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Abstract 

In this paper, we consider the challenge of optimizing the 
behaviour of a question-answering system that can adapt its 
sequence of processing steps to meet the information needs 
of a user. One problem is that the sheer number of possible 
processing sequences the system could use makes it impos-
sible to conduct a complete search for the optimal sequence. 
Instead, we have developed a genetic algorithm to explore 
the space of possible sequences. Our results show that this 
approach gives the system the adaptability we desire while 
still performing better than a human-optimized system. 

1. Introduction   

Question-answering (QA) systems are hugely popular in 

the scientific literature as well as in practical consumer 

applications. However, while there is undeniably a lot of 

diversity in QA algorithms, many of them suffer from a 

common weakness, which is that they try to design the 

single best sequence of processing steps to get from the 

question to the answer. Once implemented, such systems 

leave little to no room for customization of the algorithm to 

better address the information needs of a specific user. 

In this paper, we start instead from a QA system that 

represents its processing steps as a set of filters applied 

sequentially, and which allows the modification of this 

sequence to meet the custom needs of users. This changes 

the QA design problem significantly: the challenge is no 

longer how to design new and better filters or processing 

algorithms, but becomes instead how to discover the best 

combination of the filters available to answer the user’s 

questions. Indeed, given even a small number of filters and 

the fact that repeating and/or omitting filters in the se-

quence is acceptable, the number of possible sequences to 

consider quickly becomes massive and a complete search 
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impossible. In this paper, we demonstrate how a genetic 

algorithm (GA) can be used to search the space of possible 

sequences to efficiently find combinations of filters that 

surpass the performance of human-designed sequences.  

The rest of the paper is organized as follows. Section 2 

presents the context of our research and an overview of the 

literature on QA systems with an emphasis on those that 

make use of GAs. We present in detail our implementation 

of the GA system in Section 3, and then we move on in 

Section 4 to describe and analyze our experimental results. 

Finally, we give some concluding remarks in Section 5. 

2. Background 

This paper is part of a larger research collaboration to de-

velop an adaptive Intelligent Virtual Assistant (IVA), as 

described in (Lamontagne et al. 2014). The basic structure 

of this IVA is presented in Figure 1. In its intended mode 

of operation, the IVA would access the same incoming 

information reports as the user, annotate them and combine 

them with other information sources (such as a local col-

lection of past reports and external resources of general 

background knowledge), and then fetch information cus-

tomized to the user’s needs as they work on preparing a 

new report. A central aspect of the system is thus the cus-

tomizable question-answering (QA) system (Chinaei et al. 

2014), which will query the information sources and return 

useful facts to the user. Moreover, this QA system must 

adapt itself to the needs of the user, as different users will 

have different information needs. For example, a user who 

has lived in a foreign country for several years will not ask 

the same questions or need the same answers about that 

nation as one who has never travelled there, and a user 

with an interest in national economic policy will expect 

different answers on questions about that country from one 

with an interest in grassroots social movements. This is the 

contribution of the user model component in the system.  
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A filter-sequence-based QA system such as Ephyra 

(Schlaefer et al. 2006) presents important advantages to a 

system such as ours, when compared to more traditional 

QA systems. A traditional QA system works in a prede-

termined sequence of steps, which typically cover first 

some query processing to narrow down the information 

requested by the question, then information retrieval to 

find a set of texts that may contain the answer, and finally 

an answer selection step to find the correct answer from the 

retrieved texts (Tomljanovic, Pavlic, and Katic 2014). The 

issue is that these steps are hardcoded into the QA system, 

and cannot be changed except by editing the software and 

recompiling it with a new (and still fixed) version of the 

sequence of steps. By contrast, a filter-sequence QA sys-

tem has access to a library of algorithmic filters that can be 

used interchangeably and applied to data in any order. The-

se filters can be general, such as a named entity retrieval 

algorithm, or they can be specific, such as a filter to boost 

the importance of geography-related answers for a user 

who needs help in geography. The advantage of a filter-

based QA system in our system is its power for user-

customization: by adding and removing filters and by 

changing the order of the filters in the sequence, the QA 

system will generate different answers from the same data 

for the same queries but that are appropriate for the differ-

ent needs of different users.   

One major problem with a filter-sequence QA system is 

selecting the optimal sequence of filters to use. Indeed, 

since filters can be arranged in any order in the sequence 

and will have different effects on the final result depending 

on what processing is done in the sequence before and after 

their contribution, the number of distinct sequences to con-

sider is the factorial of the number of filters. For example, 

the 53 filters included with OpenEphyra (OE), a free open-

source version of the Ephyra QA framework
1
, can be ar-

ranged in 4.2710
69

 distinct sequences. And when filters 

may be repeated multiple times in the sequence or omitted 

from the sequence altogether, the number of possible se-

quences becomes infinite. To make matters worse, there 

isn’t a single best solution to be found, nor even a best so-

lution per user, but an optimal solution given the specific 

information needs of each user as they prepare the current 

information report. 

