

Optimizing Question-Answering Systems Using Genetic Algorithms

Ulysse Côté Allard
1
, Richard Khoury

2
, Luc Lamontagne

1
, Jonathan Bergeron

1
,

François Laviolette
1
, and Alexandre Bergeron-Guyard

3

1 Department of Computer Science and Software Engineering, Université Laval, Québec, Canada

{Ulysse.Cote-Allard.1, Luc.Lamontagne, Jonathan.Bergeron.6, Francois.Laviolette}@ift.ulaval.ca
2 Department of Software Engineering, Lakehead University, Thunder Bay, Canada, Richard.Khoury@lakeheadu.ca

3 Defence Research & Development Canada, Valcartier, Canada, Alexandre.BergeronGuyard@drdc-rddc.gc.ca

Abstract

In this paper, we consider the challenge of optimizing the
behaviour of a question-answering system that can adapt its
sequence of processing steps to meet the information needs
of a user. One problem is that the sheer number of possible
processing sequences the system could use makes it impos-
sible to conduct a complete search for the optimal sequence.
Instead, we have developed a genetic algorithm to explore
the space of possible sequences. Our results show that this
approach gives the system the adaptability we desire while
still performing better than a human-optimized system.

1. Introduction

Question-answering (QA) systems are hugely popular in

the scientific literature as well as in practical consumer

applications. However, while there is undeniably a lot of

diversity in QA algorithms, many of them suffer from a

common weakness, which is that they try to design the

single best sequence of processing steps to get from the

question to the answer. Once implemented, such systems

leave little to no room for customization of the algorithm to

better address the information needs of a specific user.

In this paper, we start instead from a QA system that

represents its processing steps as a set of filters applied

sequentially, and which allows the modification of this

sequence to meet the custom needs of users. This changes

the QA design problem significantly: the challenge is no

longer how to design new and better filters or processing

algorithms, but becomes instead how to discover the best

combination of the filters available to answer the user’s

questions. Indeed, given even a small number of filters and

the fact that repeating and/or omitting filters in the se-

quence is acceptable, the number of possible sequences to

consider quickly becomes massive and a complete search

Copyright © 2015, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

impossible. In this paper, we demonstrate how a genetic

algorithm (GA) can be used to search the space of possible

sequences to efficiently find combinations of filters that

surpass the performance of human-designed sequences.

The rest of the paper is organized as follows. Section 2

presents the context of our research and an overview of the

literature on QA systems with an emphasis on those that

make use of GAs. We present in detail our implementation

of the GA system in Section 3, and then we move on in

Section 4 to describe and analyze our experimental results.

Finally, we give some concluding remarks in Section 5.

2. Background

This paper is part of a larger research collaboration to de-

velop an adaptive Intelligent Virtual Assistant (IVA), as

described in (Lamontagne et al. 2014). The basic structure

of this IVA is presented in Figure 1. In its intended mode

of operation, the IVA would access the same incoming

information reports as the user, annotate them and combine

them with other information sources (such as a local col-

lection of past reports and external resources of general

background knowledge), and then fetch information cus-

tomized to the user’s needs as they work on preparing a

new report. A central aspect of the system is thus the cus-

tomizable question-answering (QA) system (Chinaei et al.

2014), which will query the information sources and return

useful facts to the user. Moreover, this QA system must

adapt itself to the needs of the user, as different users will

have different information needs. For example, a user who

has lived in a foreign country for several years will not ask

the same questions or need the same answers about that

nation as one who has never travelled there, and a user

with an interest in national economic policy will expect

different answers on questions about that country from one

with an interest in grassroots social movements. This is the

contribution of the user model component in the system.

32

Proceedings of the Twenty-Eighth International Florida Artificial Intelligence Research Society Conference

A filter-sequence-based QA system such as Ephyra

(Schlaefer et al. 2006) presents important advantages to a

system such as ours, when compared to more traditional

QA systems. A traditional QA system works in a prede-

termined sequence of steps, which typically cover first

some query processing to narrow down the information

requested by the question, then information retrieval to

find a set of texts that may contain the answer, and finally

an answer selection step to find the correct answer from the

retrieved texts (Tomljanovic, Pavlic, and Katic 2014). The

issue is that these steps are hardcoded into the QA system,

and cannot be changed except by editing the software and

recompiling it with a new (and still fixed) version of the

sequence of steps. By contrast, a filter-sequence QA sys-

tem has access to a library of algorithmic filters that can be

used interchangeably and applied to data in any order. The-

se filters can be general, such as a named entity retrieval

algorithm, or they can be specific, such as a filter to boost

the importance of geography-related answers for a user

who needs help in geography. The advantage of a filter-

based QA system in our system is its power for user-

customization: by adding and removing filters and by

changing the order of the filters in the sequence, the QA

system will generate different answers from the same data

for the same queries but that are appropriate for the differ-

ent needs of different users.

