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Abstract

Using mental simulation as a means of selecting actions
for an agent is not new to the scientific community, but
implementations from literature focus on specific sce-
narios and strategies built by domain-experts. In this
paper, we propose a generic decision-making agent ar-
chitecture which uses mental simulation. Our architec-
ture allows an agent to predict both physical phenom-
ena and behavior of other entities simultaneously, in
real time, and to pursue its goal without additional built-
in strategies. The experimental results show its perfor-
mance in a dynamic nature-inspired scenario where our
agent changes its behavior based on how it anticipates
others will act.

Introduction
Interactive virtual environments pose a wide variety of chal-
lenges for intelligent agents, especially to make decisions in
order to reach their goals. The difficulty of decision-making
tasks rises quickly by introducing continuous space and real
time into question (Doya 2000). It also becomes increasingly
harder to build intelligent agents that can meaningfully inter-
pret and act in unknown situations.

Classical approaches to decision making, such as produc-
tion systems (Anderson 1993; Laird 2012), semantic net-
works and other formal knowledge representation frame-
works (Negnevitsky 2005), require domain experts to pro-
vide descriptions of the agents’ environments, the types of
objects to be used and entities to interact with (Castillo
1997). Upon these approaches, learning algorithms have
been used to learn new rules (Fürnkranz 1999; Kavšek and
Lavrač 2006) and policies (Sutton and Barto 1998) that tell
the agent how to behave in various situations. However, their
application is limited when dynamic environments are con-
sidered (Brooks 1990), where agents must assess multiple
interactions between entities and their environment, such as
the effects of collision, object shape, action timing and vi-
sual occlusion on behavior. Research efforts have been made
to address the issues posed by dynamic environments and
have yielded important results, such as in robotics (Visser
and Burkhard 2007), but challenges still remain that span
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over several research fields. Concurrently, cognitive archi-
tectures have been proposed to integrate multiple techniques
into autonomous agents that are better suited for dynamic
environments, but some significant aspects such as antici-
pation and adaptation are still weakly integrated (Vernon,
Metta, and Sandini 2007) in existing approaches.

Our contribution is an agent architecture (ORPHEUS1),
that allows the simulation of a functional model of the world
ahead of time, analogous to imagining the outer world and
the outcomes of the agent’s actions based on the state of the
real environment. This paradigm is known to cognitive sci-
ence as “mental simulation”, while the Game AI community
uses the term “playout”. The novelty of our approach con-
sists in a generic approach to how mental simulations are
constructed, namely the ability to simulate physical (such
as movement, collision, occlusion) and behavioral (such as
mental states, beliefs, decisions) processes within the same
framework, as an “imaginary world” (or “sandbox”). The
structure of this sandbox world dictates its capability to sim-
ulate the evolution of complex interactions between entities
and their environment, task at which classic approaches be-
come inapplicable, while modern ones use specific simula-
tors for the task at hand. Our contribution is not a replace-
ment for existing decision making techniques, but a frame-
work in which they can be integrated in an unified fashion
with the aim to predict and evaluate possible courses of ac-
tion, on which decision making can be based.

In this paper, we first present the state of the art related to
the use of mental simulation for decision-making, from the
perspectives of both cognitive and computer sciences, and
motivate the relevance of our contribution. Thereafter, we
introduce our proposed generic agent architecture, which is
based on the mental simulation paradigm. We then instanti-
ate our architecture into an autonomous agent that is given a
goal to achieve in a real time continuous environment, with-
out providing it with information/semantics of its role nor
the way in which to behave. We show and discuss aspects
of the agent’s behavior as a result of using mental simula-
tion, the limitations of the current application of our agent
architecture and how these limitations can be overcome.