Since thoroughly searching this massive and potentially 

infinite space for multiple different optima is not an option, 

we turn to a genetic algorithm to try to evolve good filter 

sequences which can retrieve good answers given a user’s 

current information needs. A genetic algorithm represents 

solutions to a problem as individuals in a population, with 

features of the solution as genes making up each individ-

ual. New individuals can then be created through crossover 

(randomly combining the genes of two individuals) or mu-

tation (randomly changing some genes in one individual). 

A fitness function is used to determine how good a solution 

is and to compare and rank solutions relative to each other. 

And finally, a roulette wheel is used to select individuals; 

this wheel is biased based on fitness, so that the best indi-

viduals at each generation have a greater chance of being 

selected for crossover, while the worst have a greater 

chance of being removed from the population.  

GAs have been scarcely used in QA research. In 

(Samarakoon, Kumarawadu,  and  Pulasinghe 2011) for 

example, a GA was used to optimize the parameters of a 

ranking equation meant to score documents as answers to a 

specific query. This is an idea similar to ours – using GAs 

to optimize the internal workings of a QA system – but 

applied on a simpler problem: in this case the QA system 

and scoring function are already designed and fixed and 

the GA is used only to change the weights of components 

in the scoring equation, while in our system the GA is in 

charge of designing the sequence of operations in a core 

component of the QA system. GAs are also used in (Figue-

roa and Neumann 2008) to help discover and extract an-

swers from snippets of text. However, that system uses an 

ordinary QA system to get relevant snippets of text that the 

answer may be found in, and only uses GAs to search the 

retrieved snippets for the exact answer. To our knowledge, 

GAs have not been used to the extent we describe in this 

paper in a QA system before. 

Likewise, the challenge of designing a QA system that 

adapts to its user is one that has received little attention. 

The focus has been instead on determining user intent be-
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hind individual questions based on the question’s content 

alone, without any user information. Some examples can 

illustrate the wide range of research done in that direction. 

In (Zhang et al. 2009), question features such as keyword 

hypernyms and sentence structure are used to determine 

the answer type (definition, person, quantity, etc.) and an-

swer attributes (expertise level, subjectivity level) intended 

by the user. In (Yoon, Jatowt, and Tanaka 2011), intent 

keywords are extracted from queries and used to find simi-

lar queries in a QA database, and the user’s intent in in-

ferred from the answers of these similar queries. And in 

(De and Kopparapu 2010), each keyword in the query is 

assigned a topic tag, and the query intent is determined 

using decision rules based on the set of tags it contains. 

The fact that a QA system can benefit from user profile 

information has not gone unnoticed in the literature. How-

ever, this is often seen as an application of user profiles; if 

a profile is available, then it can be used in a QA system. 

This was done in a limited fashion in (Mishra, Mishra, and 

Agrawal 2010), where geographical location was provided 

by the user to improve the QA performance. In (Du et al. 

2013), the connections between users in a social network 

guided answer recommendations. In both cases, the QA 

system was shown to benefit from the user information, but 

it remains information external to the QA system itself.  

Additionally, some authors have been proposed to learn 

a user profile from user questions and their answers. One 

such system is presented in (Zhao et al. 2009): user ques-

tions are mapped to leafs in a topic ontology and used to 

measure user interest in specific topics. However, that in-

formation is never fed back to the QA system to customize 

it to the user or improve its performance.  

3. Genetic Algorithm 

As mentioned in the previous section, in this work we 

made use of the OpenEphyra (OE) QA framework. This 

software works in three steps. The first step consists of 

query generation. Given a user’s question, it performs var-

ious pre-processing steps such as stemming, stopword re-

moval, answer type classification, and query expansion, in 

order to generate a large set of semantically equivalent 

queries. In the second step, OE uses the queries to retrieve 

a set of potentially relevant text snippets from its document 

database (the entire information level in Figure 1). Finally, 

in the third step, the snippets are put through a sequence of 

filters in order to extract, combine, and rank potential an-

swers and return the best one. It is this sequence of filters 

in this third step that our work focuses on optimizing using 

a GA.  

