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Abstract

Most Relevant Explanation (MRE) is an inference prob-
lem in Bayesian networks that finds the most relevant
partial instantiation of target variables as an explanation
for given evidence. It has been shown in recent literature
that it addresses the overspecification problem of exist-
ing methods, such as MPE and MAP. In this paper, we
propose a novel hierarchical beam search algorithm for
solving MRE. The main idea is to use a second-level
beam to limit the number of successors generated by
the same parent so as to limit the similarity between the
solutions in the first-level beam and result in a more di-
versified population. Three pruning criteria are also in-
troduced to achieve further diversity. Empirical results
show that the new algorithm typically outperforms local
search and regular beam search.

Introduction
Bayesian networks represent the conditional independences
between random variables as directed acyclic graphs and
provide standard approaches for solving inference problems,
such as Most Probable Explanation (MPE), Maximum a
Posterior (MAP), and Most Relevant Explanation (MRE).
MPE (Pearl 1988) is the problem of finding the most likely
instantiation of a set of target variables given the remain-
ing variables as evidence. While in an MAP (Pearl 1988)
problem, there are auxiliary variables other then targets and
evidence variables. Both MPE and MAP are solved by op-
timizing the joint posterior probability of the target vari-
ables given the evidence. As methods for explaining evi-
dence (Nielsen, Pellet, and Elisseeff 2008; Lacave and Dı́ez
2002), however, MPE and MAP often produce overspeci-
fied explanations (Pacer et al. 2013; Yuan et al. 2009), i.e.,
irrelevant target variables may also be included. This is be-
cause the criterion of maximizing a joint probability cannot
exclude irrelevant target variables directly.

MRE (Yuan and Lu 2007; Yuan et al. 2009) is an infer-
ence method developed to address the limitations of MPE
and MAP. The key idea of MRE is to find a partial instan-
tiation of the target variables that maximizes the General-
ized Bayes Factor (GBF) (Fitelson 2007; Good 1985) as an
explanation for the evidence. GBF is a rational function of
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probabilities that is suitable for comparing explanations with
different cardinalities. Theoretically, MRE is shown able to
prune away independent and less relevant variables from the
final explanation. The theoretical results have also been con-
firmed by a recent human study (Pacer et al. 2013). Because
of the enlarged search space, however, MRE is shown to be
extremely difficult to solve (Yuan, Lim, and Littman 2011).
Existing algorithms for solving MRE are mainly based on
local search and Markov chain Monte Carlo methods (Yuan
et al. 2009).

In this paper, we propose an efficient hierarchical beam
search algorithm for MRE inference in Bayesian networks.
The key idea is to use two levels of beams to increase
the diversity of the solution population under consideration.
The first-level beam is used to limit the search to the most
promising solutions, similar to the regular beam search (Ru-
bin and Reddy 1977). The second-level beams are newly
introduced to limit the number of successors generated by
a current solution to prevent over-reproduction of similar
offsprings. Three pruning criteria based on the theoretical
properties of MRE are also introduced to achieve further di-
versity as well as efficiency. We applied the new algorithm
to solve MRE problems in a set of benchmark diagnostic
Bayesian networks. Empirical results show that the new al-
gorithm typically outperforms local search and regular beam
search.

Background
A Bayesian network (Pearl 1988; Koller and Friedman
2009) is represented as a Directed Acyclic Graph (DAG).
The nodes in the DAG represent random variables. The lack
of arcs in DAG define conditional independence relations
among the nodes. If there is an arc from node Y to X , i.e.,
Y → X , we say that Y is a parent of X , and X is a child of
Y (We use upper-case letters to denote variables X or vari-
able sets X, and lower-case letters for values of scalars x
or vectors x.). A variable X is conditionally independent of
its non-descendants given its parent set PAX , which can be
quantified by the conditional distribution p(X|PAX). The
Bayesian network as a whole represents the joint probability
distribution of

∏
X p(X|PAX).

