
Generalization of Workflows in
Process-Oriented Case-Based Reasoning

Gilbert Müller and Ralph Bergmann
Department of Business Information Systems II

University of Trier
54286 Trier, Germany

http://www.wi2.uni-trier.de
{muellerg}{bergmann}@uni-trier.de

Abstract

In this paper, we introduce the concept of general-
ized cases into process-oriented case-based reasoning.
We present the formal foundations for the generaliza-
tion of workflow cases as well as a new algorithm for
generalizing semantic workflows, guided by ontologi-
cal knowledge of the domain. Further, the specializa-
tion of workflows w.r.t. a current query is addressed.
An experimental evaluation demonstrates the capabil-
ity of the approach for workflow adaptation showing
that the adapted workflows have a similar quality com-
pared to that of original workflows. Furthermore, the re-
trieval performance can be improved by a reduction of
the case-base size while the coverage of cases is signif-
icantly increased.

Introduction
In case-based reasoning (CBR), new problems are solved by
retrieval and adaption of cases stored in a case base. Tradi-
tionally, a case represents a single specific problem-solving
experience, which is captured and stored for reuse. However,
from the very beginning, CBR research has also investigated
extensions of the traditional concept of a case by consid-
ering generalized knowledge structures (Schank and Abel-
son 1977; Bareiss 1989). While a traditional case is a single
point in the representation space, a generalized case (Zito-
Wolf and Alterman 1992; Bergmann and Vollrath 1999;
Maximini, Maximini, and Bergmann 2003) covers a sub-
space of it. As a single generalized case has an increased
coverage, it immediately provides solutions to a set of
closely related problems rather than to a single problem
only. Hence, by learning such generalized cases from the
case base, adaptation knowledge can be determined and thus
a larger spectrum of new problems can be solved. Therefore,
the generalized case must be specialized after retrieval ac-
cording to the specific circumstances expressed in the query.
In this regard, generalization and specialization are trans-
formations used for case adaptation. Additionally, retrieval
performance can be improved as only the generalized case
has to be stored, reducing the size of the case base.

Previous work on generalized cases mainly focussed on
attribute-value or object-oriented representations. In this pa-

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

per, we introduce the idea of generalized cases into process-
oriented CBR (POCBR) (Minor, Montani, and Recio-Garca
2014), which deals with CBR applications for process-
oriented information systems. POCBR aims at assisting do-
main experts in their work with workflows, in particular
by supporting workflow reuse. Two important problems of
workflow reuse are the retrieval of similar workflows from
potentially large repositories (Bergmann and Gil 2014) as
well as the adaptation of workflows (Müller and Bergmann
2014). In this paper, we introduce the concept of generalized
cases into the context of POCBR as a new approach to ad-
dress both issues. We present the formal foundations for the
generalization of workflow cases as well as a new algorithm
for generalizing semantic workflows. Further, the specializa-
tion of workflows w.r.t. a current query is described. Gen-
eralization and spezialization are based on a light-weight
ontology of data and task items only. In particular, the ad-
ditional acquisition of specific adaptation knowledge for
workflows is avoided.

Process-Oriented Case-Based Reasoning
We now briefly introduce relevant previous work in the field
of POCBR and illustrate it in the domain of cooking recipes,
which are represented as workflows.

Broadly speaking, a workflow consists of a set of activ-
ities (also called tasks) combined with control-flow struc-
tures like sequences, parallel (AND split/join) or alterna-
tive (XOR split/join) branches, and loops. Tasks and control-
flow structures form the control-flow. In addition, tasks ex-
change certain products, which can be of physical matter
(such as ingredients for cooking tasks) or data. Tasks, prod-
ucts, and relationships between the two of them form the
data flow. Today, graph representations for workflows are
widely used. We use a workflow representation based on
semantically labeled graphs (see Fig. 1) as introduced by
Bergmann and Gil (2014).