Since OE includes 53 different filters, we designed the 

individuals in our GA to have 53 genes, where the value in 

each gene represents a filter and the entire genome repre-

sents an ordered sequential application of those filters. We 

also added a 54
th

 filter, an empty filter with no effect on the 

data but which allows the GA to create individuals that do 

not use all 53 real filters. Since filters can appear multiple 

times in a genome, this creates a search space of approxi-

mately 6.5610
91

 possible individuals.  

The population size is of 200 individuals. At each gen-

eration, at least 180 new children are created by crossover 

and mutation from the initial 200 individuals, and the 20 

best individuals from the previous generation are added by 

elitist selection to them in order to create a new population. 

While the specific ratio of 90% new individuals in each 

generation was picked empirically, the decision to generate 

a lot more new individuals than are saved was made to 

explore a larger sample of individuals in a reasonable time. 

The crossover operation is done by selecting two parent 

individuals using a roulette wheel selection, and creating 

two new children individuals where, for each of the 53 

genes, one child has a 50% chance of getting the value 

from one parent, and the second child automatically gets 

the value from the opposite parent. Each of these two chil-

dren then has a 10% chance of inversion. If this happens, 

two split points are randomly selected in the child, and the 

filter sequence is inverted between these points. 

Each of the new children created in a generation has a 

probability of mutating; this probability is inversely pro-

portional to the dispersion of the population calculated 

using the standard deviation of the population, so that a 

very diverse population suffers fewer mutations than a very 

homogenous one. Three mutation operators have been im-

plemented in our system. The shift mutation shifts all 

genes down starting from a random point to the first empty 

filter, thereby deleting the empty filter at the end of the 

shift and freeing up the random starting position at the be-

ginning; that free gene is assigned a random new filter 

value. The second is the move mutation operation, which 

selects a random set of genes and moves them to a new 

part of the genome, overwriting the genes at the destination 

and freeing up the original positions; these are replaced by 

random new filter values. Finally the swap mutation ex-

changes the values of two randomly-selected genes in the 

genome. Which of the mutation operations will be applied 

is decided randomly; the move and swap mutations have a 

10% probability each of being applied, and the shift muta-

tion has an 80% probability of being applied. The choices 

of mutation operations and their probabilities have been 

made experimentally, by using a GA to sort random se-

quences of 53 numbers to specific orders and using the 

Damerau-Levenshtein distance as a fitness function. 

Finally, it is possible for the new population to be above 

200 individuals by this point. To bring it back to 200, we 

use a roulette wheel selection biased to kill off the least fit 

individuals, with an elitism constraint that the single best 

individual cannot be selected for removal. 
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GA Fitness Function 

The fitness function used to evaluate the individuals con-

sists in asking 610 training questions and counting the 

number correctly answered. We make no difference be-

tween two individuals that correctly answer different sets 

of questions of equal number. Moreover, we made sure 

that the answer to each question does actually exist in the 

document database available to our implementation of OE. 

A major benefit of this fitness function is its flexibility 

for customization, which is an important feature for our 

IVA system. Indeed, it is critical for us that the GA be able 

to find not one best filter sequence, but the best filter se-

quence for a given user with a given purpose. This fitness 

function makes this possible by simply varying the set of 

evaluation questions and answers. A user’s interests would 

be reflected by having more questions in a certain topic, 

which will bias the GA optimization to a sequence of fil-

ters that works best for those questions. Likewise, a user 

with expertise in a given topic will have answers to ques-

tions that are more detailed or technical than a user who is 

a novice in that topic, and again this will bias the GA 

search and the resulting sequence of filters. This custom-

ized list of questions and answers will be included in the 

user profile component of the IVA, and can be built over 

time at minimal cost through regular usage of the IVA by 

including a user feedback component that will allow each 

user to mark queries that have been answered to their satis-

faction. This is represented by the connection loop from 

the QA system to the user to the user model in Figure 1. 

However, we immediately found that this fitness func-

tion was too slow to be of use: Evaluating the fitness of 

one population using 610 training questions took on aver-

age upwards of 20 minutes per individual on a regular PC, 

which makes the evaluation of entire populations and gen-

erations completely impractical. Consequently, we came 

up with two additional improvements to the function in 

order to speed up the evaluation of the individuals. 

Referring back to our description of OE, we noted that 

the QA algorithm works in three steps, and only the third 

one makes use of the filter sequence the GA is modifying. 

The first two steps do not change, and will always return 

the same results for every individual. Our first improve-

ment was thus to precompute the results of the first two 

steps for each training question, and to modify OE to use 

these precomputed results and skip the first two steps when 

evaluating the fitness of individuals. 

