
 

 

 

 

 

Abstract 

The problem of classifying text with respect to metalan-
guage and language object patterns is formulated and its ap-
plication areas are proposed. Examples of metalanguage 
patterns in text are foreign language grammar lessons and 
tutorials on how to write engineering documents. The meth-
od targets the text classification tasks where keyword statis-
tics is insufficient do distinguish between such abstract clas-
ses of text as metalanguage and object-level. To do that, we 
extend the parse tree kernel method from the level of indi-
vidual sentences towards the level of paragraphs. We build a 
set of extended trees for a paragraph of text merging indi-
vidual parse trees for sentences. We evaluate our approach 
in the domain of the design documents, differentiating them 
from meta-documents such as instructions on how to write 
design documents. 

 Introduction   

Usually, in the majority of text classification problems, 

keywords statistics is sufficient to determine a class. Key-

words are sufficient information to determine a topic of a 

text or document, such as software vs hardware, or pop 

rock vs punk. However, there are classification problems 

where distinct classes share the same keywords, and doc-

ument phrasing, style and other kinds of text structure in-

formation needs to be taken into account. To perform text 

classification in such domain, discourse information such 

as anaphora and rhetoric structure needs to be taken into 

account. 

    We are interested in classifying a text with respect to 

being metalanguage or language object. If a text tells us 

how to do things, or how something has been done, we 

relate this text to a language object. If a text is saying how 

to write a document which explains how to do things, we 

related it to metalanguage. Metalanguage is a language or 

symbolic system used to discuss, describe, or analyze an-

other language or symbolic system (Štuikys and 
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Damaševicius  2013). Logic programs can be recognized 

as meta-programs or object-level programs easily (Galitsky 

2003). However in a natural language text one needs some 

implicit cues at the syntactic level to recognize metalan-

guage patterns. 

   Obviously, using just keyword information would be 

insufficient to differentiate between texts in metalanguage 

and language-object. A presence of verbs for communica-

tive actions and mental states may help to identify meta-

language patterns, but is still insufficient: I know the height 

of the tallest skyscraper vs I know what she thinks about 

the skyscrapers, the latter containing the meta-predicate 

ranging over a set of expressions for thoughts about sky-

scrapers. Use of parse trees would give us specific phrases 

in use by texts in metalanguage, but still will not be suffi-

cient for systematic exploration of metalanguage-related 

linguistic features. It is hard to identify them unless one 

can analyze the discourse structure, including anaphora, 

rhetoric relations, and interaction scenarios by means of 

communicative language. Furthermore, to systematically 

learn these discourse features associated with metalan-

guage, we need a unified approach to classify graph struc-

tures at the level of paragraphs (Galitsky 2013).  

    The design of syntactic features for automated learning 

of syntactic structures for classification is still an art nowa-

days. One of the solutions to systematically treat these syn-

tactic features is the approach of tree kernels built over 

syntactic parse trees. Convolution tree kernel (Collins and 

Duffy, 2002) defines a feature space consisting of all sub-

tree types of parse trees and counts the number of common 

subtrees as the syntactic similarity between two parse trees. 

They have found a number of applications in a number of 

NLP tasks, including search (Moschitti, 2006), syntactic 

parsing re-ranking, relation extraction Zelenko et al 2003), 

named entity recognition (Cumby & Roth 2003) and Se-

mantic Role Labeling relation extraction (Zhang et al., 

2006), pronoun resolution (Yang et al., 2006), question 

classification and machine translation (Zhang and Li, 

2009). 
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      An approach to build a kernel based on more than a 

single parse tree has been proposed (Galitsky et al 2013, 

Galitsky 2014) with the focus on search. To perform a 

classification task based on additional discourse features, 

we form a single tree from a tree forest for a sequence of 

sentences in a paragraph of text. Currently, kernel methods 

tackle individual sentences. For example, in question an-

swering, when a query is a single sentence and an answer 

is a single sentence, these methods work fairly well. How-

ever, in learning settings where texts include multiple sen-

tences, one needs to go beyond the sentence boundaries 

and represent structures which include paragraph-level 

discourse information.  