MRE (Yuan et al. 2009) has been developed to find a par-
tial instantiation of the target variables as an explanation
for given evidence in a Bayesian network. Here, explana-
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tion refers to the explanation of evidence, whose goal is to
explain why some observed variables are in their particular
states using the target variables in the domain. The complex-
ity of MRE is conjectured to NPPP complete (Yuan, Lim,
and Littman 2011). Formally, the MRE problem is defined
as follows.
Definition 1. Let M be a set of targets, and e be the given
evidence in a Bayesian network. Most Relevant Explanation
is the problem of finding a partial instantiation x of M
that has the maximum generalized Bayes factor score
GBF (x; e) as the explanation for e, i.e.,

MRE (M; e) = arg maxx,∅⊂X⊆MGBF (x; e), (1)
where GBF is defined as

GBF (x; e) =
p(e|x)

p(e|x̄)
. (2)

In the above equations, x is an instantiation of X. We use
x̄ to represent all of the alternative explanations of x. To
further study the properties of generalized Bayes factor, we
can reformulate GBF as follows.

GBF (x; e) =
p(e|x)

p(e|x̄)
=

p(x|e)p(x̄)

p(x)p(x̄|e)

=
p(x|e)(1− p(x))

p(x)(1− p(x|e))
. (3)

Different from MPE and MAP which maximize the joint
posterior probability function, MRE maximizes the rational
probability function in Equation 3. This makes it possible
for MRE to compare the explanations with different cardi-
nalities. Several basic concepts related to GBF are useful for
developing efficient pruning rules for MRE algorithms. The
Conditional Bayes Factor (CBF) (Yuan, Lim, and Lu 2011)
is a measure of the quality of explanation x for given evi-
dence e conditioned on explanation y, and is formulated as
follows.

CBF (x; e|y) =
p(e|x,y)

p(e|x̄,y)
=

p(x|y, e)(1− p(x|y))

p(x|y)(1− p(x|y, e))
. (4)

The belief update ratio of x given e is defined as follows.

r(x; e) =
p(x|e)

p(x)
. (5)

From Equations 3 and 5, we can use belief update ratio
to represent GBF as follows.

GBF (x; e) =
r(x; e)

r(x̄; e)
, (6)

where r(x̄; e) = 1−p(x|e)
1−p(x) is the belief update ratio of the

alternative explanations x̄.
Local search based methods have been applied to solve

MRE in Bayesian networks (Yuan, Lim, and Littman 2011),
such as forward search and tabu search (Glover 1990). The
forward search algorithm starts by first generating multiple
initial singleton solutions. Then it greedily improves current
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Figure 1: The search space of an MRE problem.

solutions by adding one target variable or changing the state
of one existing variable. The algorithm is quite sensitive to
the initialization. The tabu search algorithm starts with an
empty solution set. At each step, it generates the neighbors
of the current solution by adding, changing, or deleting one
target variable. Then it selects the best neighbor which has
the highest GBF score and has not been visited before. Du-
plicate detection is thus necessary in the search process. Un-
like in forward search, the best neighbor in tabu search can
be worse than the current solution. To stop the tabu search,
upper bounds are set on both the total number of search steps
L and the number of search steps since the last improvement
M as the stopping criteria.

In this paper, we consider applying beam search (Rubin
and Reddy 1977) to solve MRE. Beam search uses an open
list to store the search frontier. At each step, it generates all
successors of the solutions in the open list, but only retains
the best solutions to create a new open list for the next step.
A potential limitation of beam search is that most of the re-
maining solutions may originate from just a few solutions
and are similar to each other. This reduces the diversity of
the incumbent solution set, and the algorithms are still eas-
ily stuck in local optima. We address the limitation by devel-
oping a novel hierarchical beam search algorithm. We also
propose three pruning criteria to speed up the hierarchical
beam search in MRE problem.

Hierarchical Beam Search for Solving MRE
Solving MRE exactly is difficult, especially for the Bayesian
networks having a large number of targets. This section in-
troduces a hierarchical beam search algorithm that demon-
strates excellent accuracy and scalability.

Search space formulation
Previous local search methods (Yuan, Lim, and Littman
2011) allow the use of some or all of the following opera-
tions in exploring the search space of MRE: adding a vari-
able, changing a variable, and deleting a variable. These
operations are all needed because the methods use greedy
search steps that only consider the best neighbor of each so-
lution. Because we use beam search, we have a lower risk of
missing important parts of the search space compared with
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local search methods. We can therefore simplify the formu-
lation of the solution space using the search graph in Fig-
ure 1. This is an example with three variables, each with two
values, e.g., the first variable has two values “a” and “A”.
The nodes represent possible solutions, and an arc from U
to V means V is a successor of U. The search starts with an
open list containing all the singleton solutions in the inner-
most circle. We use only the operation of adding a variable
to explore the search space, i.e., moving from inner circles
to outer circles.

