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Abstract
Darwinian networks (DNs) were recently suggested
to simplify reasoning with Bayesian networks (BNs).
Here we show how DNs can represent four well-known
heuristics for determining good elimination orderings in
BNs. We propose a new heuristic, called potential en-
ergy (PE), based on DNs. Our analysis shows that PE
compares favourably with these traditional heuristics.

Introduction
Darwinian networks (DNs) (Butz, Oliveira, and dos Santos
2015) were proposed to simplify working with Bayesian net-
works (BNs) (Pearl 1988). DNs are a richer representation
allowing them to simplify both modelling and inference.

An important practical consideration in BN inference
is determining good elimination orderings, denoted σ
(Kjærulff 1990). Empirical results show that min-neighbours
(MN), min-weight (MW), min-fill (MF), and weighted-min-
fill (WMF) are four heuristics that perform well in practice
(Koller and Friedman 2009). Given a query P (X|Y ) posed
to a BN B, all variables except XY are recursively elim-
inated from the moralization Bm based upon a minimum
score s(v).

In this paper, we show how these four heuristics can be
represented in DNs. More importantly, we propose a new
heuristic, called potential energy (PE), based on DNs them-
selves. Our analysis of PE shows that it can: (i) better score a
variable; (ii) better model the multiplication of the probabil-
ity tables for the chosen variable; (iii) more clearly model the
marginalization of the chosen variable; and (iv) maintain a
one-to-one correspondence between the remaining variables
and probability tables.

Background
Elimination Orderings in Bayesian Networks
Let U = {v1, v2, . . . , vn} be a finite set of variables, each
with a finite domain. A singleton set {v} may be written as
v, {v1, v2, . . . , vn} as v1v2 · · · vn, and X ∪ Y as XY . For
disjoint X,Y ⊆ U , a conditional probability table (CPT)
P (X|Y ) is a potential over XY that sums to one for each
value y of Y .
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A Bayesian network (BN) (Pearl 1988) is a directed
acyclic graph (DAG) B on U together with CPTs
P (v1|Pa(v1)), P (v2|Pa(v2)),. . . , P (vn|Pa(vn)), where
the parents Pa(vi) of vi are those vj such that (vj , vi) ∈ B.
For example, Figure 1 (i) shows a BN, where CPTs P (a),
P (b|a), . . . , P (f |b, e) are not illustrated. We call B a BN, if
no confusion arises.

Figure 1: (i) a BN B. (ii) the moralization Bm. (iii) adding
edges between a’s neighbours in Bm. (iv)-(vii) MN and
WMF can determine σ = (c, a, b, e). (viii)-(xi) MW can
determine σ = (a, c, b, e). (xii)-(xv) MF can determine
σ = (c, b, a, e).

We use the following running example throughout the pa-
per. Assuming query P (f |d) is posed to the BN B in Figure
1 (i), variables a, b, c, and e must be recursively eliminated
from the moralization (Pearl 1988)Bm in Figure 1 (ii). Elim-
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inating a, for instance, involves adding edges between a’s
neighbours as in (iii) and then removing a as in (viii).

In min-neighbours (MN), the score s(v) of variable v is
the number of edges involving v.

Example 1. Referring to Figure 1, MN can determine elim-
ination ordering σ = (c, a, b, e) by (ii), (iv)-(vii).

In min-weight (MW), the score s(v) of a variable v is the
product of the domain cardinalities of v’s neighbours. The
domain cardinality of a is 5, while the rest are binary.

Example 2. Referring to Figure 1, MW can determine
σ = (a, c, b, e) by (ii), (viii)-(xi).

In min-fill (MF), the score s(v) of a variable v is the num-
ber of edges that need to be added between v’s neighbours
due to v’s elimination.

Example 3. Referring to Figure 1, MF can determine
σ = (c, b, a, e) by (ii), (iii), (xii)-(xv).

In weighted-min-fill (WMF), the score s(v) of variable v
is the sum of the weights of the edges that need to be added
between v’s neighbours due to v’s elimination. The weight
of an edge is the product of the domain cardinalities of its
constituent vertices.

Example 4. Referring to Figure 1, WMF can determine
σ = (c, a, b, e) by (ii), (iv)-(vii).

Darwinian Networks
Due to space limitations, we refer the reader to (Butz 2015)
for an introduction to DNs. 1

Every BN B can be represented as a DN D (Butz,
Oliveira, and dos Santos 2015). More formally, D =
{p(v, Pa(v)) | P (v|Pa(v)) is in B} is the DN for a given
BN B. For instance, the BN B in Figure 1 (i) is represented
as the DN D in Figure 2 (i).