     A number of NLP tasks such as classification require 

computing of semantic features over paragraphs of text 

containing multiple sentences. Doing it in at the level of 

individual sentences and then summing up the score for 

sentences will not always work. In the complex classifica-

tion tasks where classes are defined in an abstract way, the 

difference between them may lay at the paragraph level 

and not at the level of individual sentences. In the case 

where classes are defined not via topics but instead via 

writing style, discourse structure signals become essential. 

Moreover, some information about entities can be distrib-

uted across sentences, and classification approach needs to 

be independent of this distribution. We will demonstrate 

the contribution of paragraph-level approach vs the sen-

tence level in our evaluation. We will apply the extended 

tree kernel learning to classify engineering documents vs 

the rules on how to write these documents. 

     We define design document as a document which con-

tains a thorough and well-structured description of how to 

build a particular engineering system. In this respect a de-

sign doc according to our model follows the reproducibility 

criteria of a patent or research publication; however format 

is different from them. What we exclude is a document 

which contains meta-level information relatively to the 

design of engineering system, such as how to write design 

docs manuals, standards design docs should adhere to, tu-

torials on how to improve design documents, and others. 

    We need to differentiate design documents from the 

classes of documents which can be viewed as ones contain-

ing meta-language, whereas the genuine design documents 

consists of the language-object patterns and should not 

include metalanguage ones. Meta-documents include in-

structions and recommendations on how to write design 

documents, project requirement document, requirement 

analysis, operational requirements, construction documen-

tation, project planning and binning, technical services 

review, guidelines, manuals and others. 

 
  
 

Extending tree kernels beyond sentences 

Why can sentence-level tree kernels be insufficient for 

classification? The signals of meta-language in use are 

distributed through multiple sentences and are frequently 

invisible at the sentence level. We combine/merge parse 

trees for individual sentences to make sure we cover the 

phrases of interest. For example, for the following text: 

This document describes the design of back end processor. 

Its requirements are enumerated below. From the first 

sentence, it looks like we got the design doc.  To process 

the second sentence, we need to disambiguate the 

preposition ‘its’. As a result, we conclude from the second 

sentence that it is a requirements doc, not a design doc. 

   The structure of NL which can be potentially valuable for 

classification can be characterized by rhetoric relations that 

hold between the parts of a text. These relations, such as 

explanations or contrast, are important for text 

understanding in general since they contain information on 

how these parts of text are related to each other to form a 

coherent discourse. Naturally, we expect the structure of 

discourse for metalanguage patterns to be different to that 

of language-object patterns. Discourse analysis explores 

how meanings can be built up in a communicative process, 

which is different for a metalanguage and a language-

object. Each part of a text has a specific role in conveying 

the overall message of a given text.         

    We introduce a domain where a pair-wise comparison of 

sentences is insufficient to properly learn certain semantic 

features of texts. This is due to the variability of ways 

information can be communicated in multiple sentences, 

and variations in possible discourse structures of text 

which needs to be taken into account. 

    We consider an example of text classification problem, 

where short portions of text belong to two classes: 

 Tax liability of a landlord renting office to a busi-

ness. 

 Tax liability of a business owner renting an office 

from landlord (shown in greyed area below). 

I rent an office space. This office is for my business. I 

can deduct office rental expense from my business profit to 

calculate net income. 

To run my business, I have to rent an office. The net 

business profit is calculated as follows. Rental expense 

needs to be subtracted from revenue. 

    To store goods for my retail business I rent some space. 

When I calculate the net income, I take revenue and 

subtract business expenses such as office rent. 

    I rent out a first floor unit of my house to a travel 

business. I need to add the rental income to my profit. 

However, when I repair my house, I can deduct the repair 

expense from my rental income. 

   I receive rental income from my office. I have to claim it 

as a profit in my tax forms. I need to add my rental income 

to my profits, but subtract rental expenses such as repair 

from it. 
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   I advertised my property as a business rental. 

Advertisement and repair expenses can be subtracted from 

the rental income. Remaining rental income needs to be 

added to my profit and to be reported as taxable profit.  