Hierarchical beam search
The search space exemplified in Figure 1 is huge. For n vari-
ables with d states each, the graph contains (d + 1)n − 1
solutions, even larger than the size of the search space of
MAP (dn). For large Bayesian networks with dozens or even
hundreds of target variables, finding the optimal solution is
challenging. We therefore apply beam search to solve the
MRE search problem. Beam search was designed to address
both the greediness of hill climbing search and the high com-
putational complexity of exhaustive search. It uses an open
list to limit the size of the search frontier so that only the
most promising solutions get visited and expanded. How-
ever, beam search has the following limitation that has been
overlooked to the best of our knowledge. The successors of
a solution tend to not only look similar but also have similar
scores; they also often lead the search to the same neighbor-
hood in the search space. By retaining the best successors,
the open list may end up containing the successors of just a
few solutions that seem promising presently; other parts of
the search space get thrown away. The search thus becomes
too greedy often too soon and fails to find an excellent solu-
tion.

We propose a hierarchical beam search algorithm to ad-
dress the above limitation of beam search. There are two lev-
els of beams in the proposed search strategy; the hierarchical
beams are organized as in Figure 2. The first-level beam is
the same as the open list used by beam search. It stores the
top N solutions as the search frontier. A second-level beam
is newly introduced to store the best successors of each so-
lution in the current open list. By limiting the second-level
beam size to be K, we limit the over reproduction of off-
springs from the same solution, and prevent the open list of
the next step from being dominated by the successors of just
a few solutions. This hierarchical beam search strategy has
the effect of enhancing the diversity of the solutions main-
tained in the first-level beam, and preventing the search from
being easily stuck in local optima.

Another important aspect of the new algorithm is dupli-
cate detection. Different orderings of variable additions may
lead to the same solutions. Reexpanding these solutions will
lead to exponential explosion of the search space. It is there-
fore important to detect duplicates to avoid redundant work.
A closed list is commonly used to store all solutions that
have already been expanded. Whenever a successor is gen-
erated, it is checked against both the open and closed lists
to see whether it has been visited before. Given the way we
formulate the search space and organize the beams, the suc-
cessors of the solutions in a circle can only appear in the very
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Figure 2: An illustration of the two-level hierarchical beams.

next outer circle; no expanded nodes will be ever generated
again. There is thus no need to maintain a closed list. It is
only necessary to keep a working open list for duplicate de-
tection. Each solution in any second-level beams is checked
against this open list for duplicates. This working open list
eventually becomes the new open list for the next iteration
by retaining the top N solutions.

Pruning criteria
To further enhance the diversity of solutions and improve
the efficiency of hierarchical beam search, we derived three
pruning criteria based on the theoretical properties of GBF
and greedy search. The first pruning criterion is based on the
following Theorem (Yuan, Lim, and Lu 2011).
Theorem 1. Let the conditional Bayes factor (CBF) of ex-
planation y given explanation x1:n = x1, x2, . . . , xn be less
than the inverse of the belief update ratio of the alternative
explanations x̄1:n, i.e.,

CBF (y; e|x1:n) <
1

r(x̄1:n; e)
, (7)

then we have

GBF (x1:n, y; e) < GBF (x1:n; e). (8)

Therefore when adding a new variable, we do not add
target y into x1:n, if we have CBF (y; e|x1:n) < 1

r(x̄1:n;e)

(Pruning criterion 1). Theorem 1 guarantees that no single-
variable additions can improve the GBF score of the current
solution. Note that this pruning rule intentionally ignores the
possibility that adding multiple variables at the same time
may increase the GBF score, even though each individual
variable brings no improvement. It is also worth mention-
ing that as shown in Theorem 1, for adding (Equation 7) a
variable to target sequence x1:n, we need to compute CBF
and r(x̄1:n; e). r(x̄1:n; e) only needs to be computed once
for each state in the open list. CBF can be efficiently evalu-
ated using only conditional probabilities at each expansion.
These properties of Theorem 1 make the pruning process
very efficient.