Definition 1 A workflow is a directed graph W =
(N,E, S, T) where N is a set of nodes and E ⊆ N × N
is a set of edges. The function T assigns each node and edge
a type. Further, nodes have a semantic description from a
semantic meta data language Σ, which is assigned by the
function S : N → Σ.

For this work, Σ is defined by domain specific light-weight

391

Proceedings of the Twenty-Eighth International Florida Artificial Intelligence Research Society Conference

ontologies, restricted to a taxonomical representation of
terms. In particular, we use one ontology for tasks and one
ontology for data items. In the cooking domain, the task on-
tology organizes the various cooking steps in a taxonomical
order and the data ontology represents the ingredients.

n2

n3

n4

n6

Data node

n5 n7

Task node

n8

n1

Workflow node

ingredient: onion ingredient: mushrooms

Control flow edgeData flow edge

task: addtask: saute task: simmer

Part-of edge

Figure 1: Simple workflow graph with node and edge types

Figure 1 shows a simple fragment of a workflow graph
from the cooking domain with different types of nodes and
edges. The graph for a workflow has one workflow node.
The task nodes and data nodes represent tasks and data
items, respectively. The data-flow edge is used to describe
the linking of the data items consumed and produced by the
tasks. The control-flow edge is used to represent the control
flow of the workflow, i.e., it links tasks with successor tasks
or control-flow elements.

Taxonomies
For the semantic annotation of workflow nodes and as
background-knowledge for the generalization process, we
use a taxonomical representation of terms as defined below:
Definition 2 A taxonomy ψ is a tree of a partially ordered
set of semantic terms Γ = {γ0, . . . , γn}, whereas γi < γj
denotes that γj is more general than γi (γi is more specific
than γj). Further, γi v γj holds, iff γi < γj ∨ γi = γj . A
taxonomy consists of a single most general term (root term)
denoted by ψ̄ ∈ Γ, i.e. 6 ∃γ′ ∈ Γ : ψ̄ < γ′. The set of most
specific terms (leaf terms in the tree) is denoted by ψ

¯
= {γ ∈

Γ| 6 ∃γ′ ∈ Γ : γ′ < γ}.
In the following, we further introduce some notations re-
garding the taxonomy.
Definition 3 Γ↓(γ) defines the one-step specializations of
term γ, i.e., Γ↓(γ) = {γx ∈ Γ|γx < γ∧ 6 ∃γy ∈ Γ : γx <

γy < γ}. Likewise Γ↑(γ) defines the one-step generalization
of term γ, i.e., Γ↑(γ) = γx ∈ Γ s.t. γ ∈ Γ↓(γx). Let further
LCA(γ1, γ2) ∈ Γ be the lowest common ancestor (most
specific generalization) of γ1, γ2 ∈ Γ in taxonomy ψ, i.e.,
LCA(γ1, γ2) = γ ∈ Γ s.t. γ1 v γ ∧ γ2 v γ∧ 6 ∃γ′ : γ′ <
γ ∧ γ1 v γ′ ∧ γ2 v γ′.

We use two distinct taxonomies as meta data language Σ,
one for the task nodes ψtasks (preparation steps) and one for
the data nodes ψdata (ingredients), i.e., Σ = Γψtasks ∪ Γψdata .
Hence, the function S assigns to each node n ∈ N an ap-
propriate term from Γψtasks or Γψdata .

1 As an example, fig-
1We omit the index if it is obvious which ontology is referenced.

ingredients
(ψ)

vegeterian non vegeterian

vegetables liquidsside dish

... ...

seafood meat

...

beef
(ψ)

pork
(ψ)

chicken
(ψ)

turkey
(ψ)

...

potatoes
(ψ)

rice
(ψ)

noodles
(ψ)

0.01

0.10.1

0.60.70.5 0.6 0.3

Figure 2: Example for a data taxonomy

ure 2 shows the ingredients taxonomy, in which the fol-
lowing holds: beef < meat and sidedish = Γ↑(rice) ∈
Γ↓(vegeterian). Please note that in taxonomies, the leaf
nodes represent concrete entities that may occur in ex-
ecutable workflows. For example, a recipe may include
potatoes and beef as potential ingredients, but usually not
terms from the inner nodes, such as vegetarian or meat.
An inner node γ represents a generalized term that stands
for the set of most specific terms below it. For exam-
ple, the generalized term vegeterian stands for the set
{potatoes, rice, noodles}. Further on in the paper we use
inner nodes in generalized workflows to represent that an ar-
bitrary ingredient from the set of its specializations can be
chosen.

