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Abstract

In the hedonic coalition formation game model Roles and
Teams Hedonic Games (RTHG) (Spradling et al. 2013),
agents view teams as compositions of available roles. An
agent’s utility for a partition is based upon which role she
fulfills within the coalition and which additional roles are be-
ing fulfilled within the coalition. Goals for matchmaking in
this setting include forming partitions which optimize some
function of the utility. Optimization problems related to find-
ing Perfect, MaxSum and MaxMin partitions in RTHG are
all known to be NP-hard. In this paper, we introduce a Role
Based Hedonic Game model (RBHG) which has no fixed
team size and a more relaxed set of compositions. We con-
sider the related problem of stability in RBHG. Given a set
of available movements for agents, a partition is stable iff no
agent would choose to move from the partition to another par-
tition. We show NP-completeness for several RBHG stability
problems and coNP-completeness for two verification prob-
lems.

Team Formation in MMOs
In massively multiplayer online games (MMOs), social in-
teraction and team formation is one of the top areas of mod-
ern research (Achterbosch, Pierce, and Simmons 2008). Ma-
jor hits of this genre includes massively multiplayer on-
line roleplaying games (MMORPGs) such as World of War-
craft and multiplayer online battle arenas (MOBAs) such as
League of Legends and DoTA 2. Recent work has studied
the impact of perceived gender in MMO social interactions
(Stabile 2014), the relation between players’ motivating pas-
sions and how they interact in MMO communities (Fuster et
al. 2014), and decision support systems for detection of dis-
ruptive players (Shim, Kim, and Kim 2014), among others.

When forming teams in a MOBA or MMORPG, players
are interested in finding team assignments in which their
skills and goals are complimentary. This would allow the
players the best opportunity to achieve their goals together,
enhancing enjoyment of the game and profitability for the
developers.

In this work, we ask only “which partition does an agent
prefer?” and not “why does an agent prefer a partition?” This
preference information is represented by integer utilities.
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When a central authority is tasked with assigning players
to competitive teams, three important goals arise. First, the
teams need to be formed quickly. Second, the teams should
be of a good overall quality to ensure some optimal social
welfare function is satisfied. Third, the players should indi-
vidually accept their team assignments.

Because a player’s utility only depends on their own team
assignment, MOBA and MMORPG team formation are ex-
amples of hedonic coalition formation games. Due to the
large population size in a popular MOBA, and the fact that
skill sets are generally represented by the “roles” which
players fulfill on a team, this team formation problem can
be modeled as a Roles and Teams Hedonic Game (RTHG)
(Spradling et al. 2013). In this model, agents represent their
utilities for partitions based only upon the roles they fulfill
on their own teams and the roles fulfilled by their teammates.

Research on coalition formation games has looked at
stability and optimization on a variety of criteria, such as
achieving MaxSum or MaxMin utility. A MaxSum parti-
tion is one in which the sum total utility is maximized. A
MaxMin partition is one in which the utility of lowest-utility
coalition is maximized. Finding an optimal partition under
either criterion is NP-hard in RTHG (Spradling et al. 2013).

In this work, we define Role Based Hedonic Games
(RBHG). This model relaxes the RTHG requirements for
a fixed team size and consideration of all possible compo-
sitions. We consider the problem of finding and verifying
stable assignments in RBHG. In the context of RBHG, we
define individually rational, Nash stable, individually stable,
core stable, strict core stable, contractual strict core stable,
envy-free and Pareto optimal partitions. We compare these
stability problems to the related stability problems in Ad-
ditively Separable Hedonic Games (ASHG). We prove that
verification of Pareto optimality and contractual strict core
stability are both coNP-complete, and the remaining stabil-
ity problems are all NP-complete.

Stable Teams in MMOs
Because computing a MaxSum partition in RTHG is NP-
hard, heuristics approximation algorithms have been pro-
posed (Spradling et al. 2013). Though a central authority
might wish to maximize total utility for a partition, this goal
relies upon the the agents’ acceptance of the assignment.
When agents have autonomy and hedonic utilities, they can
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and will choose to make local movements for improvement.
A partition from the central authority should make such
changes unnecessary.

Finding an optimal partition is not a sufficient or worth-
while goal if agents don’t stick to the plan. In an MMO,
players are unlikely to know or care about the global utility
of a partition. They will be more interested in changing the
assignment to improve their own utilities. The players are
not a captive audience. Should players not find partitions to
their liking, they may switch to other games or even read
books in the worst case. The MMO industry is highly com-
petitive and the players can be quite fickle.