We also propose two other pruning criteria to enhance so-
lution diversity and reduce search space dramatically. In one
criterion, we set an upper bound T on CBF (y; e|x1:n), and
do not add target y into x1:n if CBF (y; e|x1:n) < T (Prun-
ing criterion 2). The intuition of this pruning criterion is that
CBF (y; e|x1:n) measures the amount of extra information
brought by adding variable y to the existing explanation x1:n

given evidence e. If CBF (y; e|x1:n) is less or only slightly
higher than 1.0 (measured using T ), the extra information is
so little that it can be ignored.

596



Networks Nodes Leaves States Arcs
Alarm 37 11 105 46
Hepar 70 41 162 123
Emdec6h 168 117 336 261
Tcc4g 105 69 210 193
Insurance 27 6 89 52
Win95 76 1 152 112

Table 1: Benchmark diagnostic Bayesian networks used to
evaluate the proposed algorithms.

Our studies show that in many cases single target val-
ues may have the maximum GBF scores. However, dur-
ing the searching process, the states expanded by adding
these target values can not be pruned by using the above
two criteria, since this kind of target value can bring rele-
vant information to the current state. However, in most of
the cases we have GBF (y,x1:n; e) < GBF (y; e), which
means x1:n does not add information given y and e, i.e.,
(y,x1:n) is dominated by y (Yuan, Lim, and Lu 2011). Thus
in the proposed algorithm, we recorded the GBF of individ-
ual target values, and add y into target sequence x1:n, only
if GBF (y,x1:n; e) > GBF (y; e) (Pruning criterion 3).

Finally, when one explanation is a subset of another expla-
nation, but both have the same GBF score, we say the first
explanation dominates the second explanation; only the first
explanation is considered. This is designed to favor more
concise explanations.

Experiments
We tested the proposed algorithms on six benchmark diag-
nostic Bayesian networks listed in Table 1, i.e., Alarm (Ala),
Hepar (Hep), Emdec6h (Emd), Tcc4g (Tcc), Insurance (Ins),
and Win95 (Win) (Beinlich et al. 1989; Binder et al. 1997;
Onisko 2003). The nodes in these Bayesian networks are
classified into two categories: target and observation (evi-
dence). A target node represents a diagnostic interest. An
observation node represents a symptom or a test. The ex-
periments were performed on a 3.40GHz Intel Core i7 CPU
with 8G RAM running a 3.11.0 linux kernel.

Experimental design
In the experiments, we compared the hierarchical beam
search with/out pruning (Hbp/Hb) to four different algo-
rithms, i.e., forward search (Fwd), tabu search (Tabu), beam
search with/out pruning (Bmp/Bm). In beam search, there
is no second-level beam which bounds the number of suc-
cessors of each state. Thus, the proposed hierarchical beam
search converges to beam search, when the second-level
beam size K approaches infinity (or larger than the maxi-
mum number of successors generated by individual states).
In Tabu search, we set L = 400 and M = 20. In the hi-
erarchical beam search algorithm, we set the upper bound
T = 1 + 10−8 on CBF. We tested different combinations
of beam sizes for the algorithms. For example, in Hbp160-
2, we set the first-level beam size N = 160, and set the
second-level beam size K = 2. In Bm320, we set the beam
size N = 320. In the experiemnts, we highlighted the over-
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Figure 3: Normalized histograms of the ratios between the
numbers of duplicates and the numbers of open solutions of
all test cases for different algorithms on Win95.

all best accuracy and running time using bold, and the best
results of each first-level beam size using bold and italic.

For Alarm, Hepar, Emdec6h, and Tcc4g, we set all of the
leaf nodes as evidence and the rest nodes as targets. Then,
we randomly generated 1000 test cases of each Bayesian
network by sampling from the prior distribution represented
by the network. For Insurance and Win95, since the number
of leaves is small, we randomly generated five test settings
by selecting 60% and 30% non-leaf nodes as targets, respec-
tively. The rest of nodes in these two networks are set as ev-
idence. Then, we randomly generated 200 test cases of each
test setting, thus totally 1000 test cases of each network. We
restricted each test case to have at least one abnormal obser-
vation. The complexity of a test case is mainly determined
by the number of targets. For all the test Bayesian networks,
we cannot find the optimal solutions, so we generated the
baselines by using the best solutions found by all tested al-
gorithms. Thus, the solutions in the Bayesian networks are
not necessarily the optimal solutions of the test cases, but
these results are meaningful when we compare the perfor-
mance between the different algorithms.

