

Abstract

The problem of classifying text with respect to metalan-
guage and language object patterns is formulated and its ap-
plication areas are proposed. Examples of metalanguage
patterns in text are foreign language grammar lessons and
tutorials on how to write engineering documents. The meth-
od targets the text classification tasks where keyword statis-
tics is insufficient do distinguish between such abstract clas-
ses of text as metalanguage and object-level. To do that, we
extend the parse tree kernel method from the level of indi-
vidual sentences towards the level of paragraphs. We build a
set of extended trees for a paragraph of text merging indi-
vidual parse trees for sentences. We evaluate our approach
in the domain of the design documents, differentiating them
from meta-documents such as instructions on how to write
design documents.

 Introduction

Usually, in the majority of text classification problems,

keywords statistics is sufficient to determine a class. Key-

words are sufficient information to determine a topic of a

text or document, such as software vs hardware, or pop

rock vs punk. However, there are classification problems

where distinct classes share the same keywords, and doc-

ument phrasing, style and other kinds of text structure in-

formation needs to be taken into account. To perform text

classification in such domain, discourse information such

as anaphora and rhetoric structure needs to be taken into

account.

 We are interested in classifying a text with respect to

being metalanguage or language object. If a text tells us

how to do things, or how something has been done, we

relate this text to a language object. If a text is saying how

to write a document which explains how to do things, we

related it to metalanguage. Metalanguage is a language or

symbolic system used to discuss, describe, or analyze an-

other language or symbolic system (Štuikys and

Copyright © 2015, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Damaševicius 2013). Logic programs can be recognized

as meta-programs or object-level programs easily (Galitsky

2003). However in a natural language text one needs some

implicit cues at the syntactic level to recognize metalan-

guage patterns.

 Obviously, using just keyword information would be

insufficient to differentiate between texts in metalanguage

and language-object. A presence of verbs for communica-

tive actions and mental states may help to identify meta-

language patterns, but is still insufficient: I know the height

of the tallest skyscraper vs I know what she thinks about

the skyscrapers, the latter containing the meta-predicate

ranging over a set of expressions for thoughts about sky-

scrapers. Use of parse trees would give us specific phrases

in use by texts in metalanguage, but still will not be suffi-

cient for systematic exploration of metalanguage-related

linguistic features. It is hard to identify them unless one

can analyze the discourse structure, including anaphora,

rhetoric relations, and interaction scenarios by means of

communicative language. Furthermore, to systematically

learn these discourse features associated with metalan-

guage, we need a unified approach to classify graph struc-

tures at the level of paragraphs (Galitsky 2013).

 The design of syntactic features for automated learning

of syntactic structures for classification is still an art nowa-

days. One of the solutions to systematically treat these syn-

tactic features is the approach of tree kernels built over

syntactic parse trees. Convolution tree kernel (Collins and

Duffy, 2002) defines a feature space consisting of all sub-

tree types of parse trees and counts the number of common

subtrees as the syntactic similarity between two parse trees.

They have found a number of applications in a number of

NLP tasks, including search (Moschitti, 2006), syntactic

parsing re-ranking, relation extraction Zelenko et al 2003),

named entity recognition (Cumby & Roth 2003) and Se-

mantic Role Labeling relation extraction (Zhang et al.,

2006), pronoun resolution (Yang et al., 2006), question

classification and machine translation (Zhang and Li,

2009).

Recognizing Documents versus
Meta-Documents by Tree Kernel Learning

Boris Galitsky and Nina Lebedeva
Knowledge-Trail Inc. San Jose CA USA

{bgalitsky@hotmail.com, nina.lebedevakt@gmail.com}

540

Proceedings of the Twenty-Eighth International Florida Artificial Intelligence Research Society Conference

 An approach to build a kernel based on more than a

single parse tree has been proposed (Galitsky et al 2013,

Galitsky 2014) with the focus on search. To perform a

classification task based on additional discourse features,

we form a single tree from a tree forest for a sequence of

sentences in a paragraph of text. Currently, kernel methods

tackle individual sentences. For example, in question an-

swering, when a query is a single sentence and an answer

is a single sentence, these methods work fairly well. How-

ever, in learning settings where texts include multiple sen-

tences, one needs to go beyond the sentence boundaries

and represent structures which include paragraph-level

discourse information.

 A number of NLP tasks such as classification require

computing of semantic features over paragraphs of text

containing multiple sentences. Doing it in at the level of

individual sentences and then summing up the score for

sentences will not always work. In the complex classifica-

tion tasks where classes are defined in an abstract way, the

difference between them may lay at the paragraph level

and not at the level of individual sentences. In the case

where classes are defined not via topics but instead via

writing style, discourse structure signals become essential.