  Note that keyword-based analysis does not help to 

separate the first three paragraph and the second three 

paragraphs. They all share the same keywords rental / 

office / income / profit / add / subtract. Phrase-based 

analysis does not help either, since both sets of paragraphs 

share similar phrases. 

Pair-wise sentence comparison does not solve the problem.  

   Anaphora resolution is helpful but insufficient. All these 

sentences include ‘I’ and its mention, but other links 

between words or phrases in different sentences need to be 

used.  

    Rhetoric structures need to come into play to provide 

additional links between sentences. The structure to 

distinguish between  

 renting for yourself and deducting from total 

income and  

 renting to someone and adding to income 

embraces multiple sentences.  

The second clause about adding/subtracting incomes is 

linked by means of the rhetoric relation of elaboration with 

the first clause for landlord/tenant. This rhetoric relation 

may link discourse units within a sentence, between 

consecutive sentences and even between first and third 

sentence in a paragraph. Other rhetoric relations can play 

similar role for forming essential links for text 

classification. 

   Which representations for these paragraphs of text would 

produce such common sub-structure between the structures 

of these paragraphs? We believe that extended trees, which 

include the first, second, and third sentence for each 

paragraph together can serve as a structure to differentiate 

the two above classes. 

    The dependency parse trees for the first text in our set 

and its coreferences are shown below: 

 
Fig. 1: Anaphora (on the top) and two rhetoric relations of 

elaboration (on the bottom) which link the sentences and help us 

to form a class-determining structure 

 

There are multiple ways the nodes from parse trees of 

different sentences can be connected: we choose the 

rhetoric relation of elaboration which links the same entity 

office and helps us to form the structure rent-office-space – 

for-my-business – deduct-rental-expense which is the base 

for our classification.  

    We proceed to the second example. Given a positive 

sequence and its parse trees linked by RST relations: 

A hardware system contains classes such as GUI for user 

interface, IO for importing and exporting data between the 

emulator and environment, and Emulator for the actual 

process control. Furthermore, a class Modules is required 

which contains all instances of modules in use by emula-

tion process. 

 

 

and a negative sequence and its linked parse trees: 

 
A socio-technical system is a social system sitting upon a 

technical base.  Email is a simple example of such system. 

The term socio-technical was introduced in the 1950s by 

the Tavistok Institute. 

 

 

We want to classify the paragraph 

   A social network-based software ticket reservation sys-

tem includes the following components. They are the Data-

base for storing transactions, Web Forms for user data 

input, and Business rule processor for handling the web 

forms. Additionally, the backend email processing includes 

the components for nightly transaction execution. 
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One can see that it follows the rhetoric structure of the top 

(positive) training set element, although it shares more 

common keywords with the bottom (negative) element. 

Hence we classify it as a design doc text, since it describes 

the system rather than introduces a terms (as the negative 

element does). 

     

Forming extended parse trees 

For every inter-sentence arc which connects two parse 

trees, we derive the extension of these trees. There is a pair 

of such extensions (Fig. 2): 

1) Starting from the first tree, we navigate it till we 

reach a connecting inter-sentence arc, then we use 

this arc to ‘jump’ to the second tree, which we 

continue to navigate towards the level of leaves; 

2) Starting from the second tree, we navigate it till 

we reach a connecting inter-sentence arc, then we 

use this arc to ‘jump’ to the first tree, which we 

continue to navigate towards the level of leaves. 

 

   In this approach, for a given parse tree, we will obtain a 

set of its extension for each inter-sentence arc it connects 

this sentence to other sentences. Hence the elements of the 

kernel (sub-trees) will be computed for multiple 

extensions, instead of just a single tree (as happens under 

conventional tree kernel). The computational problem here 

is that we need to find common sub-trees for a much 

higher number of trees than the number of sentences in 

text, however by subsumption (sub-tree relation) the 

number of common sub-trees will be substantially reduced. 

If we have two parse trees P1 and P2 for two sentences 

in a paragraph, and a relation R12: P1i →P2j between the 

nodes P1i and P2j, we form the pair of extended trees 

P1*P2: 

…,P1i-2, P1i-1, P1i, P2j, P2j+1, P2j+2,… 

…,P2j-2, P2j-1, P2j, P1i, P1i+1, P2i+2,…, 

which would form the feature set for tree kernel learning in 

addition to the original trees P1 and P2.  