The query P (X|Y ) posed to a BN B is represented by DN
D′ = {p(X,Y )}. For example, query P (f |d) is represented
by DN D′ = {p(f, d)} in Figure 2 (viii).

Elimination Orderings in Darwinian Networks
A trait t with a minimum score is eliminated by recursively
merging all populations with t, yielding p(C,D), replicat-
ing p(C,D) as p(C,D) and p(C − t,D), and letting natural
selection remove spent population p(C,D).

Given two DNs D and D′, recursively eliminate traits ap-
pearing in D but not D′. We will use the same running ex-
ample for each heuristic, namely, D is in Figure 2 (i) and D′

is in Figure 2 (viii). By the above, each heuristic seeks to
eliminate traits a, b, c, and e from D.

We now present four heuristics for scoring traits in DNs.

Representing Min-Neighbours in DNs
Two traits t and t′ in a DN D are related, if they appear
together in at least one population in D; otherwise, they are
unrelated. For example, in Figure 2 (i), trait a is related to
traits b, c, d, and e. Traits a and f are unrelated, since they
do not appear together in any population.

1http://www.darwiniannetworks.com

Figure 2: DNs D in (i) and D′ in (viii). (ii)-(iv) eliminat-
ing trait c by merging, replication, and natural selection,
respectively. (ii)-(vii) determines σ = (c, a, b, e). (ix)-(xii)
determines σ = (a, c, b, e). (xiii)-(xvi) determines σ =
(c, b, a, e).

Definition 1. To represent MN, the score s(t) of a trait t is
the number of traits related to t.
Example 5. In Figure 2 (i), the score s(a) of trait a is 4,
since a is related to traits b, c, d, and e. Similarly, s(b) is
3, s(c) is 3, and s(e) is 5. Eliminating a trait with a mini-
mum score, say c, by merging in (ii), replicating in (iii), and
letting natural selection act, gives (iv). Now, s(a) and s(b)
both are 3, and s(e) is 4. Eliminating, say a, yields (v). Here,
both s(b) and s(e) are 3. Eliminating, say b, gives (vi). Then
eliminating e yields (vii). Therefore, σ = (c, a, b, e).
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Representing Min-Weight in DNs
Given a DN D representing a BN B, the energy of a trait t
is the domain cardinality of the variable v to which it corre-
sponds. For example, given that variable b in Example 1 is
binary, then the energy of trait b in Example 5 is 2.

Definition 2. To represent MW, the score s(t) of a trait t is
the product of the energies of the traits related to t.

Example 6. As the DN D in Figure 2 (i) represents the BN
B in Figure 1 (i), the energies of traits a, b, c, d, e, and f are
5, 2, 2, 2, 2, and 2, respectively. The traits related to trait a
in D are b, c, d and e. Thus, the score s(a) is 16. Similarly,
s(b) and s(c) both are 20, and s(e) is 80. Trait a is elim-
inated giving (ix). Here, s(b) and s(e) are each 16, while
s(c) is 8. Eliminating trait c yields (x). Now, s(b) and s(c)
both are 8. Eliminating, say b, gives (xi). Lastly, eliminating
trait e yields (xii). Thus, DNs can represent MW determin-
ing elimination order σ = (a, c, b, e).

Representing Min-Fill in DNs
Definition 3. To represent MF, the score of a trait t is the
number of pairs of traits that are related to t, but are unre-
lated themselves.

Example 7. The traits related to a in D are b, c, d, and e.
Traits b and c are unrelated, as are b and d. Thus, s(a) is
2. Similarly, s(b) is 1, s(c) is 0, and s(e) is 5. Eliminating c
gives Figure 2 (xiii). Here, both s(a) and s(b) are 1, and s(e)
is 3. Eliminating, say b, yields (xiv). Now, s(a) and s(e) both
are 1. Eliminating, say a, gives (xv). Then, e is eliminated
leaving (xvi). Therefore, DNs can represent MF determining
elimination order σ = (c, b, a, e).

Representing Weighted-Min-Fill in DNs
Definition 4. To represent WMF, the score s(t) of a trait t
is the product of the energies of the pairs of traits related to
t that are unrelated themselves.