Moreover, some information about entities can be distrib-

uted across sentences, and classification approach needs to

be independent of this distribution. We will demonstrate

the contribution of paragraph-level approach vs the sen-

tence level in our evaluation. We will apply the extended

tree kernel learning to classify engineering documents vs

the rules on how to write these documents.

 We define design document as a document which con-

tains a thorough and well-structured description of how to

build a particular engineering system. In this respect a de-

sign doc according to our model follows the reproducibility

criteria of a patent or research publication; however format

is different from them. What we exclude is a document

which contains meta-level information relatively to the

design of engineering system, such as how to write design

docs manuals, standards design docs should adhere to, tu-

torials on how to improve design documents, and others.

 We need to differentiate design documents from the

classes of documents which can be viewed as ones contain-

ing meta-language, whereas the genuine design documents

consists of the language-object patterns and should not

include metalanguage ones. Meta-documents include in-

structions and recommendations on how to write design

documents, project requirement document, requirement

analysis, operational requirements, construction documen-

tation, project planning and binning, technical services

review, guidelines, manuals and others.

Extending tree kernels beyond sentences

Why can sentence-level tree kernels be insufficient for

classification? The signals of meta-language in use are

distributed through multiple sentences and are frequently

invisible at the sentence level. We combine/merge parse

trees for individual sentences to make sure we cover the

phrases of interest. For example, for the following text:

This document describes the design of back end processor.

Its requirements are enumerated below. From the first

sentence, it looks like we got the design doc. To process

the second sentence, we need to disambiguate the

preposition ‘its’. As a result, we conclude from the second

sentence that it is a requirements doc, not a design doc.

 The structure of NL which can be potentially valuable for

classification can be characterized by rhetoric relations that

hold between the parts of a text. These relations, such as

explanations or contrast, are important for text

understanding in general since they contain information on

how these parts of text are related to each other to form a

coherent discourse. Naturally, we expect the structure of

discourse for metalanguage patterns to be different to that

of language-object patterns. Discourse analysis explores

how meanings can be built up in a communicative process,

which is different for a metalanguage and a language-

object. Each part of a text has a specific role in conveying

the overall message of a given text.

 We introduce a domain where a pair-wise comparison of

sentences is insufficient to properly learn certain semantic

features of texts. This is due to the variability of ways

information can be communicated in multiple sentences,

and variations in possible discourse structures of text

which needs to be taken into account.

 We consider an example of text classification problem,

where short portions of text belong to two classes:

 Tax liability of a landlord renting office to a busi-

ness.

 Tax liability of a business owner renting an office

from landlord (shown in greyed area below).

I rent an office space. This office is for my business. I

can deduct office rental expense from my business profit to

calculate net income.

To run my business, I have to rent an office. The net

business profit is calculated as follows. Rental expense

needs to be subtracted from revenue.

 To store goods for my retail business I rent some space.

When I calculate the net income, I take revenue and

subtract business expenses such as office rent.

 I rent out a first floor unit of my house to a travel

business. I need to add the rental income to my profit.

However, when I repair my house, I can deduct the repair

expense from my rental income.

 I receive rental income from my office. I have to claim it

as a profit in my tax forms. I need to add my rental income

to my profits, but subtract rental expenses such as repair

from it.

541

 I advertised my property as a business rental.

Advertisement and repair expenses can be subtracted from

the rental income. Remaining rental income needs to be

added to my profit and to be reported as taxable profit.

 Note that keyword-based analysis does not help to

separate the first three paragraph and the second three

paragraphs. They all share the same keywords rental /

office / income / profit / add / subtract. Phrase-based

analysis does not help either, since both sets of paragraphs

share similar phrases.

Pair-wise sentence comparison does not solve the problem.

 Anaphora resolution is helpful but insufficient. All these

sentences include ‘I’ and its mention, but other links

between words or phrases in different sentences need to be

used.

 Rhetoric structures need to come into play to provide

additional links between sentences. The structure to

distinguish between

 renting for yourself and deducting from total

income and

 renting to someone and adding to income

embraces multiple sentences.

The second clause about adding/subtracting incomes is

linked by means of the rhetoric relation of elaboration with

the first clause for landlord/tenant. This rhetoric relation

may link discourse units within a sentence, between

consecutive sentences and even between first and third

sentence in a paragraph. Other rhetoric relations can play

similar role for forming essential links for text

classification.

 Which representations for these paragraphs of text would

produce such common sub-structure between the structures

of these paragraphs? We believe that extended trees, which

include the first, second, and third sentence for each

paragraph together can serve as a structure to differentiate

the two above classes.