   The algorithm for building an extended tree for a set of 

parse trees T is as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 2: An arc which connects two parse trees for two sentences 

in a text (on the top) and the derived set of extended trees (on the 

bottom).  

     

Notice that the resultant trees are not the proper parse trees 

for a sentence, but nevertheless form an adequate feature 

space for tree kernel learning. 

   To obtain the inter-sentence links, we employed 

coreferences from Stanford NLP (Recasens et al 2013, Lee 

et al 2013). Rhetoric relation extractor based on our rule-

based approach to finding relations between elementary 

discourse units (Galitsky et al 2013). We combined manual 

rules with automatically learned rules derived from the 

available discourse corpus by means of syntactic 

generalization.  

    Kernel methods are a large class of learning algorithms 

based on inner product vector spaces. Support vector 

machines (SVMs) are mostly well-known algorithms. 

Convolution kernels compute the common sub-trees 

between two trees T1 and T2. Convolution kernel does not 

have to compute the whole space of tree fragments. Let the 

P1

1 
P1

i 

P2

j 

P2

1 

P2j

+1 
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Input:  
1) Set of parse trees T. 

2) Set of relations R, which includes relations Rijk between 

the nodes of Ti and Tj: Ti T, Tj T, Rijk R. We use index 

to range over multiple relations between the nodes of parse 

tree for a pair of sentences. 

Output: the exhaustive set of extended trees E. 

 

Set E = ; 

For each tree i=1:|T| 

   For each relation Rijk,  k= 1: |R| 

     Obtain Tj 

     Form the pair of extended trees Ti * Tj; 

     Verify that each of the extended trees do not have a 

super-tree in E 

      If verified, add to E; 

Return E. 

k 



set 

  
be the set of sub-trees of an extended parse tree, and i(n) 

be an indicator function which is equal to 1 if the subtree ti  

is rooted at a node n, and is equal to 0 otherwise. A tree 

kernel function over trees T1 and T2 is 

 
where NT1 and N T2 are the sets of T1 ‘s and T2 ‘s nodes, 

respectively and  

   

 
It calculates the number of common fragments with the 

roots in n1 and n2  nodes. 

Evaluation 

For design documents, we built a web mining utility which 

searched for public design documents on the web in a 

number of engineering and science domains. We formed a 

set of 1200 documents, it turned out we had 90% of non-

design engineering documents of the classes we want to 

exclude (meta-documents) and 10% of genuine design 

documents. We split the data into 5 sub-sets for 

training/evaluation portions. For the design documents, 

evaluation results were assessed by quality assurance 

personnel.  

TF*IDF Nearest Neighbor approach finds a document in 

the training set which is the closest to the given one being 

recognized. Nearest Neighbor feature is implemented via 

the search in inverse index of Lucene (Croft et al 2009) 

where the search result score is computed based on 

TF*IDF model (Salton and Buckley 1988). The query is 

formed from each sentence of the documents being 

classified as a disjunctive query including all words except 

stop-words. The resultant classes along with their TF*IDF 

scores are weighted and aggregated on the basis of a 

majority vote algorithm such as (Moore and Boyer 1991). 

    A Naive Bayes classifier is a simple probabilistic 

classifier based on applying Bayes' theorem (from 

Bayesian statistics) with strong (naive) independence 

assumptions.  This classifier assumes that the presence (or 

absence) of a particular feature of a class is unrelated to the 

presence (or absence) of any other feature. For example, a 

fruit may be considered to be an apple if it is red, round, 

and about 4" in diameter. Even if these features depend on 

each other or upon the existence of the other features, a 

naive Bayes classifier considers all of these properties to 

independently contribute to the probability that this fruit is 

an apple.  Depending on the precise nature of the 

probability model, naive Bayes classifiers can be trained 

very efficiently in a supervised learning setting. In many 

practical applications, parameter estimation for naive 

Bayes models uses the method of maximum likelihood. 

WEKA classifier is based on (John and Langley 1995). 

     We report the standard deviation of F-measure over five 

folds achieved by different methods in Table 1. Each row 

shows the results of a particular classification method. 