1ORPHEUS: Reasoning and Prediction with Hetero-
geneous rEpresentations Using Simulation; Source code:
https://bitbucket.org/polceanum/orpheus .
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Related Work
The mental simulation paradigm enjoys significant inter-
est from the cognitive science community (Kahneman and
Tversky 1981; Berthoz 1997; Grezes and Decety 2001). It
is used to explain how humans make certain predictions for
making decisions, imagining “what if” scenarios (multiple
worlds) and revisiting past events in novel ways (Moulton
and Kosslyn 2009). Moreover, there exists evidence that
mental simulation is not strictly a human capability, but
that some animals may also be able to perform it for goal-
oriented decision making (Chersi, Donnarumma, and Pez-
zulo 2013). The principle of mental simulation consists in
constructing an imaginary world that can function on its
own, based on which various future states of the environ-
ment can be inferred and decided upon, resulting in an indi-
vidual’s behavior.

Computational applications of mental simulation are rel-
atively recent and limited to specific scenarios. Results
have been obtained by complementing existing systems
with prediction and viewpoint adoption capabilities in con-
texts such as navigation (Bongard, Zykov, and Lipson 2006;
Kennedy et al. 2009; Svensson, Morse, and Ziemke 2009;
Buche et al. 2010), sensory integration (Cassimatis et al.
2004), object manipulation (Roy, Hsiao, and Mavridis 2004;
Kunze et al. 2011; Buche and De Loor 2013), human-agent
interaction (Buchsbaum et al. 2005; Breazeal, Gray, and
Berlin 2009) and goal recognition (Rao, Shon, and Melt-
zoff 2004; Gray and Breazeal 2005), which indicate that
mental simulation is advantageous over traditional tech-
niques in these chosen scenarios. This is also true for ap-
proaches that use heuristic search such as Monte Carlo Tree
Search (MCTS) (Uriarte and Ontañón 2014) and Alpha-Beta
search (Churchill, Saffidine, and Buro 2012) coupled with
simulators designed for the problem at hand. However, in
their current state, existing approaches are not applicable
to other contexts without considerable adaptation, leaving
them highly specific.

Although studies from cognitive science suggest that
mental simulation is central to decision making and arguably
other important aspects of reasoning, existing approaches do
not offer a generic computational model of this paradigm.
Therefore, orthogonal to improving existing systems with a
specific application of mental simulation, our work focuses
on a generic approach to mental simulation which can be in
turn applied to given contexts without architectural changes.

Proposed Agent Architecture: ORPHEUS
Our contribution is an agent architecture that provides a
generic approach to the paradigm of mental simulation, as
support for decision-making. According to this paradigm, an
individual owns an imaginary space which is built by sens-
ing reality and functions on its own to predict what outcomes
are to be expected in reality in various situations. From the
computational standpoint, we consider the “real world” as
the environment from which our system takes its input and
upon which it acts. In the general sense, the “real world”
could be the physical reality. In this work, the “real world”
is a virtual environment in which entities can behave au-

tonomously and perceive each other. In addition, we refer to
an “imaginary world” as a completely separate virtual space,
which is proprietary to the agent(s) using the architecture,
where mental simulations and system decision making are
performed. In the following, we focus on the structure and
functionality of this “imaginary world”.

In order for the “imaginary world” to exist, it must be
constructed with sensory information. In our approach, per-
ception consists in extracting the state of the “real world” in
the form of a mental image. The proposed agent architec-
ture bases its decision-making functionality on a continuous
cycle of perception, mental simulation and selection process
(Fig. 1).

Figure 1: Mental simulation based decision-making.

A mental image statically describes the state of the “imag-
inary world” at a time t. It is a list of entities (such as ob-
jects, birds, etc.), each described by a set of properties (such
as position, rotation, shape, linear and angular velocity). The
application presented in the following section uses the previ-
ously mentioned set of properties due to their direct observ-
ability, but within the architecture this set could be modified.
We note that non-observable properties of entities can also
be represented in this way.