 The dependency parse trees for the first text in our set

and its coreferences are shown below:

Fig. 1: Anaphora (on the top) and two rhetoric relations of

elaboration (on the bottom) which link the sentences and help us

to form a class-determining structure

There are multiple ways the nodes from parse trees of

different sentences can be connected: we choose the

rhetoric relation of elaboration which links the same entity

office and helps us to form the structure rent-office-space –

for-my-business – deduct-rental-expense which is the base

for our classification.

 We proceed to the second example. Given a positive

sequence and its parse trees linked by RST relations:

A hardware system contains classes such as GUI for user

interface, IO for importing and exporting data between the

emulator and environment, and Emulator for the actual

process control. Furthermore, a class Modules is required

which contains all instances of modules in use by emula-

tion process.

and a negative sequence and its linked parse trees:

A socio-technical system is a social system sitting upon a

technical base. Email is a simple example of such system.

The term socio-technical was introduced in the 1950s by

the Tavistok Institute.

We want to classify the paragraph

 A social network-based software ticket reservation sys-

tem includes the following components. They are the Data-

base for storing transactions, Web Forms for user data

input, and Business rule processor for handling the web

forms. Additionally, the backend email processing includes

the components for nightly transaction execution.

542

One can see that it follows the rhetoric structure of the top

(positive) training set element, although it shares more

common keywords with the bottom (negative) element.

Hence we classify it as a design doc text, since it describes

the system rather than introduces a terms (as the negative

element does).

Forming extended parse trees

For every inter-sentence arc which connects two parse

trees, we derive the extension of these trees. There is a pair

of such extensions (Fig. 2):

1) Starting from the first tree, we navigate it till we

reach a connecting inter-sentence arc, then we use

this arc to ‘jump’ to the second tree, which we

continue to navigate towards the level of leaves;

2) Starting from the second tree, we navigate it till

we reach a connecting inter-sentence arc, then we

use this arc to ‘jump’ to the first tree, which we

continue to navigate towards the level of leaves.

 In this approach, for a given parse tree, we will obtain a

set of its extension for each inter-sentence arc it connects

this sentence to other sentences. Hence the elements of the

kernel (sub-trees) will be computed for multiple

extensions, instead of just a single tree (as happens under

conventional tree kernel). The computational problem here

is that we need to find common sub-trees for a much

higher number of trees than the number of sentences in

text, however by subsumption (sub-tree relation) the

number of common sub-trees will be substantially reduced.

If we have two parse trees P1 and P2 for two sentences

in a paragraph, and a relation R12: P1i →P2j between the

nodes P1i and P2j, we form the pair of extended trees

P1*P2:

…,P1i-2, P1i-1, P1i, P2j, P2j+1, P2j+2,…

…,P2j-2, P2j-1, P2j, P1i, P1i+1, P2i+2,…,

which would form the feature set for tree kernel learning in

addition to the original trees P1 and P2.

 The algorithm for building an extended tree for a set of

parse trees T is as follows:

Fig. 2: An arc which connects two parse trees for two sentences

in a text (on the top) and the derived set of extended trees (on the

bottom).

Notice that the resultant trees are not the proper parse trees

for a sentence, but nevertheless form an adequate feature

space for tree kernel learning.

 To obtain the inter-sentence links, we employed

coreferences from Stanford NLP (Recasens et al 2013, Lee

et al 2013). Rhetoric relation extractor based on our rule-

based approach to finding relations between elementary

discourse units (Galitsky et al 2013). We combined manual

rules with automatically learned rules derived from the

available discourse corpus by means of syntactic

generalization.

 Kernel methods are a large class of learning algorithms

based on inner product vector spaces. Support vector

machines (SVMs) are mostly well-known algorithms.

Convolution kernels compute the common sub-trees

between two trees T1 and T2. Convolution kernel does not

have to compute the whole space of tree fragments. Let the

P1

1
P1

i

P2

j

P2

1

P2j

+1

543

Input:
1) Set of parse trees T.

2) Set of relations R, which includes relations Rijk between

the nodes of Ti and Tj: Ti T, Tj T, Rijk R. We use index

to range over multiple relations between the nodes of parse

tree for a pair of sentences.

Output: the exhaustive set of extended trees E.

Set E = ;

For each tree i=1:|T|

 For each relation Rijk, k= 1: |R|

 Obtain Tj

 Form the pair of extended trees Ti * Tj;

 Verify that each of the extended trees do not have a

super-tree in E

 If verified, add to E;

Return E.

k

set

be the set of sub-trees of an extended parse tree, and i(n)

be an indicator function which is equal to 1 if the subtree ti

is rooted at a node n, and is equal to 0 otherwise. A tree

kernel function over trees T1 and T2 is

where NT1 and N T2 are the sets of T1 ‘s and T2 ‘s nodes,

respectively and

It calculates the number of common fragments with the

roots in n1 and n2 nodes.