In order to improve acceptance of partitions by the popu-
lation, finding stable partitions needs to be the focus. While
we expect agents to make movements which gravitate to-
wards a stable partition, it is worthwhile to partition them
such that these changes are easy or unnecessary. If a player
is consistently matched to a team which they find unaccept-
able, the player may quit the game altogether rather than
have to improve every assignment offered.

Related Work: Stability in Hedonic Games
Hedonic games are used to model situations in which agents
need to be matched to teams and only care about the utility
of their own teams, not others. The original motivation for
this model stems from an economic setting where agents join
teams to produce goods for in-team consumption (Drèze and
Greenberg 1980). The goal for an agent in this setting is to
be matched to the most self-fulfilling team.

A hedonic game consists of a set of agents and a prefer-
ence profile of the agents and the set of possible partitions,
where a partition is a set of teams (subsets of agents). The
game is hedonic in that an agent’s preference for a parti-
tion is determined only by the coalition to which the agent
is assigned (Sung and Dimitrov 2010). It has been shown
that, for general hedonic games, finding a core stable coali-
tion structure is NP-complete (Ballester 2004). This does not
exclude the possibility of finding such solutions quickly in
some special cases of hedonic games.

Ballester showed that, for hedonic games which can be
represented by an individually rational list of coalitions,
checking the existence of Nash stable, individually stable
or core stable partitions is NP-complete (Ballester 2004).
These problems, in addition to the problem of finding a
strict core stable partition, remain NP-complete for hedo-
nic games with additively separable preferences (Sung and
Dimitrov 2010). Additional hedonic game variants include
anonymous hedonic games (Banerjee, Konishi, and Sönmez
2001) and the Group Activity Selection Problem (GASP)
(Darmann et al. 2012), among others (Hajduková 2006).

Additively Separable Hedonic Games (ASHG) (Bogo-
molnaia and Jackson 2002; Aziz, Brandt, and Seedig 2011)
model situations where agents have additively separable util-
ities for each other that may or may not be symmetric. Many
stability problems in ASHG have been shown to be NP-
complete or coNP-complete. We outline several such prob-
lems later in the paper.

The ASHG model is useful if it can be assumed that all
agents have had an opportunity to evaluate one another indi-

vidually. When we match such agents into pairs, the problem
of finding a stable assignment reduces to the stable room-
mates problem (Irving 1985; Irving and Manlove 2002), for
which fast algorithms exist.

In an MMO, communications network (Saad et al. 2010),
or vehicular network (Saad et al. 2011b), the population may
be relatively large and anonymous. It may be too much to as-
sume that agents will all have had an opportunity to evaluate
one another. Furthermore, in these settings we often need to
form teams of varying sizes.

In an MMO where players select avatars having differ-
ent skills and abilities, success of a team can depend on
which roles are fulfilled by the subset of avatars selected.
While players are largely anonymous, preferences in terms
of roles performed by teammates to achieve some objective
can be described. This adds to what it means to be an agent.
Rather than having agents who are immutable objects, a sin-
gle agent can be “worth” different amounts depending upon
what she is doing for her team. This task-dependent agent
valuation also has application with distributed task alloca-
tion in wireless agents (Saad et al. 2011a).

When partitioning and RBHG instance, each agent is as-
signed to a role and has preferences over which role to select
for itself given a team composition.

ASHG and RBHG Definitions
In this section we define two hedonic game models, ASHG
and RBHG. While we consider RBHG to be a better model
for MMO matchmaking, little was known about the problem
of finding stable assignments in RBHG. We leverage a rela-
tionship with ASHG, for which the complexities of many
stability problems were already known.

Additively Separable Hedonic Games
An Additively Separable Hedonic Game (ASHG) (Bogo-
molnaia and Jackson 2002; Aziz, Brandt, and Seedig 2011)
instance consists of:

• N : A population of players

• V : A utility function vector V over all pairs of agents in
N , where vi(nj) ∈ V is an integer representing the utility
player ni has for having player nj on its team. We assume
that vi(ni) = 0 for all ni ∈ N .

A solution to an ASHG instance is a partition π composed
of a set of teams T , where each team t ∈ T is a set of agents
t ⊆ N and π(ni) = ti is the single team to which an agent
ni is matched. Because ASHG is a hedonic game, utility of
a player for a partition π is equal to that player’s utility for
its team π(ni) = ti. Let vi(t) =

∑
j∈t vi(j) be the utility of

player ni for team t. A player ni’s utility for π is vi(ti).
Because some researchers (Bogomolnaia and Jackson

2002; Ballester 2004; Gairing and Savani 2010), have dealt
with special cases of ASHGs, much of the recent research
refers to the definition just given as general ASHGs.