Semantic Similarity
For workflow retrieval in general as well as to identify a set
of similar workflows used for generalization, we apply the
semantic workflow similarity framework by Bergmann &
Gil (2014). This framework extends traditional approaches
to similarity in CBR and allows to model similarity mea-
sures which are inline with experts assessments. The simi-
larity model is based on a local similarity measure for the
terms assigned to the nodes of the workflow. We apply the
taxonomy similarity approach by Bergmann (1998) to model
the similarity between two taxonomy nodes. Thus, each term
that is not a leaf term in the taxonomy γ ∈ ψ\ψ

¯
is annotated

with a similarity value simψ defining the similarity between
all child terms of γ, (e.g, simψ(meat) = 0.6 in Fig. 2). The
similarity simψ(γx, γy) between two terms γx, γy ∈ ψ re-
flects the closeness in the ontology using the similarity value
of the lowest common ancestor (see (Bergmann 1998) for
further details):

simψ(γx, γy) =

{
1 , if γx v γy
simψ(LCA(γx, γy)) , otherwise

The similarity simN : N2 → [0, 1] of two nodes
is then defined based on simψ , i.e., simN (n1, n2) =
simψ(S(n1), S(n2)). The similarity sim(QW,CW) be-
tween a query workflow QW and a case workflow CW is
defined by means of an admissible mappingm : Nq∪Eq →
Nc ∪ Ec, which is a type-preserving, partial, injective map-
ping function of the nodes and edges of QW to those of
CW . This means that nodes are only mapped to nodes of the
same type and edges are only mapped if their corresponding
nodes are mapped as well. Partial means that not all nodes of
the case workflow must occur in the image of the mapping.

392

For each query node x mapped by m, the similarity to
the respective case node is computed by simN (x,m(x)).
The overall workflow similarity with respect to a map-
ping m, named simm(QW,CW) is then computed by
an aggregation function (we use the average) com-
bining the previously computed similarity values. Fi-
nally, the overall workflow similarity is determined by
the best possible mapping m, i.e., sim(QW,CW) =
max{simm(QW,CW) | admissible mapm}. Thus, simi-
larity assessment is defined as an optimization problem aim-
ing at finding the best possible mapping, reflecting the best
possible way to reuse the case workflow. This mapping is
also referred to as mmax. In general this similarity measure
assesses how well the query workflow is covered by the case
workflow. In particular, the similarity is 1 if the query work-
flow is exactly included in the case workflow as a subgraph.
Please note that this similarity measure is not symmetrical.

Generalized Cases for POCBR
We now introduce the concept of generalized cases into
POCBR. A generalized case becomes a generalized work-
flow, which stands for a set of specific workflows. We define
when a workflow is a generalization of another workflow
and propose algorithms for generalizing and specialization.

Generalization of Workflows
We now define when a workflow is a generalization of an
other workflow w.r.t. the defined domain taxonomies.

Definition 4 A workflow W ∗ is a generalization of the
workflow W (we write W v W ∗), iff there exists a graph
isomorphism I : N → N∗ between the Graphs W and W ∗
such that ∀n ∈ N : S(n) v S(I(n)).

Moreover, we introduce the following notations.

Definition 5 Two workflows W1,W2 are equivalent, de-
noted by W1 ≡ W2, iff W1 v W2 ∧W2 v W1. Further-
more, W < W ∗ denotes that W ∗ is a strict generalization
of workflow W , iff W vW ∗ ∧W ∗ 6vW .