Example 8. From Example 7, the two pairs of traits related
to a that are unrelated themselves are b and c, and b and d.
The product of the energies for b and c is 4, as is that for b
and d. Thus, the score s(a) of trait a is 8. Similarly, s(b) is
10, s(c) is 0, and s(e) is 26. Eliminating c gives (iv). Here,
s(a) is 4, s(b) is 10, and s(e) is 18. Eliminating a yields (v).
Now, s(b) and s(e) both are 4. Eliminating, say b, gives (vi).
Finally, e is eliminated yielding (vii). Thus, DNs can rep-
resent WMF determining elimination order σ = (c, a, b, e).

Equivalence
The undirected graph U(D) of a DN D has variables Tc(D)
and edges {(vi, vj) | p(C,D) ∈ D and vi, vj ∈ CD},
namely, U(D) is the moralization Bm (Butz, Oliveira, and
dos Santos 2015). For instance, U(D) of the DN D in Fig-
ure 2 (i) is the undirected graph Bm shown in Figure 1 (ii).

Lemma 1. MN can be equivalently represented in DNs.

Proof. (Crux) Given D is the DN for a BN B. Then U(D)
is the moralization Bm. By construction, the scoring of traits

in D is precisely the scoring traits in Bm. Also by construc-
tion, the undirected graph U(D) of the DN D obtained by
eliminating a trait with a minimum score corresponds ex-
actly to the undirected graph with the corresponding vari-
able eliminated. Finally, the set of traits recursively elim-
inated is the set of variables recursively eliminated, since
D′ = {p(X,Y )} is the DN corresponding to the query
P (X|Y ) posed to B.

Example 9. The BN B in Figure 1 (i) is represented as the
DND in Figure 2 (i), U(D) is the moralization Bm in Figure
1 (ii), and the given query P (f |d) is represented by the DN
D′ = {p(f, d)} in Figure 2 (viii). The scoring of variable
and traits precisely coincides, namely, s(a) = 4, s(b) = 3,
s(c) = 3, and s(e) = 5. Eliminating variable c gives Figure
1 (iv), while eliminating trait c gives Figure 2 (iv), of which
the undirected graph is Figure 1 (iv). Next, the scoring of
variables and traits are the same, namely, both s(a) and s(b)
are 3, and s(e) is 4. Eliminating variable a yields Figure 1
(v), while eliminating trait a gives Figure 2 (v), of which the
undirected graph is Figure 1 (v). Once again, the scoring is
the same, i.e., s(b) and s(e) both are 3. Eliminating variable
b gives Figure 1 (vi), while eliminating trait b gives Figure 2
(vi), of which the undirected graph is Figure 1 (vi). Finally,
eliminating variable e yields Figure 1 (vii), while eliminat-
ing trait e gives Figure 2 (vii), of which the undirected graph
is Figure 1 (vii). Therefore, both representations obtain the
same elimination ordering σ = (c, a, b, e).
Lemma 2. MW, MF, and WMF each can be equivalently
represented in DNs.

The proof of Lemma 2 is similar to that of Lemma 1 and
will be given in a future paper.

Potential Energy Heuristic
We put forth a new heuristic, called potential energy, which
is based upon the rich representation of DNs.

Recall that a DND can represent a BN B. The energy of a
population p(C,D) is the domain cardinality of the CPT to
which it corresponds. For example, the energy of population
p(b, a) representing the CPT P (b|a) is 10, since b is binary
and the domain- cardinality of a is 5.
Definition 5. In potential energy (PE), the score of a trait
t is the sum of the population energies built by recursively
merging the populations containing t.
Example 10. Consider using PE to score trait a in the DND
in Figure 2 (i). Merging p(a) and p(b, a) gives p(ab) with en-
ergy 10. Then, merging p(ab) and p(e, acd) gives p(abe, cd)
with energy 80. Hence, s(a) is 90.

Note that PE is not necessarily unique, since it depends
upon the order in which populations are merged.
Example 11. In Example 10, first merge p(a) with
p(e, acd), yielding p(ae, cd) with energy 40. Now, merge
p(ae, cd) with p(b, a), giving p(abe, cd) with energy 80.
Therefore, s(a) is 120.

Henceforth, populations will be recursively merged al-
ways using the two populations with the lowest energies.
For example, s(a) will be determined by merging p(a) and
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p(b, a) first as in Example 10 rather than p(a) and p(e, acd)
as in Example 11.