Role Based Hedonic Games
A Role Based Hedonic Game (RBHG) instance consists of:
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• P : A population of players

• R: A set of roles

• C: A set of compositions, where a composition c ∈ C is
a multiset (bag) of roles from R.

• U : P × R × C → Z defines the utility function ui(r, c)
for each player pi. We assume that for all pi ∈ P and for
all r ∈ R, ui(r, {r}) = 0.

The Roles and Teams Hedonic Game (RTHG) model as-
sumes a fixed team size m which all teams share and that
the set of compositions C includes all possible multisets of
R (Spradling et al. 2013). In RBHG, there is no fixed team
size and the set C need not include all compositions.

We reason that these generalizations are appropriate. Ob-
serve that certain compositions may be considered univer-
sally unacceptable either by the population (a MOBA team
of all healers which has little chance of winning) or a central
authority (a military commander forming a sniper team with
no snipers). Team size may not have reason to be fixed in
real-world scenarios. Even in a MOBA, where team size is
usually fixed for each team, some players may join a queue
as a preformed “buddy group” needing only a few additional
players. A central authority could leverage the RBHG model
to find smaller sub-teams to complete these groups.

A solution to a RBHG instance is a partition π. For each
player pi ∈ P , π(pi) = (ri, ci, ti), where pi is assigned to
both a role ri and team of players ti and ci is the bag of roles
to which players in ti are assigned.

Because RBHG is a hedonic game, utility of a player for
a partition π is equal to that player’s utility for π(pi) =
(ri, ci, ti). For simplicity, we will refer to a player’s pi utility
for π as ui(ri, ci).

Stability Definitions
Different notions of stability depend on different constraints
on agent movements. In this section, we define what is
meant by “stability” in hedonic games, what it means for
an agent to move, and provide definitions for several sta-
bility problems in RBHG. We compare these to the related
NP-complete and coNP-complete ASHG stability problems.

Forms of Movement
A partition for an RBHG instance is stable when agents hav-
ing no incentive, or perceived improvement of utility, for
changing their assigned role and team. Changing involves
some sort of movement by the agents. In this subsection, we
discuss the general notion of agents’ movements.

Any movement begins from a partition π and results in
a new partition π′. This change may be made by individual
agents or as joint movements by a group of agents made in
unison. When we say that a partition π of a hedonic coalition
formation game is stable we mean that, given a set of pos-
sible movements, no agents would improve utility by taking
such movements.

When we say that a player i moves from a team t to a
team t′, we mean that the partition π containing t and t′ is
modified such that t := t − {i} and t′ := t′ ∪ {i}. This
creates a new partition π′ in which i is a member of t′ and

not a member of t. When we say that a team breaks off from
a partition we mean that these agents move from their current
teams in the partition and form a new team t′ together. When
the group of agents breaks off, this creates a new partition π′
which includes the team t′.

Individually Rational A partition π is individually ratio-
nal (IR) iff no player can benefit by moving from its team ti

to a team by itself.
In ASHG, π is individually rational iff all players ni ∈ N

have utility vi(ti) ≥ 0. In RBHG, π is individually rational
iff all players pi ∈ P have utility ui(ri, ci) ≥ 0.

Nash Stable A partition π is Nash stable (NS) iff no
player pi ∈ P can benefit by moving from its team ti to
another (possibly empty) team t′.

In ASHG, π is Nash stable iff π is individually ratio-
nal and it holds that for all ni ∈ N , for all t′ ∈ π,
vi(t

i) ≥ vi(t
′ ∪ {ni}). In RBHG, π is Nash stable iff π

is individually rational and it holds that for all pi ∈ P ,
for each t′ ∈ π having a composition c′, for all r′ ∈ R,
ui(r

i, ci) ≥ ui(r′, c′ ∪ {r′}).
Observation 1 (Sung and Dimitrov 2010) Checking
whether an NS partition exists in an ASHG is NP-hard.

Individually Stable A partition π is individually stable
(IS) iff no player pi ∈ P can benefit by moving from its
team ti to another (possibly empty) team t′ while not making
members of t′ worse off.

In ASHG, π is individually stable iff π is individually ra-
tional and it holds that for all ni ∈ N , for all tj ∈ π, if
vi(t

i) < vi(t
j ∪ {ni}) then vj(t

j) > vj(t
j ∪ {ni}) for

some j ∈ tj . In RBHG, π is individually stable iff π is in-
dividually rational and it holds that for all pi ∈ P , for all
tj ∈ π, for all r′ ∈ R, if ui(ri, ci) < ui(r

′, cj ∪ {r′}) then
uj(r

j , cj) > uj(r
j , cj ∪ {r′}) for some j ∈ tj .