Central to our approach is the process of merging effects
from different sources (physics, behavior) into the evolution
of the “imaginary world” as a whole. In order to combine
the effects of multiple entities on the environment, each en-
tity is assigned models, from an available pool, that dictate
the way it behaves. The model assignment for each entity is
based on the estimated error between mental simulation and
reality, using an error model of choice. Within our architec-
ture, a model can be viewed as a function that takes a state of
the world (the assigned entity and its perceptions) as input,
and computes a time-dependent change in this state. In this
sense, the “imaginary world” falls into the category of multi-
agent systems. The process of merging consists in applying
a pool of models to their assigned entities in a mental im-
age and accumulating their effects to obtain the subsequent
mental image.

A key aspect in the effect merging process in our approach
is its granularity. Traditionally, abstract rules are used to de-
scribe the evolution of an environment, such as for exam-
ple: “If [Pencil is not held] Then [new location of Pencil is
on Floor]”. This type of environment evolution description
does not include what happens to the pencil while it falls
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(obstacles in trajectory), why it falls (gravity), nor what the
effects of such process would be, unless specified through
a complex array of other rules. In contrast, our approach is
to simulate the falling pencil, and therefore naturally repre-
sent its interactions with other entities such as the table that
may be between the pencil and the floor, or the cat lying on
the floor which will run away after the pencil nudges it. In
consequence, it is important for this simulation to occur in
small time steps, as it is not feasible to combine large ef-
fects in the context of complex interactions between entities
and their environment. In addition, operations that are not
commutative and require an order, such as rotations, can be
forced to behave in a nearly commutative way by using small
time steps.

We integrate granularity into mental simulations by con-
structing them from a series of successive steps (Fig. 2). This
way, the mental simulation is divided into n steps where, at
the ith step, each model (M j where j is the model iden-
tifier) takes the ith mental image as input and computes a
small change (δj) that is accumulated with the rest of the
effects to obtain the (i+ 1)th mental image.

Figure 2: The mechanism through which a mental image is
evolved in one step (i ∈ [0, n− 1]), by interweaving effects
from models.

This approach to constructing mental simulations also al-
lows their evolution to be controlled by integrating different
courses of actions for entities and for the agent’s mental self.
Models that are assigned to entities can also take parameters
that control how they generate an entity’s behavior which we
refer to in this work as “action interfaces”. As with the envi-
ronment and its inhabitants, the agent also includes itself as
an entity in the “imaginary world” and assigns models to this
mental self. This way, the agent is able to imagine multiple
scenarios simultaneously, by manipulating the parameters of
its self model in alternative mental simulations.

The agent’s decision making process is based on creat-
ing an array of different courses of actions ahead of time
and, given a goal mental image (goal configuration), provid-
ing the list of mental simulations that reach that goal state
from which one can later be selected and applied in the “real
world”. Mental simulations and actions that are performed
inside them also embed the notion of the corresponding real
time, so that synchronization can be done correctly when the
agent performs the actions in the real environment.

Application
Following from the limitations of traditional techniques and
related works, we validate our proposed architecture by in-

stantiating it in an autonomous agent which is given a goal in
an environment that has the following properties: continuous
3D space, real time, physics (collisions, visual occlusions)
and variable behavior of other entities.

Based on the previously mentioned environment property
requirements, we chose a scenario (Fig. 3, left) inspired from
the predatory behavior of the Felinae subfamily, which con-
sists mostly in small to medium sized cats. It is common for
their prey, such as birds, to have wide fields of sight and to be
capable of predator detection and avoidance over a distance.

In the natural world, hunting behaviors of cats can be cat-
egorized into “mobile” and “stationary”, the former being
applied in areas abundant in prey while the latter, which con-
sists in ambushing, when the cat is located in areas of interest
(Dennis C. Turner 2000). Cats generally employ a stealthy
approach followed by a short rush before striking (Kleiman
and Eisenberg 1973). In the following, we discuss the instan-
tiation of the generic architecture (Fig. 1) within the context
of the chosen test scenario (Fig. 3), aiming to obtain adaptive
behavior from the agent through mental simulation, with-
out hard-coding any strategies of its real counterpart; i.e. the
agent has no information/semantics that it represents a cat.