Keyword statistic-based methods, including Nearest-

Neighbor classification and Naïve Bayes, produced rather 

poor results. Conversely, a manual rule-based system 

produces a very high accuracy result, especially when 

manually formed rules go beyond the keywords/phrases 

and take into account part-of-speech information.  

     An increase in accuracy by a few percent is achieved in 

design documents by using human comprehension of 

which expressions are used in metalanguage and style in 

meta-documents. These rules also included regular 

expressions relying on specific document formatting 

including a table of content and structure of sections. 

Performance of tree kernel based methods improves as the 

sources of linguistic properties expand. There is a few 

percent improvement by using RST relations compared 

with baseline tree kernel SVM which relies on parse trees 

only.    

Table 1: Classifying text into metalanguage and language-object 

Discussion and Conclusions 

In our previous works it was observed how employing a 

richer set of linguistic information such as syntactic rela-

tions between words assists relevance tasks (Galitsky et al. 

2012). To take advantage of semantic discourse infor-

mation, we introduced parse thicket representation and 

proposed the way to compute similarity between texts 

based on generalization of parse thickets (Galitsky et al 

2013). We build the framework for generalizing PTs as sets 

of phrases on one hand, and generalizing PTs as graphs via 

maximal common subgraphs, on the other hand (Galitsky 

2013). 
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Nearest neighbor classifier – 

tf*idf based 

55.8 61.4 58.47 2.1 

Naive Bayesian classifier 

(WEKA) 

57.4 59.2 58.29 3.2 

Tree kernel – regular parse 

trees 

73.4 77.6 75.44 2.8 

Tree kernel SVM – extended 

trees for anaphora 

77.0 79.3 78.13 3.1 

Tree kernel SVM – extended 

trees for RST 

78.3 81.5 79.87 2.6 

Tree kernel SVM – extended 

trees for both anaphora & 

RST 

82.1 85.2 83.62 2.7 



 In this study we focused on how discourse information 

can help with a fairly abstract text classification tasks by 

means of statistical learning. We selected the domain 

where the only difference between classes lays in phrasing 

and discourse structures and demonstrated that both are 

learnable. We compared two sets of linguistic features: 

 The baseline, parse trees for individual sentences, 

 Parse trees and discourse information, 

and demonstrated that the enriched set of features indeed 

improves the classification accuracy, having the learning 

framework fixed. We also demonstrated that the baseline 

text classification approaches perform rather poorly in the 

chosen classification domain. Kernel-based learning was 

unable to reach the performance of manually structure-

based rules, and we hypothesize that a vast amount of 

discourse information is not employed in the proposed 

learning framework.   

In our previous studies we considered the following 

sources of relations between words in sentences: corefer-

ences, taxonomic relations such as sub-entity, partial case, 

predicate for subject etc., rhetoric structure relations, and 

speech acts (Galitsky 2013). We demonstrated that a num-

ber of NLP tasks including search relevance can be im-

proved if search results are subject to confirmation by 

parse thicket generalization, when answers occur in multi-

ple sentences. In this study we employed coreferences and 

rhetoric relation only to identify correlation with the occur-

rence of metalanguage in text. Although phrase-level anal-

ysis allows extraction of weak correlation with metalan-

guage in text, ascend to discourse structures makes detec-

tion of metalanguage more reliable. In our evaluation set-

ting, using discourse improved the classification F-measure 

by 6 to 9%. 

Applying tree kernels for a number of NLP applications 

such as search and classification of text, various authors 

including (Sun et al 2011) attempt to cover all linguistic 

features, such as keyword statistics. By building feature 

space which is intended to contain an exhaustive set of 

linguistic features, not only the structural ones represented 

by trees, these authors make it harder to estimate the con-

tribution of the tree kernel approach compared to the com-

petitive ones. In this study we applied tree kernel to such 

the domain where only structural information is relevant 

and keyword statistics is not. It turned out that the sen-

tence-level structured information is insufficient for classi-

fication, so its extension beyond individual sentences was 

required. 
   The experimental environment, extended tree learning 

functionality, and  the evaluation framework is available at 
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