Evaluation

For design documents, we built a web mining utility which

searched for public design documents on the web in a

number of engineering and science domains. We formed a

set of 1200 documents, it turned out we had 90% of non-

design engineering documents of the classes we want to

exclude (meta-documents) and 10% of genuine design

documents. We split the data into 5 sub-sets for

training/evaluation portions. For the design documents,

evaluation results were assessed by quality assurance

personnel.

TF*IDF Nearest Neighbor approach finds a document in

the training set which is the closest to the given one being

recognized. Nearest Neighbor feature is implemented via

the search in inverse index of Lucene (Croft et al 2009)

where the search result score is computed based on

TF*IDF model (Salton and Buckley 1988). The query is

formed from each sentence of the documents being

classified as a disjunctive query including all words except

stop-words. The resultant classes along with their TF*IDF

scores are weighted and aggregated on the basis of a

majority vote algorithm such as (Moore and Boyer 1991).

 A Naive Bayes classifier is a simple probabilistic

classifier based on applying Bayes' theorem (from

Bayesian statistics) with strong (naive) independence

assumptions. This classifier assumes that the presence (or

absence) of a particular feature of a class is unrelated to the

presence (or absence) of any other feature. For example, a

fruit may be considered to be an apple if it is red, round,

and about 4" in diameter. Even if these features depend on

each other or upon the existence of the other features, a

naive Bayes classifier considers all of these properties to

independently contribute to the probability that this fruit is

an apple. Depending on the precise nature of the

probability model, naive Bayes classifiers can be trained

very efficiently in a supervised learning setting. In many

practical applications, parameter estimation for naive

Bayes models uses the method of maximum likelihood.

WEKA classifier is based on (John and Langley 1995).

 We report the standard deviation of F-measure over five

folds achieved by different methods in Table 1. Each row

shows the results of a particular classification method.

Keyword statistic-based methods, including Nearest-

Neighbor classification and Naïve Bayes, produced rather

poor results. Conversely, a manual rule-based system

produces a very high accuracy result, especially when

manually formed rules go beyond the keywords/phrases

and take into account part-of-speech information.

 An increase in accuracy by a few percent is achieved in

design documents by using human comprehension of

which expressions are used in metalanguage and style in

meta-documents. These rules also included regular

expressions relying on specific document formatting

including a table of content and structure of sections.

Performance of tree kernel based methods improves as the

sources of linguistic properties expand. There is a few

percent improvement by using RST relations compared

with baseline tree kernel SVM which relies on parse trees

only.

Table 1: Classifying text into metalanguage and language-object

Discussion and Conclusions

In our previous works it was observed how employing a

richer set of linguistic information such as syntactic rela-

tions between words assists relevance tasks (Galitsky et al.

2012). To take advantage of semantic discourse infor-

mation, we introduced parse thicket representation and

proposed the way to compute similarity between texts

based on generalization of parse thickets (Galitsky et al

2013). We build the framework for generalizing PTs as sets

of phrases on one hand, and generalizing PTs as graphs via

maximal common subgraphs, on the other hand (Galitsky

2013).

544

Method

P
re

ci
si

o
n

R
ec

al
l

F
-m

ea
su

re

S
ta

n
d

ar
d

d
ev

ia
ti

o
n

Nearest neighbor classifier –

tf*idf based

55.8 61.4 58.47 2.1

Naive Bayesian classifier

(WEKA)

57.4 59.2 58.29 3.2

Tree kernel – regular parse

trees

73.4 77.6 75.44 2.8

Tree kernel SVM – extended

trees for anaphora

77.0 79.3 78.13 3.1

Tree kernel SVM – extended

trees for RST

78.3 81.5 79.87 2.6

Tree kernel SVM – extended

trees for both anaphora &

RST

82.1 85.2 83.62 2.7

 In this study we focused on how discourse information

can help with a fairly abstract text classification tasks by

means of statistical learning. We selected the domain

where the only difference between classes lays in phrasing

and discourse structures and demonstrated that both are

learnable. We compared two sets of linguistic features:

 The baseline, parse trees for individual sentences,

 Parse trees and discourse information,

and demonstrated that the enriched set of features indeed

improves the classification accuracy, having the learning

framework fixed. We also demonstrated that the baseline

text classification approaches perform rather poorly in the

chosen classification domain. Kernel-based learning was

unable to reach the performance of manually structure-

based rules, and we hypothesize that a vast amount of

discourse information is not employed in the proposed

learning framework.