Figure 3: Instantiation of the “real world” (3D environment)
featuring the cat and autonomous birds (left), and the “imag-
inary world” of the cat with examples of mental simulations
where it evaluates different action sequences (right).

Experiment Setup
In the “real world” (i.e. the virtual environment that imple-
ments the chosen test scenario), birds have boid-like behav-
ior (Reynolds 1987) and are also able to see the cat at an
arbitrary distance, given that their vision is not obstructed
by an obstacle (birds cannot see through obstacles). A bird
that can see the cat will flee (turn away), making it more
difficult for the cat to catch it. The experiment consists in
six test cases that are constructed by varying obstacle shape
(with or without corners) and bird view distance (0 units,
50 units and 100 units). In the extreme case (100 units)
the cat is not able to catch birds if no obstacles are present
in the environment.

The previously described agent architecture is instanti-
ated in the cat character. The architecture and resulting agent
were implemented in C++ with multi-thread support and the
tests in this work were run on a Intel R© Xeon R© 2.80GHz,
Ubuntu 12.04 machine with 8GB RAM. We have also tested
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the system on less powerful machines, where expectedly less
simultaneous mental simulations were possible.

We configured the agent to observe the environment (i.e.
extract a mental image) at an arbitrary interval of 0.5 sec-
onds to account for real time perception. The mental image
is then used to branch an arbitrary number of 20 parallel
mental simulations (Fig. 3, right) of varying time lengths
(1 to 15 simulated seconds) so as to predict the outcomes of
different courses of action into the future. On the test config-
uration, we obtained a speed ratio of ∼13x; i.e. 15 seconds
of mental simulation take ∼1.15 real seconds to compute.
When each mental simulation has finished, it is replaced by a
new one based on the currently perceived state of the world.
A mental simulation will finish when it reaches its time limit
or it leads to goal achievement. If there are no mental simu-
lations that lead to goal achievement, the agent will rest still
until a solution is found. The number and duration of mental
simulations can be varied to increase/decrease chances of a
valid solution and to find a near/far solution, respectively.

The agent using our architecture is supplied with three
models to evolve mental simulations (Fig. 4). First, a physics
model, implemented using Bullet Physics, that applies col-
lision effects and linear and angular velocities on entities.
Second, a model that closely approximates the behavior of
“real” birds with any of the three possible view distance val-
ues. Third, a cat model with parameters which acts only
as a control interface. These parameters are a set of pos-
sible actions: run forward (values: yes/no), turn (values:
left/no/right) and jump (values: yes/no). Model to entity as-
signments are managed by the agent, so that the error be-
tween the behavior of imaginary birds and reality, com-
puted in this application using the Mean Absolute Deviation
(Konno and Yamazaki 1991), is minimized.

Figure 4: Models assigned to each entity in the imaginary
world and action controller for the system’s self model (cat).
All models contribute to the evolution of the mental simula-
tion at each step.

If at any time the distance between the cat and a bird falls
below a threshold value (the cat is required to jump), the
bird disappears and is considered caught and the cat’s goal
is achieved. Once the goal has been satisfied in a mental sim-
ulation from the cat’s imaginary world, the history of actions
performed within it, which correspond to the list of param-
eter values, are applied in the real world. To avoid any bias
from “cleverly chosen” strategies as used by (Buche et al.

2010), the cat’s mental simulations include uniformly dis-
tributed random parameter values (action sequences). The
goal of of this application does not rest in the random ac-
tion generation itself, as this could be replaced by heuristic
search or similar methods, but in illustrating the use of the
proposed generic architecture.

Our hypothesis is that through the use of mental simula-
tion, the cat, which is controlled by our system, will adapt its
behavior in function of the distance at which birds are able to
perceive the danger. By having obstacles in the environment,
we hope that the cat will use them to improve its success rate
in catching birds, as this behavior is not explicitly specified.

Results
Each of the six test cases (Fig. 5) consists of 4 symmetrically
placed obstacles and 10 birds which fly in fairly regular cir-
cular patterns unless the cat is seen and avoided. Amongst
test cases, distances at which the birds can spot the cat are
varied and the obstacle shape is also subtly changed.