One major problem with a filter-sequence QA system is

selecting the optimal sequence of filters to use. Indeed,

since filters can be arranged in any order in the sequence

and will have different effects on the final result depending

on what processing is done in the sequence before and after

their contribution, the number of distinct sequences to con-

sider is the factorial of the number of filters. For example,

the 53 filters included with OpenEphyra (OE), a free open-

source version of the Ephyra QA framework
1
, can be ar-

ranged in 4.2710
69

 distinct sequences. And when filters

may be repeated multiple times in the sequence or omitted

from the sequence altogether, the number of possible se-

quences becomes infinite. To make matters worse, there

isn’t a single best solution to be found, nor even a best so-

lution per user, but an optimal solution given the specific

information needs of each user as they prepare the current

information report.

Since thoroughly searching this massive and potentially

infinite space for multiple different optima is not an option,

we turn to a genetic algorithm to try to evolve good filter

sequences which can retrieve good answers given a user’s

current information needs. A genetic algorithm represents

solutions to a problem as individuals in a population, with

features of the solution as genes making up each individ-

ual. New individuals can then be created through crossover

(randomly combining the genes of two individuals) or mu-

tation (randomly changing some genes in one individual).

A fitness function is used to determine how good a solution

is and to compare and rank solutions relative to each other.

And finally, a roulette wheel is used to select individuals;

this wheel is biased based on fitness, so that the best indi-

viduals at each generation have a greater chance of being

selected for crossover, while the worst have a greater

chance of being removed from the population.

GAs have been scarcely used in QA research. In

(Samarakoon, Kumarawadu, and Pulasinghe 2011) for

example, a GA was used to optimize the parameters of a

ranking equation meant to score documents as answers to a

specific query. This is an idea similar to ours – using GAs

to optimize the internal workings of a QA system – but

applied on a simpler problem: in this case the QA system

and scoring function are already designed and fixed and

the GA is used only to change the weights of components

in the scoring equation, while in our system the GA is in

charge of designing the sequence of operations in a core

component of the QA system. GAs are also used in (Figue-

roa and Neumann 2008) to help discover and extract an-

swers from snippets of text. However, that system uses an

ordinary QA system to get relevant snippets of text that the

answer may be found in, and only uses GAs to search the

retrieved snippets for the exact answer. To our knowledge,

GAs have not been used to the extent we describe in this

paper in a QA system before.

Likewise, the challenge of designing a QA system that

adapts to its user is one that has received little attention.

The focus has been instead on determining user intent be-

1 Available at: https://mu.lti.cs.cmu.edu/trac/Ephyra/wiki/OpenEphyra Figure 1: Structure of our IVA system.

33

hind individual questions based on the question’s content

alone, without any user information. Some examples can

illustrate the wide range of research done in that direction.

In (Zhang et al. 2009), question features such as keyword

hypernyms and sentence structure are used to determine

the answer type (definition, person, quantity, etc.) and an-

swer attributes (expertise level, subjectivity level) intended

by the user. In (Yoon, Jatowt, and Tanaka 2011), intent

keywords are extracted from queries and used to find simi-

lar queries in a QA database, and the user’s intent in in-

ferred from the answers of these similar queries. And in

(De and Kopparapu 2010), each keyword in the query is

assigned a topic tag, and the query intent is determined

using decision rules based on the set of tags it contains.

The fact that a QA system can benefit from user profile

information has not gone unnoticed in the literature. How-

ever, this is often seen as an application of user profiles; if

a profile is available, then it can be used in a QA system.

This was done in a limited fashion in (Mishra, Mishra, and

Agrawal 2010), where geographical location was provided

by the user to improve the QA performance. In (Du et al.

2013), the connections between users in a social network

guided answer recommendations. In both cases, the QA

system was shown to benefit from the user information, but

it remains information external to the QA system itself.

Additionally, some authors have been proposed to learn

a user profile from user questions and their answers. One

such system is presented in (Zhao et al. 2009): user ques-

tions are mapped to leafs in a topic ontology and used to

measure user interest in specific topics. However, that in-

formation is never fed back to the QA system to customize

it to the user or improve its performance.