In our previous studies we considered the following

sources of relations between words in sentences: corefer-

ences, taxonomic relations such as sub-entity, partial case,

predicate for subject etc., rhetoric structure relations, and

speech acts (Galitsky 2013). We demonstrated that a num-

ber of NLP tasks including search relevance can be im-

proved if search results are subject to confirmation by

parse thicket generalization, when answers occur in multi-

ple sentences. In this study we employed coreferences and

rhetoric relation only to identify correlation with the occur-

rence of metalanguage in text. Although phrase-level anal-

ysis allows extraction of weak correlation with metalan-

guage in text, ascend to discourse structures makes detec-

tion of metalanguage more reliable. In our evaluation set-

ting, using discourse improved the classification F-measure

by 6 to 9%.

Applying tree kernels for a number of NLP applications

such as search and classification of text, various authors

including (Sun et al 2011) attempt to cover all linguistic

features, such as keyword statistics. By building feature

space which is intended to contain an exhaustive set of

linguistic features, not only the structural ones represented

by trees, these authors make it harder to estimate the con-

tribution of the tree kernel approach compared to the com-

petitive ones. In this study we applied tree kernel to such

the domain where only structural information is relevant

and keyword statistics is not. It turned out that the sen-

tence-level structured information is insufficient for classi-

fication, so its extension beyond individual sentences was

required.
 The experimental environment, extended tree learning

functionality, and the evaluation framework is available at

References

Štuikys, V., Damaševicius, R. 2013. Meta-Programming and
Model-Driven Meta-Program Development Springer ISSN 1610-
3947.

Galitsky, B. 2003. Natural language question answering system:
Technique of semantic headers. Advanced Knowledge Interna-
tional, Australia.

Galitsky, B., Josep Lluis de la Rosa, Gábor Dobrocsi. 2012. Infer-
ring the semantic properties of sentences by mining syntactic
parse trees. Data & Knowledge Engineering. Volume 81-82,
November, 21-45.

Galitsky, B. 2012. Machine Learning of Syntactic Parse Trees for
Search and Classification of Text. 2012. Engineering Application
of AI, http://dx.doi.org/10.1016/j.engappai.2012.09.017.

Galitsky, B., Dmitry Ilvovsky, Sergei O. Kuznetsov, Fedor Strok.
2013. Improving Text Retrieval Efficiency with Pattern Structures
on Parse Thickets, in Workshop on Formal Concept Analysis
meets Information Retrieval at ECIR 2013, Moscow, Russia.

Galitsky, B. 2014. Learning parse structure of paragraphs and its
applications in search. Engineering Applications of Artificial
Intelligence. 01/2014; 32:160–184.

Moschitti, A. 2006. Efficient Convolution Kernels for Dependen-
cy and Constituent Syntactic Trees. In Proceedings of the 17th
European Conference on Machine Learning, Berlin, Germany,
2006.

Sun, J., Min Zhang, Chew Lim Tan. Tree Sequence Kernel for
Natural Language. AAAI-25, 2011.

Zhang, M.; Che, W.; Zhou, G.; Aw, A.; Tan, C.; Liu, T.; and Li,
S. 2008. Semantic role labeling using a grammar-driven convolu-
tion tree kernel. IEEE transactions on audio, speech, and lan-
guage processing 16(7):1315–1329.

Collins, M., and Duffy, N. 2002. Convolution kernels for natural
language. In Proceedings of NIPS, 625–632.

Lee, H., Angel Chang, Yves Peirsman, Nathanael Chambers,
Mihai Surdeanu and Dan Jurafsky. 2013. Deterministic corefer-
ence resolution based on entity-centric, precision-ranked rules.
Computational Linguistics 39(4).

Sun, J., Zhang, M.; and Tan, C. 2010. Exploring syntactic struc-
tural features for sub-tree alignment using bilingual tree kernels.
In Proceedings of ACL, 306–315.

Recasens, M. Marie-Catherine de Marneffe, and Christopher
Potts. The Life and Death of Discourse Entities: Identifying Sin-
gleton Mentions. In Proceedings of NAACL 2013.

Zelenko, D., Aone, C., Richardella, A. 2003. Kernel methods for
relation extraction. JMLR.

Zhang, M. and Haizhou LI. 2009. Tree Kernel-based SVM
with Structured Syntactic Knowledge for BTG-based Phrase
Reordering. EMNLP-2009.

http://code.google.com/p/relevance-based-on-parse-trees.

545

http://code.google.com/p/relevance-based-on-parse-trees