Algorithm for Workflow Generalization We now intro-
duce an algorithm for learning generalized workflows from
a case base of specific workflows. In order to guide the gen-
eralization, we use the taxonomy as background knowledge,
which provides the vocabulary from which generalized tasks
and data items are selected as well as the generalization rela-
tion among them. The generalization of a workflow is based
on a comparison with similar workflows from the case base
CB. The assumption is that if similar workflows contain
similar terms from the taxonomy, then these terms can be
inductively generalized. Hence, only reasonable generaliza-
tions should be learned in order to ensure adaptation quality.

A similarity threshold parameter ∆ ∈ [0, 1] is intro-
duced that defines which workflows are compared. In par-
ticular, each workflow W is compared with the workflows
CBW ⊆ CB that have a similarity value of at least ∆, i.e.,
CBW = {W ′ ∈ CB|W ′ 6≡ W ∧ sim(W,W ′) ≥ ∆}. For
instance, lets assume that the workflows W1 and W2, which
are partially illustrated in Figure 3, are similar enough to W
to be contained in CBW regarding a similarity threshold ∆.

......

n:chicken

......

n1:pork

......

n2:beef

......

n*:meat

W

W*

W1
W2

sim(W,W1) >= Δ sim(W,W2)>= Δ

m
m

ax

m
m

ax

Figure 3: Example generalization

As we apply the introduced similarity framework, for
each workflows in CBW the best possible mapping mmax

is also available as a side effect of the computation ofCBW .
This mapping allows to link workflow nodes form W to the
related nodes from the workflows in CBW , defined as fol-
lows: Ω(n) = {γ′|∃(N ′, E′, S′, T ′) ∈ CBW ∃n′ ∈ N ′ :
mmax(n) = n′ ∧ γ′ = S(n′)} ∪ S(n). For the example in
Figure 3, it holds: Ω(n) = {pork, beef, chicken}.

According to the definition of the mapping, nodes are only
mapped to nodes of the same type, thus the annotated terms
are all within the same taxonomy. Further, the overall work-
flow similarity, which also includes the mapping of edges,
makes sure that the “context” of nodes is regarded as well,
i.e., the control and data flow in which the nodes occur.

Now, we introduce a second threshold parameter ∆ψ ∈
[0, 1] to specify whether the term γ = S(n) of the node n is
generalized to its one-step generalization γ∗ = Γ↑(γ). This
threshold regards two criteria: the similarity value of the
one-step generalization simψ(γ∗) and the fraction ϕ(γ∗) of
possible one-step specializations of γ∗ that have been found
in CBw, i.e., ϕ(γ∗) =

|{γ′|γ′∈Ω(n)∧γ′∈Γ↓(γ
∗)}|

|{γ′|γ′∈Γ↓(γ∗)}| .
Considering the annotated similarity value simψ(γ∗) en-

sures that terms that are more similar to each other are more
likely generalized. Regarding ϕ(γ∗) allows to restrict gen-
eralization only to situations, in which enough inductive ev-
idence is found in the case base that the generalization is
valid. We combine both criteria into a single one and apply
the threshold ∆ψ to determine whether a term is generalized
to its direct generalization, i.e., if simψ(γ∗)+ϕ(γ∗)

2 ≥ ∆ψ

holds. Furthermore, for each node the original specialized
term is stored withinOrigSpec(n), if the term is a leaf node
(in order to retain the most specialized term), which may be
used later during specialization. This generalization step is
executed for all nodes n ∈ N . Algorithm 1 shows the com-
plete algorithm for workflow generalization.

Algorithm for Case Base Generalization A case base is
generalized by generalizing each workflow W ∈ CB and
storing it in a new case base CB∗. The generalized work-
flow is only stored if CB∗ does not already contain a work-
flow which is even more general than the workflow to be
stored. Thus, only the most generalized workflows are re-
tained, which may represent multiple original workflows.
The iterative generalization is repeated until no more work-
flow can be generalized (see Alg. 2).