Hierarchical beam search vs. local search and
regular beam search
In the experiments, we compared two versions of the hierar-
chical beam search (with/out pruning) with local search (i.e.,
forward search and tabu search) and two versions of beam
search (with/out pruning). The size of the first-level beam of
all the algorithms is set to be 160 and 320, respectively. The
results are shown in Table 2 with two numbers in each entry.
The number on top is the number of cases whose solutions
found by the algorithm are consistent with the baselines. The
number at the bottom is the average running time for solving
the test cases in seconds.

The results show that regular beam search and hierar-
chical beam search usually have higher accuracy than for-
ward and tabu search, but are slower, especially on large
networks. The accuracy of regular beam search was con-
sistently improved by using hierarchical beam strategy and
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Top (#) Fwd Tabu First-level 160 First-level 320
Bot (s) Bm Bmp Hb2 Hb4 Hbp2 Hbp4 Bm Bmp Hb2 Hb4 Hbp2 Hbp4

Ala (26) 902 920 966 962 967 963 967 963 979 981 979 983 977 979
0.10 0.84 2.27 0.40 2.18 2.36 0.44 0.40 4.50 0.82 4.34 4.27 0.73 0.78

Hep (29) 935 906 954 951 959 947 963 950 976 975 985 976 985 979
0.79 2.66 4.83 1.52 5.17 3.85 1.21 0.86 8.99 2.92 10.31 7.68 2.30 2.56

Emd (51) 957 993 998 1000 996 998 1000 1000 995 1000 995 997 1000 1000
0.28 0.72 17.67 1.03 20.62 14.91 1.02 0.65 22.12 1.95 32.15 29.95 1.70 1.56

Tcc (36) 956 927 954 1000 990 984 1000 1000 960 1000 998 986 1000 1000
0.39 1.16 7.72 0.73 8.20 6.22 0.84 0.69 12.76 1.36 15.95 12.41 1.30 1.44

Ins (17) 888 868 877 879 886 879 897 886 907 911 922 917 926 921
0.20 1.40 1.42 0.83 1.38 1.43 0.89 0.86 2.80 1.60 2.72 3.00 1.54 1.57

Win (24) 903 875 930 960 949 939 966 962 955 973 967 962 974 979
0.34 1.45 2.71 1.19 2.91 2.90 1.14 0.95 5.31 2.34 5.64 5.57 2.37 1.86

Table 2: Comparing hierarchical beam search with local search and regular beam search.

Top (#) Hbp160 Hbp320 Hbp640
Bot (s) 1 2 4 1 2 4 1 2 4

Ala (26) 928 967 963 928 977 979 928 981 994
0.13 0.44 0.40 0.13 0.73 0.78 0.13 1.50 1.56

Hep (29) 976 963 950 976 985 979 976 991 988
0.30 1.21 0.86 0.33 2.30 2.56 0.32 4.90 5.02

Emd (51) 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.37 1.02 0.65 0.42 1.70 1.56 0.40 3.27 3.19

Tcc (36) 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.26 0.84 0.69 0.29 1.30 1.44 0.28 2.33 2.38

Ins (17) 801 897 886 801 926 921 801 946 943
0.23 0.90 0.89 0.19 1.54 1.57 0.20 2.75 2.81

Win (24) 925 966 962 925 974 979 925 980 984
0.22 1.14 0.95 0.23 2.37 1.86 0.23 5.19 3.67

Table 3: Testing the effect of different sizes for the first- and second-level beams on the hierarchical beam search.

pruning criteria at different sizes of first-level beam. Hier-
archical beam search (including Hb and Hbp) achieved the
best results on all the test networks. Somewhat surprisingly,
increasing the size of the second-level beam from 2 to 4 did
not significantly increase the accuracy of hierarchical beam
search. The results show that introducing the second-level
beams does help beam search to find better solutions, and the
second-level beam does not need to be large to achieve the
improvement. Moreover, for both beam search and hierar-
chical beam search, pruning boosted the speed of the search
algorithms significantly. For large Bayesian networks, run-
ning time was decreased by 10 times. The results suggest
that the pruning criteria prevented beam search from wast-
ing time on exploring similar search spaces.