The second improvement we made to the algorithm was 

a result of noting that many individuals had extremely low 

fitness, between 0% and 5%. Complete and precise evalua-

tion of these individuals seems unnecessary, as they have 

almost no chance of being selected for crossover and are 

very likely to be removed from the population altogether in 

one generation. Given this, we implemented a subset 

evaluation of the individuals. The training questions were 

randomly divided into subsets of 61 questions, and an indi-

vidual must get a certain number of correct answers in each 

subset to merit being evaluated on the next subset. This 

had the benefit of terminating the evaluation of bad indi-

viduals quickly to avoid wasting time on them, while fo-

cusing on a more complete evaluation of better individuals.  

In the end, these two improvements reduced the average 

fitness evaluation time of an individual to below 3 minutes. 

4. Experimental Results 

The GA was implemented with an initial population of 200 

individuals, and was run for 100 generations. Although the 

ultimate goal is to create customized training QA lists for 

each user’s profile, at this stage of the work an initial train-

ing list of questions was created with the goal of optimiz-

ing the overall performance of the QA system. Customized 

QA lists that focus on specific topics or require more in-

depth information will be developed in future work, and 

can then be easily substituted into our GA’s fitness func-

tion. The current training set of questions is composed of: 

• 100 questions on time (e.g. “when did the attack on 
Pearl Harbor take place?”)  

• 100 questions on locations (e.g. “where is Canada?”) 

• 100 questions on people (e.g. “what is the profession of 
Barack Obama?”) 

• 110 questions on descriptions (e.g. “what is a cat?”) 

• 100 questions on numbers (e.g. “how many moons does 
Jupiter have?”) 

• 100 questions of other types not in the first five (e.g. 
“what animal was domesticated by man to watch over 
flocks of beasts?”) 

As mentioned previously, the fitness function evaluation 

of an individual consists in trying to answer each training 

question using the individual’s sequence of filters. The 

filters return a series of ranked answers, and the fitness 

function gives the individual a score based on the number 

of correct answers in the rankings. We studied two differ-

ent approaches in that respect. In the first case, the fitness 

function considered the question correctly answered if the 

correct answer was one of the top-two ranked answers, and 

in the second case if it was one of the top-ten ranked an-

swers. We will refer to these as the top-two experiment and 

the top-ten experiment in the discussion of our results. 

Figure 2 illustrates the average fitness of the GA popula-

tion and the specific fitness of the best individual at each 

generation in the top-two experiment. It can be seen that 

the algorithm converges quickly. After about 30 genera-

tions, the best individual has been found and the population 

has stabilized. There are still some fluctuations in fitness in 

the figure; these are a side-effect of the subset evaluation 

we described previously. As individuals become better, 
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they are tested on more subsets of questions, and individu-

als whose high fitness were due to overfitting on one sub-

set see performance drops and bring the population average 

down before they are taken out by selection. Note that only 

the top-two experiment was run for the entire 100 genera-

tions; the population in the top-ten experiment was found 

to have converged in 13 generations and terminated early. 

At the end of evolution, the best individual of each 

population was selected as the best filter sequence our GA 

could find. Each individual was tested using a new set of 

600 evaluation questions in the same six types as before. 

Each question was submitted to the QA system, and 

counted as correctly answered if the correct answer was in 

the top-2 or top-10 ranked results, and failed otherwise. 

These two tests match the two training conditions. For 

benchmark, we used the filter sequence recommended as 

best by the OE designers. The results obtained are pre-

sented in Table I and Table II for the test accepting an-

swers in the top-2 results or in the top-10 results respec-

tively.  

The results demonstrate that both filter sequences exceed 

the performance of the benchmark on average. For specific 

question types, the best sequence from the top-ten experi-

ment always surpasses the benchmark, and the best se-

quence of the top-two experiment equals or surpasses the 

benchmark in 9 of 12 statistics.  