393

Algorithm GENERALIZE WF(W ,CB);
Input: Workflow W = (N,E, S, T) and Case base CB
Output: Generalized Workflow W ∗

Compute CBW ;
forall the n ∈ N do

Compute Ω(n);
γ ← S(n);
γ∗ ← Γ↑(γ);
if simφ(γ∗)+ϕ(γ∗)

2 ≥ ∆ψ then
S(n)← γ∗;
if γ ∈ψ

¯
then

OrigSpec(n)← γ;
return W

Algorithm 1: Workflow generalization

Algorithm GENERALIZE CB(CB) ;
Input: Case Base CB
Output: Generalized Case Base CB∗
generalization← true ;
while generalization do

generalization← false ;
CB∗ ← ∅ ;
forall the W ∈ CB do

W ∗ ← GENERALIZE WF (W,CB);
if 6 ∃W ′ ∈ CB∗ : W ∗ vW ′ then

CB∗ ← CB∗ ∪W ∗;
if W ∗ 6≡W then

generalization← true ;
CB ← CB∗;

return CB

Algorithm 2: Generalization of a Case Base

Specialization of Workflows
When reasoning with generalized workflows, specialization
is required to turn a retrieved generalized workflow from
CB∗ into a specific workflow, which is executable. The re-
sulting specific workflow is usually different from the orig-
nial workflow that was generalized, thus it can be considered
an adaptation of it. To specialize a workflow means to deter-
mine a specific workflow according to the following defini-
tion, such that it is most similar to the query at hand.

Definition 6 The set of specific workflows W+ of a work-
flow W is defined as W+ = {W ′|W ′ v W ∧ ∀n′ ∈ N ′ :
S(n′) ∈ψ

¯
}. Further, we call |W+| the coverage of W .

Ideally, the best specific workflow is the most similar
workflow w.r.t. the query, selected from the union of all
specific workflows that can be derived from all generalized
cases in the case base, i.e., from

⋃
W∈CB∗W+. This, how-

ever, would be intractable and would diminish the effect
of generalization in shrinking the case base to speed-up re-
trieval. To avoid the search in the set of specific workflows,
we propose an alternative algorithm also being able to iden-
tify the best specialization. Therefor, the workflow with the
highest similarity in W ∈ CB∗ is retrieved and specialized

Algorithm SPEZIALIZE WF(W,Q) ;
Input: Generalized Workflow W ∗ = (N∗, E∗, S∗, T ∗),

Query Q = (Nq, Eq, Sq, Tq)
Output: Specialized Workflow ∈W+

forall the n∗ ∈ N∗ do
if ∃nq ∈ Nq s.t. n∗ = mmax(nq) ∧ S(nq) < S(n∗)
then

S(n∗)← S(nq) ;
else

S(n∗)← OrigSpec(n∗) ;
return W

Algorithm 3: Specialization of a case

node by node, aiming at maximizing each node similarity
w.r.t. the related node in the query (see Alg. 3). For this pur-
pose, we again exploit the best possible mapping of query
nodes to the nodes of the most similar generalized case, pro-
duced as a side effect of the semantic similarity computation
during retrieval. This again ensures that the “context” of the
nodes is regarded.

Let’s assume a node nq of query Q is mapped to a node
n∗ in the generalized workflow W ∗, i.e., mmax(nq) = n∗.
If the query node is more specific than the case node, i.e.,
nq v n∗, then the generalized node n∗ is specialized di-
rectly to the specific query term. Otherwise, we chose the
respective value from the original case, which is stored for
this purpose in OrigSpec(n∗). This avoids the impact of
potential overgeneralization. Further, this procedure does
not influence the mapping of the similarity and has no im-
pact on the similarity values as simψ(S(nq), S(n∗)) =
simψ(S(nq), S(nq)) = 1. In the other case, i.e., if nq 6v
n∗, any arbitrary specialization of the node n∗ can be
chosen as this would also have no impact on the sim-
ilarity or the mapping as for a specialized term γ+ ∈
Γ↓(S(n∗)) : simψ(S(nq), S(n∗)) = simψ(S(nq), γ+) =
simψ(LCA(S(nq), S(n∗))) = simψ(LCA(S(nq), γ+)).
Thus, the specialization algorithm produces a specific work-
flow with the same similarity as the most similar workflow
from

⋃
W∈CB∗W+.