3. Genetic Algorithm

As mentioned in the previous section, in this work we

made use of the OpenEphyra (OE) QA framework. This

software works in three steps. The first step consists of

query generation. Given a user’s question, it performs var-

ious pre-processing steps such as stemming, stopword re-

moval, answer type classification, and query expansion, in

order to generate a large set of semantically equivalent

queries. In the second step, OE uses the queries to retrieve

a set of potentially relevant text snippets from its document

database (the entire information level in Figure 1). Finally,

in the third step, the snippets are put through a sequence of

filters in order to extract, combine, and rank potential an-

swers and return the best one. It is this sequence of filters

in this third step that our work focuses on optimizing using

a GA.

Since OE includes 53 different filters, we designed the

individuals in our GA to have 53 genes, where the value in

each gene represents a filter and the entire genome repre-

sents an ordered sequential application of those filters. We

also added a 54
th

 filter, an empty filter with no effect on the

data but which allows the GA to create individuals that do

not use all 53 real filters. Since filters can appear multiple

times in a genome, this creates a search space of approxi-

mately 6.5610
91

 possible individuals.

The population size is of 200 individuals. At each gen-

eration, at least 180 new children are created by crossover

and mutation from the initial 200 individuals, and the 20

best individuals from the previous generation are added by

elitist selection to them in order to create a new population.

While the specific ratio of 90% new individuals in each

generation was picked empirically, the decision to generate

a lot more new individuals than are saved was made to

explore a larger sample of individuals in a reasonable time.

The crossover operation is done by selecting two parent

individuals using a roulette wheel selection, and creating

two new children individuals where, for each of the 53

genes, one child has a 50% chance of getting the value

from one parent, and the second child automatically gets

the value from the opposite parent. Each of these two chil-

dren then has a 10% chance of inversion. If this happens,

two split points are randomly selected in the child, and the

filter sequence is inverted between these points.

Each of the new children created in a generation has a

probability of mutating; this probability is inversely pro-

portional to the dispersion of the population calculated

using the standard deviation of the population, so that a

very diverse population suffers fewer mutations than a very

homogenous one. Three mutation operators have been im-

plemented in our system. The shift mutation shifts all

genes down starting from a random point to the first empty

filter, thereby deleting the empty filter at the end of the

shift and freeing up the random starting position at the be-

ginning; that free gene is assigned a random new filter

value. The second is the move mutation operation, which

selects a random set of genes and moves them to a new

part of the genome, overwriting the genes at the destination

and freeing up the original positions; these are replaced by

random new filter values. Finally the swap mutation ex-

changes the values of two randomly-selected genes in the

genome. Which of the mutation operations will be applied

is decided randomly; the move and swap mutations have a

10% probability each of being applied, and the shift muta-

tion has an 80% probability of being applied. The choices

of mutation operations and their probabilities have been

made experimentally, by using a GA to sort random se-

quences of 53 numbers to specific orders and using the

Damerau-Levenshtein distance as a fitness function.

Finally, it is possible for the new population to be above

200 individuals by this point. To bring it back to 200, we

use a roulette wheel selection biased to kill off the least fit

individuals, with an elitism constraint that the single best

individual cannot be selected for removal.

34

GA Fitness Function

The fitness function used to evaluate the individuals con-

sists in asking 610 training questions and counting the

number correctly answered. We make no difference be-

tween two individuals that correctly answer different sets

of questions of equal number. Moreover, we made sure

that the answer to each question does actually exist in the

document database available to our implementation of OE.

A major benefit of this fitness function is its flexibility

for customization, which is an important feature for our

IVA system. Indeed, it is critical for us that the GA be able

to find not one best filter sequence, but the best filter se-

quence for a given user with a given purpose. This fitness

function makes this possible by simply varying the set of

evaluation questions and answers. A user’s interests would

be reflected by having more questions in a certain topic,

which will bias the GA optimization to a sequence of fil-

ters that works best for those questions. Likewise, a user

with expertise in a given topic will have answers to ques-

tions that are more detailed or technical than a user who is

a novice in that topic, and again this will bias the GA

search and the resulting sequence of filters. This custom-

ized list of questions and answers will be included in the

user profile component of the IVA, and can be built over

time at minimal cost through regular usage of the IVA by

including a user feedback component that will allow each

user to mark queries that have been answered to their satis-

faction. This is represented by the connection loop from

the QA system to the user to the user model in Figure 1.