Observation 2 (Sung and Dimitrov 2010) Checking
whether an IS partition exists in an ASHG is NP-hard.

Core Stable A team t′ blocks a partition π if each player
i ∈ t′ has greater utility for t′ than its current team ti ∈ π.
A partition π which admits no blocking coalition is said to
be in the core or core stable (CS). If the core is empty, this
means that there are no core stable partitions.

In ASHG, a team t′ blocks a partition π iff there is a set
N ′ ⊆ N where t′ is a team consisting of all agents inN ′ and
vi(t
′) > vi(t

i) for all ni ∈ N ′. In RBHG, a team t′ having a
composition c′ blocks a partition π iff there is a set P ′ ⊆ P
and an assignment of agents in P ′ to the bag of roles c such
that ui(ri, c) > ui(r

i, ci) for all pi ∈ P ′.
Observation 3 (Sung and Dimitrov 2010; Aziz, Brandt, and
Seedig 2011) Checking whether a non-empty CS partition
exists in an ASHG is NP-hard.

Strict Core Stable A team t′ weakly blocks a partition
π if each player i ∈ t′ has greater or equal utility for t′
compared to its current team ti ∈ π and at least one player
j ∈ t′ has greater utility for t′ than its current team tj ∈ π.
A partition π which admits no weakly blocking coalition is
said to be in the strict core or strict core stable (SCS). If the
strict core is empty, this means that there are no strict core
stable partitions.
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In ASHG, a team t′ weakly blocks a partition π iff there
is a setN ′ ⊆ N where t′ is a team consisting of all agents in
N ′, vi(t′) ≥ vi(t

i) for all ni ∈ N ′, and vj(t′) > vj(t
j)

for at least one nj ∈ N ′. In RBHG, a team t′ having a
composition c′ weakly blocks a partition π iff there is a set
P ′ ⊆ P and an assignment of agents in P ′ to the bag of
roles c such that ui(ri, c) ≥ ui(r

i, ci) for all pi ∈ P ′ and
uj(r

j , c) > uj(r
j , cj) for at least one pj ∈ P ′

Observation 4 (Sung and Dimitrov 2010; Aziz, Brandt, and
Seedig 2011) Checking whether a non-empty strictly core
stable partition exists in an ASHG is NP-hard.

Contractual Strict Core Stable A partition π is said to
be in the contractual strict core or contractual strict core
stable (CSCS) iff any weakly blocking team t′ makes at least
one player nj ∈ N\t′ worse off when breaking off.

In ASHG, a player nj ∈ N is worse off when a weakly
blocking team t′ breaks off if some agent ni ∈ t′ was for-
merly on tj ∈ π and vj(tj − {ni}) < vj(t

j). In RBHG, a
player nj ∈ N is worse off when a weakly blocking team t′

breaks off if some agent pi ∈ t′ was formerly on tj ∈ π in a
role ri and uj(rj , cj − {ri}) < uj(r

j , cj).

Observation 5 (Aziz, Brandt, and Seedig 2011) Verifying
whether the partition is contractual strict core stable in
ASHGs is coNP-complete.

Pareto Optimal A partition π is Pareto optimal (PO) iff
there is no partition π′ such that each agent has utility greater
than or equal to their utility for π and at least one agent has
greater utility for π′ than for π (Aziz, Brandt, and Seedig
2011).

In ASHG, a partition π is Pareto optimal iff there is no
partition π′ such that vi(t′i) ≥ vi(t

i) for all ni ∈ N and
vj(t

′j) > vj(t
j) for at least one nj ∈ N . In RBHG, a parti-

tion π is Pareto optimal iff there is no partition π′ such that
ui(r

′i, c′i) ≥ ui(r
i, ci) for all pi ∈ P and uj(r′j , c′j) >

uj(r
j , cj) for at least one pj ∈ P .

Observation 6 (Aziz, Brandt, and Seedig 2010; 2011) Veri-
fying whether a given partition π is Pareto optimal in ASHGs
is coNP-complete.

Envy Free A partition π is envy free (EF) iff no player
has utility for her team that is less than her utility for another
agent’s team.