Example 12. Similar to s(a) being 90 in Example 10, the
scores of s(b), s(c), and s(e) are 40, 40, and 160, respec-
tively. Removing, say c, gives Figure 2 (xiii). The scores of
s(a), s(b), and s(e) now are 50, 40, and 80, respectively.
Removing b yields Figure 2 (xiv). Here, s(a) and s(e) are
each 40. Removing, say a, gives Figure 2 (xv), and then e,
yields Figure 2 (xvi). Therefore, PE determines elimination
ordering σ = (c, b, a, e).

Analysis
We show that PE is more refined than MN, MW, MF, and
WMF in the following aspects: (i) scoring a variable; (ii)
multiplying the probability tables; (iii) marginalizing the
variable; and (iv) representing the remaining information.

(i) Scoring a variable. Consider, for example, the mul-
tiplications needed to eliminate variable a from the BN in
Figure 1 (i):

P (a, b, e|c, d) = P (a) · P (b|a) · P (e|a, c, d). (1)

Generally, MF and WMF tend to work better on more
problems and, not surprisingly, WMF usually has the most
significant gains when there is some significant variability in
the sizes of variable domains (Koller and Friedman 2009).
This is because MF and WMF estimate the computation to
take place in the RHS of (1), for example, by utilizing the
RHS itself. PE also considers the RHS of (1), but in more
detail than both MF and WMF. PE counts the number of
multiplications that can be used to compute the product of
all probability tables involving the variable being scored.

Example 13. In Example 10, PE scores a as 90, since com-
puting the product of the RHS of (1) takes 10 multiplica-
tions for p(a) and p(b|a), followed by 80 multiplications for
p(a, b) and p(e, acd). Thus, a PE score s(a) of 90 means that
90 multiplications can be used to compute (1).

(ii) Multiplying the probability tables. Once a variable
with a minimum score is chosen, DNs more accurately de-
pict the multiplication of its probability tables.

Example 14. Suppose c is the first variable to be eliminated
in our running example. In the moralization Bm of Figure 1
(ii), edges are added between all of c’s neighbours, yielding
Bm itself. Thus, by using undirected graphs to model multi-
plication, no change was made in the graphical representa-
tion even though the following multiplication takes place:

P (c, e|a, d) = P (c) · P (e|a, c, d). (2)

In stark contrast, PE explicitly represents this multiplication
by merging populations p(e) and p(e, acd) in Figure 2 (i),
yielding population p(ce, ad) in Figure 2 (ii).

Example 14 illustrates how merging in DNs is a more
descriptive graphical representation of multiplication com-
pared to adding edges in a undirected graph.

(iii) Marginalizing the variable. Once the appropriate
probability tables have been multiplied, DNs more accu-
rately depict the subsequent marginalization.

Example 15. Continuing from Example 14, variable c is
marginalized in BN inference as follows:

P (e|a, d) =
∑
c

P (c, e|a, d). (3)

It is not obvious how newly created CPT P (e|a, d) is graphi-
cally represented by removing c and its incident edges (a, c),
(c, d), and (c, e) from Figure 1 (ii) yielding the undirected
graph in Figure 1 (iv). On the other hand, PE clearly articu-
lates this marginalization by replicating population p(ce, ad)
in Figure 2 (ii) as itself and population p(e, ad) in Figure 2
(iii), and then letting natural selection remove spent popula-
tion p(ce, ad) in Figure 2 (iv).

The key point of Example 15 is how replication and nat-
ural selection in DNs provide a better graphical description
of marginalization in BN inference than the deletion of the
variable being marginalized and its incident edges from an
undirected graph.

(iv) Representing the remaining information. After a
variable with a minimum score is eliminated, PE maintains a
one-to-one correspondence between the remaining variables
and populations.
Example 16. Continuing from Example 15, c’s elimination
results in Figure 1 (iv). It is unclear how this undirected
graph corresponds to the remaining probability tables:

P (a), P (b|a), P (d), P (e|a, d), and P (f |b, e). (4)

On the contrary, in PE, there is a one-to-one correspondence
between the probabilities tables in (4) and populations in
Figure 2 (iv):

p(a), p(b, a), p(d), p(e, ad), and p(f, be). (5)

Similar remarks hold after the elimination of variables a, b,
and e, in (v), (vi), and (vii) of Figure 2, respectively.

Conclusion
We have shown how four well-known heuristics for de-
termining elimination orderings can be equivalently repre-
sented in DNs, a richer representation of BNs. We proposed
PE as a novel heuristic based on DNs themselves. Our anal-
ysis has shown that PE is a more refined heuristic in four
aspects. Future work will include an empirical evaluation.
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