Empirical Evaluation
The described approach is fully implemented and evaluated
focussing on two hypotheses reflecting the expected benefits
of generalized cases for POCBR.

H1. The adaptation by specialization of a generalization
workflows leads to a workflow with a quality similar
to the original workflow that was generalized.

H2. Case base generalization reduces the size of the case
base and thus leads to a reduction of retrieval time if
similar and structural identical workflows are present.

We manually constructed 60 pasta recipe workflows from
the textual recipe descriptions on www.studentrecipes.com
with an average size of 25 nodes and 64 edges. Altogether,
they contain 162 different ingredients and 67 tasks. For in-
gredients and tasks, a taxonomy was manually constructed.

394

The extracted workflows, contained AND, XOR, as well as
LOOP structures. We randomly chose a set of 10 workflows
QCB which we use as query workflows. The remaining
set of 50 workflows is used as the case base CB during
the evaluation. We examined the 50 workflows manually
and discovered that they do not contain pairs of structurally
identical workflows. Thus, for the evaluation of hypothesis
H2, we additionally generated a second case base of 70
workflows V CB containing the 50 recipes of CB as well as
20 automatically generated variations based on a randomly
chosen recipe. The variations were generated by replacing
each node term of the random workflow with a probability
of 0.3 by a random but similar leaf sibling term of the
taxonomy. Further, it was ensured that at least 3 terms
were replaced. Thus, a case base of 70 recipes was created
containing similar workflows with an identical structure.

All experiments were executed on a PC with an Intel Core
i7-870 CPU @ 2.93 GHz and 8 GB RAM running Windows-
7 Enterprise 64-bit. If not otherwise stated, we chose the pa-
rameter ∆ψ = 0.5, which means that if either all sibling
terms have been mapped or the similarity of the parent term
is 1, generalization is executed. We also choose ∆ = 0.5,
which means that at least half of the workflow elements must
be identical to be considered during generalization.

Experimental Evaluation and Results
To evaluate Hypothesis H1 a blinded experiment was per-
formed involving 5 human experts. The experts compared
the quality of 10 pairs of a specialized workflow WFS
and an original workflow WFO. The original workflow is
the corresponding workflow from CB which was the ba-
sis workflow of the generalization of WFS . The workflow
of the pairs were presented in random order, so the experts
did not know which workflow was the specialized workflow.
The experts compare the two workflows of the pairs based
on a scale from -3 to +3 (0 means equal quality). The experts
rated the criteria correctness of the preparation2, as well as
the culinary quality. The ratings from the 5 experts of all
10 workflow pairs were acquired, leading to 50 overall rat-
ings. We further computed an aggregated quality, which rep-
resents the average value of both item ratings.

Table 1: Item rating assessment

better
WFO

better
WFS

equal
quality

correctness of preparation 12 3 35
culinary quality 23 13 14
aggregated quality 22 15 13

Table 1 illustrates the number of workflows for which the
original workflow or the specialized workflow was rated bet-
ter, as well as the number of workflows which were rated
equally. It shows that in only 24% of the cases, the adap-
tation by generalization and specialization reduces the cor-

2i.e. cutting oil would violate the correctness

rectness of the workflow. The culinary quality was nega-
tively affected in 46%, the aggregated quality in 44% of the
cases. We also investigated the score value of the ratings.
We computed the average value on the item ratings, which
was 0.24 for the correctness, 0.26 for the culinary quality,
and 0.25 for the aggregated quality in favor of the original
workflows. Additionally, a paired t-test on the aggregated
quality showed that the quality difference between the origi-
nal and the adapted workflows is statistically not significant
(p = 0.11). Overall, this mostly confirms hypothesis H1.