However, we immediately found that this fitness func-

tion was too slow to be of use: Evaluating the fitness of

one population using 610 training questions took on aver-

age upwards of 20 minutes per individual on a regular PC,

which makes the evaluation of entire populations and gen-

erations completely impractical. Consequently, we came

up with two additional improvements to the function in

order to speed up the evaluation of the individuals.

Referring back to our description of OE, we noted that

the QA algorithm works in three steps, and only the third

one makes use of the filter sequence the GA is modifying.

The first two steps do not change, and will always return

the same results for every individual. Our first improve-

ment was thus to precompute the results of the first two

steps for each training question, and to modify OE to use

these precomputed results and skip the first two steps when

evaluating the fitness of individuals.

The second improvement we made to the algorithm was

a result of noting that many individuals had extremely low

fitness, between 0% and 5%. Complete and precise evalua-

tion of these individuals seems unnecessary, as they have

almost no chance of being selected for crossover and are

very likely to be removed from the population altogether in

one generation. Given this, we implemented a subset

evaluation of the individuals. The training questions were

randomly divided into subsets of 61 questions, and an indi-

vidual must get a certain number of correct answers in each

subset to merit being evaluated on the next subset. This

had the benefit of terminating the evaluation of bad indi-

viduals quickly to avoid wasting time on them, while fo-

cusing on a more complete evaluation of better individuals.

In the end, these two improvements reduced the average

fitness evaluation time of an individual to below 3 minutes.

4. Experimental Results

The GA was implemented with an initial population of 200

individuals, and was run for 100 generations. Although the

ultimate goal is to create customized training QA lists for

each user’s profile, at this stage of the work an initial train-

ing list of questions was created with the goal of optimiz-

ing the overall performance of the QA system. Customized

QA lists that focus on specific topics or require more in-

depth information will be developed in future work, and

can then be easily substituted into our GA’s fitness func-

tion. The current training set of questions is composed of:

• 100 questions on time (e.g. “when did the attack on
Pearl Harbor take place?”)

• 100 questions on locations (e.g. “where is Canada?”)

• 100 questions on people (e.g. “what is the profession of
Barack Obama?”)

• 110 questions on descriptions (e.g. “what is a cat?”)

• 100 questions on numbers (e.g. “how many moons does
Jupiter have?”)

• 100 questions of other types not in the first five (e.g.
“what animal was domesticated by man to watch over
flocks of beasts?”)

As mentioned previously, the fitness function evaluation

of an individual consists in trying to answer each training

question using the individual’s sequence of filters. The

filters return a series of ranked answers, and the fitness

function gives the individual a score based on the number

of correct answers in the rankings. We studied two differ-

ent approaches in that respect. In the first case, the fitness

function considered the question correctly answered if the

correct answer was one of the top-two ranked answers, and

in the second case if it was one of the top-ten ranked an-

swers. We will refer to these as the top-two experiment and

the top-ten experiment in the discussion of our results.

Figure 2 illustrates the average fitness of the GA popula-

tion and the specific fitness of the best individual at each

generation in the top-two experiment. It can be seen that

the algorithm converges quickly. After about 30 genera-

tions, the best individual has been found and the population

has stabilized. There are still some fluctuations in fitness in

the figure; these are a side-effect of the subset evaluation

we described previously. As individuals become better,

35

they are tested on more subsets of questions, and individu-

als whose high fitness were due to overfitting on one sub-

set see performance drops and bring the population average

down before they are taken out by selection. Note that only

the top-two experiment was run for the entire 100 genera-

tions; the population in the top-ten experiment was found

to have converged in 13 generations and terminated early.

At the end of evolution, the best individual of each

population was selected as the best filter sequence our GA

could find. Each individual was tested using a new set of

600 evaluation questions in the same six types as before.

Each question was submitted to the QA system, and

counted as correctly answered if the correct answer was in

the top-2 or top-10 ranked results, and failed otherwise.

These two tests match the two training conditions. For

benchmark, we used the filter sequence recommended as

best by the OE designers. The results obtained are pre-

sented in Table I and Table II for the test accepting an-

swers in the top-2 results or in the top-10 results respec-

tively.

The results demonstrate that both filter sequences exceed

the performance of the benchmark on average. For specific

question types, the best sequence from the top-ten experi-

ment always surpasses the benchmark, and the best se-

quence of the top-two experiment equals or surpasses the

benchmark in 9 of 12 statistics.