Diversity of solution population
We have claimed in several places that the second-level
beams increase the diversity of the solutions in the open list.
It is nontrivial to define a formal metric to measure the diver-
sity of the solutions. Instead, we used R, the ratio between
the total number of duplicates and the total number of so-
lutions retained in the open lists for a test case, as an indi-
cator for the solution diversity. We plotted the normalized
histogram of the Rs of all test cases for each algorithm on
Win95 in Figure 3. The higher the ratio, the more expansions
led to the same solutions, indicating the lack of diversity be-
tween the solutions in the open list. The top graph in Figure 3
shows the comparison for Bm640, Hb640-2, and Hb640-4.

Clearly Hb640-2 and Hb640-4 have a higher degree of diver-
sity in their open lists than Bm640. Furthermore, Hb640-2
has a higher diversity than Hb640-4, which is consistent with
the results in Table 2 showing the second-level beam size
does not need to be large in order to achieve diversity. The
bottom graph shows the results for Hbp640-2 and Hbp640-
4. Theirs Rs are mostly between 1.0 and 2.0, unlike Bm640
whose Rs are peaked around 3.0. The results indicate that
the pruning criteria helped the search algorithms avoid much
redundant explorations of search space and achieved higher
diversity.

Effect of beam sizes
To further test the effect of beam sizes on the performance
of hierarchical beam search, we tried first-level beam sizes
of 160, 320, and 640, and second-level beam sizes of 1, 2,
and 4. The results are shown in Table 3. All those algo-
rithms are with the pruning criteria. The results show that as
the first-level beam size gets larger, the algorithms typically
achieves better accuracy but worse efficiency. The accuracy
of the algorithms may be negatively affected if the second-
level beam size is too low or too large, especially when the
first-level beam size is modest. Intuitively, when the second-
level beam size is too low, the ability of the search to explore
promising search spaces is negatively impacted; when too
high, the search tends to focus too much on some search
spaces but not the others. A moderate second-level beam
size thus provides a nice balance.
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Top(#) Hb Hbp1 Hbp2 Hbp3 HbpAllEff(#/ms)

Ala (26) 995 995 995 993 994
0 5.34 59.81 1.56 159.26

Hep (29) 986 987 986 987 988
0 38.43 33.90 0.49 58.33

Emd (51) 994 997 1000 994 1000
0 2.47 101.37 0.74 141.88

Tcc (36) 990 1000 1000 989 1000
0 18.36 93.41 0.63 112.90

Ins (19) 940 941 941 944 943
0 14.84 24.80 8.43 55.51

Win (24) 974 981 977 975 984
0 12.82 27.27 0.95 48.85

Table 4: Comparing individual pruning criteria of the hierar-
chical beam search algorithms with beam size 640-4.

Effect of individual pruning criteria

We evaluated the performance of individual pruning criteria
in hierarchical beam search algorithms with the first-level
beam size 640 and the second-level beam size 4, e.g., Hbp1
denotes hierarchical beam search with pruning criterion 1.
We further compared the results with Hb (i.e., Hb640-4)
and HbpAll (i.e., Hbp640-4) (with all the pruning criteria)
in Table 4. The top number in each entry still represents the
number of cases with highest quality. The bottom number is
now the pruning efficiency, defined as the number of pruned
states divided by running time (ms) in each test case. The
results show that the over-all accuracies of the three prun-
ing criteria are similar with HbpAll. By comparing individ-
ual pruning criteria, we found that criterion 2 is the most
efficient one, and criterion 3 is the least efficient one. The
HbpAll algorithm which integrates the three pruning criteria
together achieves the best pruning efficiency, which is larger
than the individual criteria combined on all networks except
Hep.

Conclusions

The main contribution of this paper is a novel hierarchical
beam search algorithm for solving MRE inference prob-
lems in Bayesian networks. The algorithm uses two lev-
els of beams to control the exploration of the search space.
The first-level beam is used to limit the search to the most
promising solutions. A second-level beam is used for each
solution being expanded to store the best successors. Lim-
iting the sizes of the second-level beams has the effect of
increasing the diversity of solution population in the first-
level beam. Three pruning criteria based on the theoretical
properties of MRE are also introduced to achieve further di-
versity and efficiency. The experimental results also showed
that the proposed algorithm performed competitive or better
than the state-of-the-art algorithms, such as forward, tabu,
and regular beam search, both in accuracy and speed. Based
on the empirical study, we believe that the hierarchical beam
search algorithms are especially suitable for the search prob-
lems with large branch factors and high correlation among
the generated states.
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