Table 2: Case base evaluation
casebase size coverage avg. retrieval time (s)

CB 50 50 1.39
V CB 70 70 1.71

CB∗ 50 ∼ 6 · 1010 1.33
V CB∗ 58 ∼ 2 · 1013 1.49

To verify hypothesis H2 we generalized the case bases
CB and V CB leading to the case bases CB∗ and V CB∗.
We then searched for the most similar workflows using the
10 queries of QCB within all 4 case bases. If the retrieved
workflow was a generalized workflow, it was also special-
ized according to the given query. The results are shown in
Table 2. It can be seen that the size of V CB is reduced by
about 17%, which leads to a reduction of the average re-
trieval time of about 13%. The retrieval time includes the
time for the specialization of generalized workflows, which
however only took about 6 ms in average. Thus, hypothesis
H2 is confirmed. Further, Table 2 illustrates that generaliza-
tion has produced generalized workflows with high cover-
age, thus leading to a highly reusability.

Table 3: Evaluation of the ∆ parameter (CB∗/V CB∗)
∆ size coverage avg. retrieval time (s)

0.7 50/65 ∼ 5 · 1010/∼ 8 · 1010 1.32/1,61
0.6 50/65 ∼ 5 · 1010/∼ 8 · 1010 1.32/1,62
0.5 50/58 ∼ 6 · 1010/∼ 2 · 1013 1.33/1.49
0.4 50/53 ∼ 6 · 1016/∼ 4 · 1017 1.26/1.35
0.3 50/50 ∼ 3 · 1019/∼ 9 · 1018 1.39/1.26

Table 4: Evaluation of the ∆ψ parameter (CB∗/V CB∗)
∆ψ size coverage avg. retrieval time (s)

0.7 50/69 ∼ 3 · 103/∼ 1 · 104 1.28/1.68
0.6 50/67 ∼ 7 · 106/∼ 3 · 107 1.29/1.67
0.5 50/58 ∼ 6 · 1010/∼ 2 · 1013 1.33/1.49
0.4 50/50 ∼ 4 · 1021/∼ 4 · 1021 1.31/1.31
0.3 50/50 ∼ 2 · 1025/∼ 2 · 1025 1.27/1.27

Additionally, we investigated the influence of the ∆ pa-
rameter. It can be seen in Table 3 that for CB and V CB

395

more generalizations are produced if a lower similarity value
between the workflows to be compared is enforced. More-
over, for V CB a lower ∆ parameter also means that the size
of the case base is further reduced. The evaluation of the ∆ψ

parameter leads to a similar result (see Table 4): the higher
the value, the lower the number of generalizations produced
for CB and V CB. Again, for V CB a lower ∆ψ parameter
further reduces the size of the case base.

Discussion and Related Work
We presented a novel approach for the generalization and
specialization of workflow cases for POCBR and we evalu-
ated this approach with respect to adaptation quality and re-
trieval performance. Approaches for generalizing cases have
been already investiaged in CBR for various purposes (Max-
imini, Maximini, and Bergmann 2003) and they are used in
various domains such as medical diagnosis (Schmidt et al.
2001) in planning (Kambhampati 1994; Sánchez-Ruiz and
Ontanón 2014), or product design (Purvis and Pu 1995).
In POCBR, the use of generalization was already proposed
for the purpose of workflow adaptation (Gil 2008). Garijo
et al. (2013) generalized scientific workflows based on tax-
onomies and a comparison of similar workflow fragments.
However, their approach did not yet address the adaptation
based on generalized workflows. From a machine learning
point of view, reasoning with generalized cases moves CBR
from the purely lazy learning approach towards an eager
learning (or hybrid) approach. Unlike the use of generaliza-
tion in an offline-phase during case-base construction, gen-
eralization is also used on demand as part of an adaptation
approach. A recent example is Tuuurbine (Gaillard et al.
2014), which adapts cases stored in RDF format by gener-
alization and specialization, guided by a generalization cost
function and adaptation rules. Similar to generalization, ab-
straction is also discussed in the literature as an approach to
reduce the size of the case base and to increase case cov-
erage (Bergmann and Wilke 1996). However, abstraction is
different from generalization as it would require reducing
the overall granularity of workflows (e.g. less tasks and data
items) and it would require abstract terms within the ontol-
ogy. Our future work will also investigate workflow abstrac-
tion as well as approaches to use more knowledge-intensive
ontologies, including not just taxonomic relations but also
abstractions as well as attributes and constraints.