Table I: QA accuracy on top-2 answers

Question Type OE

Sequence

Top-two

individual

Top-ten

individual

Time 7% 4% 11%

Location 14% 11% 23%

People 4% 1% 9%

Description 4% 7% 12%

Number 9% 15% 15%

Other 3% 13% 25%

Average 6.9% 8.5% 15.9%

Table II: QA accuracy on top-10 answers

Question Type OE

Sequence

Top-two

individual

Top-ten

individual

Time 17% 17% 34%

Location 29% 30% 52%

People 8% 11% 26%

Description 7% 15% 26%

Number 17% 23% 31%

Other 16% 24% 53%

Average 15.7% 20.1% 37.0%

The tables also show that the best sequence from the

top-ten experiment performs considerably better than its

counterpart from the top-two experiment. This might be

due in part to the random chance of evolution, but it might

also be due to the more fine-grained fitness evaluation cri-

terion of the top-ten experiment. Indeed, the top-ten

evaluation makes it possible to compute and compare the

fitness of less-performing individuals that return correct

answers below the second position. For example, three

individuals that return 300, 200 and 100 correct answers at

ranks below 2 will receive different fitness values in the

top-ten experiment, and the one returning 300 correct an-

swers will be more likely to survive and be used in cross-

over while the one returning 100 correct answers is more

likely to be killed off. On the other hand, in the top-two

experiment, all three individuals will be evaluated equally

with zero fitness, and all three will have equal probabilities

of being used in a crossover or killed. Studying the impact

of this finer evaluation is a direction for future research.

Next, we studied the sequences of filters evolved. There

are some striking differences with the expert-designed OE

sequence. The OE filter sequence is composed of 14 dif-

ferent filters, while the sequences discovered by our GA

count 37 filters and 41 filters for the top-two and top-ten

individuals respectively, and both show several duplicates.

Moreover, the filters selected in the expert sequence and

those in the evolved sequences highlight their different

designs. The experts designed a sequence that mimics tra-

ditional QA systems, with clear sections to analyze the

question, then to extract potential answers from docu-

ments, and then to score and rank the answers. On the

other hand, the GA sequences are not designed with such

preconceived notions, and do not present obvious logical

sections and divisions like the expert sequence. It also in-

cludes filters with no equivalents in the expert sequence,

such as the UnnecessaryCharactersFilter and the Result-

LengthSorterFilter. This hints that the GA takes a more

calculated approach to this task than the experts. Clearly,

the GA studied sequences that are very different from the

shorter and more traditional one OE experts recommended.

As noted, several filters are repeated in the GA se-

quences. For example, a filter to remove unnecessary char-

acters from answer snippets is applied at three different

Figure 2: Fitness over generations of the GA population.

36

points in the top-two sequence. This might have occurred

to remove unnecessary characters that appear after other

filters pinpoint answer components. Or it could be a harm-

less result of the GA operators, since filters that have no

effect on the answers do not negatively affect an individ-

ual’s fitness. Future work may look at trimming these un-

necessary filters from the sequence of the final retained

individual, to minimize the execution time of the sequence.

We also note that our evolved filter sequences are both

more than twice as long as the human-designed one; in-

deed, the ability to explore such longer sequences is one

benefit of GAs. In our system, this is a result of the fact

that the shift mutation, which accounts for 80% of all mu-

tations, explicitly removes an empty filter, and that any

new filter value added only has a 1/54 chance of being an

empty filter. In other words, our system is biased towards

creating longer filter sequences. Moreover, the results in

Tables I and II seem to indicate that a filter sequence’s

performance is not directly correlated to its length; the top-

two sequence is more than twice the length of the OE-

recommended sequence and only four filters shorter than

the top-ten sequence, yet its performance is not twice as

good as the OE sequence and in fact is statistically closer

to that of the much-shorter OE sequence than to the simi-

lar-length top-ten sequence. In future work, we plan on

balancing the system by adding a predator (Li 2003) that

targets genomes that represent longer sequences.

5. Conclusion

In this paper, we presented our work in designing and im-

plementing a genetic algorithm to discover the optimal

sequence of filters to apply in a question-answering sys-

tem. The challenges faced include the massive search

space that results from both the large number of filters

available and the fact that the order in which they are ap-

plied affects the answers returned, and the unacceptably

slow performance of the ideal fitness function we wanted

to use in order to be able to introduce user customization

later on. Our results demonstrate that the GA-optimized

filter sequence outperforms the expert-designed sequence

when it comes to answering a general set of questions.