Table I: QA accuracy on top-2 answers 

Question Type OE  

Sequence 

Top-two 

individual 

Top-ten  

individual 

Time 7% 4% 11% 

Location 14% 11% 23% 

People 4% 1% 9% 

Description 4% 7% 12% 

Number 9% 15% 15% 

Other 3% 13% 25% 

Average  6.9% 8.5% 15.9% 

Table II: QA accuracy on top-10 answers 

Question Type OE  

Sequence 

Top-two 

individual 

Top-ten  

individual 

Time 17% 17% 34% 

Location 29% 30% 52% 

People 8% 11% 26% 

Description 7% 15% 26% 

Number 17% 23% 31% 

Other 16% 24% 53% 

Average  15.7% 20.1% 37.0% 

The tables also show that the best sequence from the 

top-ten experiment performs considerably better than its 

counterpart from the top-two experiment. This might be 

due in part to the random chance of evolution, but it might 

also be due to the more fine-grained fitness evaluation cri-

terion of the top-ten experiment. Indeed, the top-ten 

evaluation makes it possible to compute and compare the 

fitness of less-performing individuals that return correct 

answers below the second position. For example, three 

individuals that return 300, 200 and 100 correct answers at 

ranks below 2 will receive different fitness values in the 

top-ten experiment, and the one returning 300 correct an-

swers will be more likely to survive and be used in cross-

over while the one returning 100 correct answers is more 

likely to be killed off. On the other hand, in the top-two 

experiment, all three individuals will be evaluated equally 

with zero fitness, and all three will have equal probabilities 

of being used in a crossover or killed. Studying the impact 

of this finer evaluation is a direction for future research. 

Next, we studied the sequences of filters evolved. There 

are some striking differences with the expert-designed OE 

sequence. The OE filter sequence is composed of 14 dif-

ferent filters, while the sequences discovered by our GA 

count 37 filters and 41 filters for the top-two and top-ten 

individuals respectively, and both show several duplicates. 

Moreover, the filters selected in the expert sequence and 

those in the evolved sequences highlight their different 

designs. The experts designed a sequence that mimics tra-

ditional QA systems, with clear sections to analyze the 

question, then to extract potential answers from docu-

ments, and then to score and rank the answers. On the 

other hand, the GA sequences are not designed with such 

preconceived notions, and do not present obvious logical 

sections and divisions like the expert sequence. It also in-

cludes filters with no equivalents in the expert sequence, 

such as the UnnecessaryCharactersFilter and the Result-

LengthSorterFilter. This hints that the GA takes a more 

calculated approach to this task than the experts. Clearly, 

the GA studied sequences that are very different from the 

shorter and more traditional one OE experts recommended. 

As noted, several filters are repeated in the GA se-

quences. For example, a filter to remove unnecessary char-

acters from answer snippets is applied at three different 

Figure 2: Fitness over generations of the GA population. 
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points in the top-two sequence. This might have occurred 

to remove unnecessary characters that appear after other 

filters pinpoint answer components. Or it could be a harm-

less result of the GA operators, since filters that have no 

effect on the answers do not negatively affect an individ-

ual’s fitness. Future work may look at trimming these un-

necessary filters from the sequence of the final retained 

individual, to minimize the execution time of the sequence.  

We also note that our evolved filter sequences are both 

more than twice as long as the human-designed one; in-

deed, the ability to explore such longer sequences is one 

benefit of GAs. In our system, this is a result of the fact 

that the shift mutation, which accounts for 80% of all mu-

tations, explicitly removes an empty filter, and that any 

new filter value added only has a 1/54 chance of being an 

empty filter. In other words, our system is biased towards 

creating longer filter sequences. Moreover, the results in 

Tables I and II seem to indicate that a filter sequence’s 

performance is not directly correlated to its length; the top-

two sequence is more than twice the length of the OE-

recommended sequence and only four filters shorter than 

the top-ten sequence, yet its performance is not twice as 

good as the OE sequence and in fact is statistically closer 

to that of the much-shorter OE sequence than to the simi-

lar-length top-ten sequence. In future work, we plan on 

balancing the system by adding a predator (Li 2003) that 

targets genomes that represent longer sequences. 

5. Conclusion 

In this paper, we presented our work in designing and im-

plementing a genetic algorithm to discover the optimal 

sequence of filters to apply in a question-answering sys-

tem. The challenges faced include the massive search 

space that results from both the large number of filters 

available and the fact that the order in which they are ap-

plied affects the answers returned, and the unacceptably 

slow performance of the ideal fitness function we wanted 

to use in order to be able to introduce user customization 

later on. Our results demonstrate that the GA-optimized 

filter sequence outperforms the expert-designed sequence 

when it comes to answering a general set of questions. 

Future work will introduce the notion of custom filter 

sequences in the GA, a central aspect of our IVA system. 

Since OpenEphyra already performs answer type classifi-

cation as part of its preprocessing step, one level of cus-

tomization that can be implemented immediately is to cre-

ate filter sequences for each answer type. We expect this 

will lead to an important boost in the results, since differ-

ent questions types have very different answers, and there-

fore could be extracted more efficiently using different 

filter sequences. Moreover, having different populations of 

filters will allow us to improve the GA by introducing mi-

gration (Cantu-Paz 1998), or the ability for selected high-

fitness individuals to move from one population to another. 

This shares successful gene sequences discovered in one 

population with others, and help guide them towards new 

hybrid solutions that might not have evolved randomly. 
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