts nuts
D

adm1 adm1
D

gadm1 gadm1
D

GQR 2.0s 0.1s 4.7E3s 5.2E3s 1.4E4s 1.2s
Pha. 4.0s 0.6s 3.4E3s 3.7E3s 1.0E5s 3.5s
Sar. 0.8s 0.6s 161.5s 137.7s 2.0E3s 3.4s

Pha.5 0.9s 0.6s 98.3s 97.4s 1.1E3s 3.0s

Table 3: Performance comparison based on elapsed time

instantiation of a constraint in a different biconnected com-
ponent. The constraints are completely unrelated as they be-
long to different biconnected components, but they might
define a huge branch in the search-tree that is spawned by
the backtracking algorithm. Proposition 1 allows us to treat
the QCNs that correspond to biconnected components com-
pletely separately, in a parallel or serial fashion, and avoid
the aforementioned bothersome issues.

Evaluation We consider the hard networks nuts, adm1,
and gadm1 from (Nikolaou and Koubarakis 2014) that com-
prise NP8 relations (Renz and Nebel 2001) to utilize the
whole reasoning engine of a reasoner. If name is the name
of a QCN, nameD denotes the input file that comprises all bi-
connected QCNs derived from that QCN using Algorithm 1.
The experiments were carried out on a computer with an In-
tel Core 2 Quad Q9400 processor with a CPU frequency of
2.66 GHz per core, 8 GB RAM, and the Precise Pangolin
x86 64 OS. GQR (under version 1500) was compiled with
gcc/g++ 4.6.3 and Sarissa, Phalanx, and Phalanx5 (Sioutis
and Condotta 2014) (all under version 0.2) were run with
PyPy 2.4.0, which fully implements Python 2.7.8. For all
reasoners, the best performing heuristics were enabled. We
chose to reason with the biconnected QCNs in a serial fash-
ion, from smaller to bigger QCN, so as to stress how much
more ⇧-consistency and the backtracking algorithm that uti-
lizes it along with the heuristics in each reasoner benefit
from reasoning with the biconnected QCNs than reason-
ing with the initial loosely connected QCN, when both ap-
proaches are offered the same computational power. Thus,
only one CPU core was used in our experiments.

The results are shown in Table 3 and make clear that our
simple decomposition scheme aids the performance of each
reasoner substantially, with the more apparent case being
that of gadm1 which is inconsistent, as opposed to nuts
and adm1 that are consistent. In particular, GQR decides
gadm1 in ⇠ 4 hours and gadm1D in 1.2 seconds, while sim-
ilar results are also obtained for the other reasoners. When an
inconsistency is detected in a biconnected QCN in nameD,
each reasoner backtracks only within that QCN, and consid-
ers a very small search-tree to either verify or dispute that
inconsistency with respect to the search-tree of name. Ob-
viously, the time obtained for gadm1D is the time that it
took each reasoner to serially reason with every biconnected
QCN, until it reached an inconsistent QCN (thus, assuring
that gadm1 is also inconsistent by Proposition 1).

Conclusion

We improved the state-of-the-art in checking the satisfiabil-
ity of large real world QCNs, by proposing a simple decom-
position scheme that exploits the loosely connected structure
of their underlying graphs. Experimental results showed that

our appoach significantly decongests search in state-of-the-
art reasoners. On another positive note, our approach easily
applies to any reasoner, as it can a priori decompose the in-
put QCN before it is fed to the reasoner.
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