Acknowledgments
This work was funded by the German Research Foundation
(DFG), project number BE 1373/3-1.

References
Bareiss, R. 1989. Exemplar based knowledge acquisition:
a unified approach to concept representati on, classification,
and learning. Academic Press Professional, Inc.
Bergmann, R., and Gil, Y. 2014. Similarity assessment and
efficient retrieval of semantic workflows. Inf. Syst. 40:115–
127.

Bergmann, R., and Vollrath, I. 1999. Generalized cases:
Representation and steps towards efficient similarity assess-
ment. In Proceedings of the 23rd Annual German Confer-
ence on Artificial Intelligence, volume 1701 of LNCS, 195–
206. Springer.
Bergmann, R., and Wilke, W. 1996. On the role of abstrac-
tion in case-based reasoning. In Advances in Case-Based
Reasoning, Third European Workshop, EWCBR-96, volume
1168, 28–43. Springer.
Bergmann, R. 1998. On the use of taxonomies for rep-
resenting case features and local similarity measures. In
Proceedings of the 6th German Workshop on Case-Based
Reasoning,GWCBR-98.
Gaillard, E.; Infante-Blanco, L.; Lieber, J.; and Nauer, E.
2014. Tuuurbine: A generic CBR engine over RDFS. In
Case-Based Reasoning Research and Development, ICCBR-
14, volume 8765 of LNCS. Springer. 140–154.
Garijo, D.; Corcho, O.; and Gil, Y. 2013. Detecting common
scientific workflow fragments using templates and execution
provenance. In Proceedings of the 7th International Confer-
ence on Knowledge Capture, K-CAP ’13, 33–40. ACM.
Gil, Y. 2008. From data to knowledge to discoveries: Sci-
entific workflows and artificial intelligence. Scientific Pro-
gramming 16(4).
Kambhampati, S. 1994. A unified framework for
explanation-based generalization of partially ordered and
partially instantiated plans. Artif. Intell. 67(1):29–70.
Maximini, K.; Maximini, R.; and Bergmann, R. 2003. An
investigation of generalized cases. In Ashley, K. D., and
Bridge, D. G., eds., Case-Based Reasoning Research and
Development, ICCBR-03, volume 2689 of LNCS, 261–275.
Springer.
Minor, M.; Montani, S.; and Recio-Garca, J. A. 2014.
Process-oriented case-based reasoning. Information Systems
40(0):103 – 105.
Müller, G., and Bergmann, R. 2014. Workflow streams:
A means for compositional adaptation in process-oriented
CBR. In Case-Based Reasoning Research and Develop-
ment, ICCBR-14, volume 8765 of LNCS. Springer. 315–329.
Purvis, L., and Pu, P. 1995. Adaptation using constraint
satisfaction techniques. In Case-Based Reasoning Research
and Development, ICCBR-95, LNCS, 289–300. Springer.
Sánchez-Ruiz, A. A., and Ontanón, S. 2014. Least common
subsumer trees for plan retrieval. In Case-Based Reasoning
Research and Development, ICCBR-14. Springer. 405–419.
Schank, R. C., and Abelson, R. P. 1977. Scripts, plans,
goals, and understanding: An inquiry into human knowledge
structures. Lawrence Erlbaum Associates, Hillsdale, NJ.
Schmidt, R.; Montani, S.; Bellazzi, R.; Portinale, L.; and
Gierl, L. 2001. Cased-based reasoning for medical
knowledge-based systems. International Journal of Medi-
cal Informatics 64(2):355–367.
Zito-Wolf, R., and Alterman, R. 1992. Multicases: A case-
based representation for procedural knowledge. In Proceed-
ings of the Fourteenth Annual Conference of the Cognitive
Science Society, 331–336.

396