Results show that the increase in the view distance of
birds significantly influences the frequency of locations for
the cat, regarding available obstacles. As a general rule, the
increase in bird sight determines values in the histograms
for the cat (Fig. 5, Subfigures “b”) to shift left towards lesser
distance from obstacles, and bird catching location frequen-
cies (Fig. 5, Subfigures “c”) to invert slope as obstacles pre-
vent birds to see the cat. That is, the agent’s behavior consis-
tently adapts to the variation of bird view distance, resulting
in a set of distinguishable emerging techniques (Fig. 6).

Figure 6: Examples of solutions found by the system for prey
catching: (a) simple chase, (b) ambush, (c) hide and chase,
(d) blockade. Cat traces shown with gray arrows, and catch
locations with directed circles based on bird orientation.

The application of these observed hunting techniques con-
forms with intuition; namely the cat simply chases (Fig. 6.a)
birds with no sight, but when the view distance is increased,
it resorts to ambush (Fig. 6.b), hide and chase (Fig. 6.c) and,
the strongest example of anticipation observed in the exper-
iment, the blockade (Fig. 6.d) where the agent uses the pre-
dicted collision of the bird with an obstacle to catch it.
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Figure 5: Agent behavior in scenarios with cuboid (cases 1-3) and cylindrical (cases 4-6) obstacles. Subfigures (#.a) illustrate
cat (gray) and caught birds (black) traces. Distance histograms are shown for the cat (#.b) and catch locations (#.c) relative to
the closest obstacle.

Varying obstacle shape also determines subtle adaptation
in our agent, an example of which is illustrated in the 5th test
case (Fig. 5, Subfigure 5.c) which features a gap in the cat’s
position relative to obstacles. This is caused by the increased
difficulty of hiding behind cylindrical obstacles which also
determines a less prominent use of the ambush technique.

We note that these results are reproducible with a degree
of variation in environment configuration such as number of
birds and obstacle number and positions, as the agent be-
haves in the way that leads to goal achievement given differ-
ent contexts.

Conclusions and Future Work
Our objectives in this work were to propose a generic agent
architecture that uses mental simulation as its decision mak-
ing mechanism, and to verify its functionality within a real-
istic environment. The ORPHEUS architecture uses a multi-
agent imaginary world, in which the instantiated agent can
perform mental simulations, to provide a generic interpreta-
tion of both physical/environmental and behavioral aspects.
This is possible by using multi-step mental simulations that
enable the system to interweave the effects from multiple
sources, thus merging the two aspects. To validate our ap-
proach, we instantiated the proposed generic architecture in
an autonomous agent - the cat - and placed it in a virtual
environment, with the goal of catching prey. This approach

led to adaptiveness to changes in the environment, without
predetermined strategies regarding the agent’s behavior. The
results of the agent within the nature-inspired feline hunt-
ing scenario showed that it can exhibit four distinguishable
hunting techniques to catch its prey depending on environ-
ment conditions, which resemble natural behavior found in
felines.

Currently, the application of our system to a wider range
of scenarios is limited by the use of inflexible models for
prey. In contrast to existing approaches, our architecture
supports seamless model replacement, so that it can be ap-
plied in other contexts. Special interest is placed on pre-
diction in physical robots. Hence, our research now focuses
on replacing these models with time series prediction tech-
niques, without changing the generic architecture that was
obtained. Non-linear regression algorithms such as KRLS
(Engel, Mannor, and Meir 2003) seem to be well suited for
cyclical behavior prediction in the context of mental simu-
lations, and reinforcement learning is a promising approach
to improving our agent’s efficiency by informing action se-
quence generation in the imaginary world. These models can
be trained simultaneously in real time, creating a pool of
candidates that can be selected within our architecture based
on their accuracy and used to perform mental simulations,
so that the overall performance would benefit from the lo-
calized accuracy of heterogeneous sets of learned models.
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