Future work will introduce the notion of custom filter

sequences in the GA, a central aspect of our IVA system.

Since OpenEphyra already performs answer type classifi-

cation as part of its preprocessing step, one level of cus-

tomization that can be implemented immediately is to cre-

ate filter sequences for each answer type. We expect this

will lead to an important boost in the results, since differ-

ent questions types have very different answers, and there-

fore could be extracted more efficiently using different

filter sequences. Moreover, having different populations of

filters will allow us to improve the GA by introducing mi-

gration (Cantu-Paz 1998), or the ability for selected high-

fitness individuals to move from one population to another.

This shares successful gene sequences discovered in one

population with others, and help guide them towards new

hybrid solutions that might not have evolved randomly.

References

Cantu-Paz, E. 1998. Survey of parallel genetic algorithms. Calcu-
lateurs Paralleles, Reseaux et Systemes Repartis, 10:141-171.

Chinaei, H., Lamontagne, L., Laviolette, F., Khoury, R. 2014. A
topic model scoring approach for personalized QA systems. Text,
Speech and Dialogue: Lecture Notes in Artificial Intelligence
8655:84-92. P. Sojka A. Horák I. Kopecek K. Pala eds.: Springer.

De, A., Kopparapu, S. K. 2010. A rule-based short query intent
identification system, Proc. of the 2010 International Conference
on Signal and Image Processing, 212-216, Chennai, India.

Du, Q. Wang, Q. Cheng, J., Cai, Y., Wang, T., Min, H. 2013.
Explore social question and answer system based on relationships
in social network. In Proc. of the Fourth Int’l Conf. on Emerging
Intelligent Data and Web Technologies, 490-495, Xi’an, China.

Figueroa, A., Neumann, G. 2008. Genetic algorithms for data-
driven web question answering. Evolutionary Computation,
16:89-125.

Lamontagne, L., Laviolette, F., Khoury, R., Bergeron-Guyard, A.
2014. A framework for building adaptive intelligent virtual assis-
tants. In Proc. of the 13th IASTED Int’l Conf. on Artificial Intelli-
gence and Applications, 17-19. Innsbruck, Austria.

Li, X. 2003. A real-coded predator-prey genetic algorithm for
multiobjective optimization. In Proc. 2nd int’l conf. on evolution-
ary multi-criterion optimization, 207-221. Faro, Portugal.

Mishra, A., Mishra, N., Agrawal, A. 2010. Context-aware re-
stricted geographical domain question answering system. In Pro-
ceedings of the International Conference on Computational Intel-
ligence and Communication Networks, 548-553, Bhopal, India.

Samarakoon, L., Kumarawadu, S., Pulasinghe, K. 2011. Auto-
mated question answering for customer helpdesk applications. In
Proc. of the 6th IEEE International Conference on Industrial and
Information Systems (ICIIS), 328-333. Kandy, Sri Lanka.

Schlaefer, N., Gieselmann, R., Schaaf, T., Waibel, A. 2006. A
pattern learning approach to question answering within the
Ephyra framework. Text, Speech and Dialogue: LNAI, 4188:687-
694. P. Sojka, I. Kopecek, K. Pala, (eds.): Springer.

Tomljanovic, J. Pavlic, M., Katic, M.A. 2014. Intelligent question
— answering systems: review of research. In Proc. of the 37th
Int’l Convention on Information and Communication Technology,
Electronics and Microelectronics, 1228-1233. Opatija, Croatia.

Yoon, S., Jatowt, A., Tanaka, K. 2011. Detecting intent of web
queries using questions and answers in CQA corpus. In Proc. of
the 2011 IEEE/WIC/ACM International Conference on Web Intel-
ligence and Intelligent Agent Technology, 352-355, Lyon, France.

Zhang, Y., Wang, X., Fan, S. Zhang, D. 2009. Using question
classification to model user intentions of different levels. In Pro-
ceedings of the 2009 IEEE International Conference on Systems,
Man, and Cybernetics, 1153-1158, San Antonio, USA.

Zhao, Z., Feng, S., Liang, Y., Zeng, Q. 2009. Mining user’s intent
from interactive behaviors in QA systems. In Proceedings of the
First International Workshop on Education Technology and
Computer Science, 1025-1029, Wuhan, China.

37