In ASHG, π is EF iff no player ni ∈ N has utility vi(ti) <
Σk∈tjvi(k), for some player j ∈ N on team tj ∈ π. In
RBHG, π is EF iff no player pi ∈ P has utility ui(ri, ci) <
ui(r

j , cj), for some player pj ∈ P on team tj ∈ π in role
rj .

Observation 7 (Aziz, Brandt, and Seedig 2010) Checking
whether there exists a partition which is both envy free and
Nash stable in ASHGs is NP-complete even if preferences
are symmetric.

Stability Complexity in RBHG
Definition 1 The language NS RBHG consists of instances
of RBHG for which there exists a Nash stable solution.

Theorem 1 NS RBHG is NP-complete.

Proof 1 To see that NS RBHG is in NP, we observe that
Nash stability for a single RBHG agent can be verified in
time O(|P | · |R|). Verifying the property for all agents re-
quires time O(|P |2 · |R|).

Next, we construct a reduction, f , from NS ASHG to NS
RBHG. Let A be an instance of NS ASHG with a popula-
tion N and utility function vector V .

We define f(A) = (P,R,C,U) to be an instance of
RBHG. We set |P | = |N |, R = {r1, ..., r|N |}, and C =
P (R). We set U for all agents as follows:

ui(r, c) =


Σj∈cvi(j) if r = ri

and ri ∈ c
−MaxAbsValue(A) · |P | − 1 o.w.

Observation 8 The only partitions with positive values con-
sist of coalitions where, for each pi ∈ P , pi is assigned to
role ri. Therefore we limit C to such coalitions.

Let f(A) be in NS RBHG and let π be a Nash stable
partition of f(A). From π we construct a partition π′ of A
using f−1. Since π maps each pi ∈ P to the role ri repre-
senting f−1(pi) = ni ∈ N , we have that f−1(π) = π′ is a
well-defined partition of A. We claim that π′ is Nash stable.

Suppose there were an agent ni ∈ N and a team t′ ∈ π′
such that vi(t′ ∪ {ni}) > vi(t

i). Then by the construction,
there must be an agent pi ∈ P and a team t′ ∈ π having
composition c′ such that ui(ri, c′ ∪ {ri}) > ui(r

i, ci). This
contradicts the premise that π is Nash stable. Therefore if
f(A) is in NS RBHG then A is in NS ASHG.

Now let π be a Nash stable partition of A. Let π′ = f(π)
be the corresponding partition in f(A). For each agent pi ∈
P , ui(ri, ci) = vi(t

i) where ti ∈ π is composed of the
agents represented by the roles in ci. By the same argument
as in the previous case, we get that π′ is also Nash stable.
Therefore if A is in NS ASHG then f(A) is in NS RBHG.

Therefore f(A) is in NS RBHG iff A is in NS ASHG.
Thus, we have shown that f is a reduction from NS ASHG
to NS RBHG. �

Definition 2 The language EF NS RBHG consists of those
instances of RBHG for which there exists an envy free Nash
stable solution.

Theorem 2 EF NS RBHG is NP-complete.

Proof Sketch 2 We use the same reduction as in Theorem
1, and show that the reduction preserves envy freeness and
Nash stability of the partitions. �

Definition 3 The language IS RBHG consists of those in-
stances of RBHG for which there exists an individually sta-
ble solution.

Theorem 3 IS RBHG is NP-complete.

Proof Sketch 3 The reduction from Theorem 1 also pre-
serves individual stability of partitions.
�

Definition 4 The language CS RBHG consists of those in-
stances of RBHG for which there exists a non-empty core
stable solution.

Theorem 4 CS RBHG is NP-complete.
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Proof 4 We will show that the reduction given in the proof
of Theorem 1 is also a reduction from CS ASHG to CS
RBHG.

Let f(A) be in CS RBHG and let π be a core stable parti-
tion of f(A). From π we construct a partition π′ of A using
f−1. Since π maps each pi ∈ P to the role ri representing
f−1(pi) = ni ∈ N , we have that f−1(π) = π′ is a well-
defined partition of A. We claim that π′ is core stable.

Suppose there were a subset of agents N ′ ⊂ N such that,
for each ni ∈ N ′, vi(N ′) > vi(t

i). Then by the construc-
tion, there must be a subset of agents P ′ ⊂ P such that,
for each pi ∈ P ′, ui(ri, c′) > ui(r

i, ci) where c′ ⊂ R is
composed of the roles represented by the agents in P ′. This
contradicts the premise that π is core stable. Therefore if
f(A) is in CS RBHG then A is in CS ASHG.

Now let π be a core stable partition of A. Let π′ = f(π)
be the corresponding partition of f(A). For each agent pi ∈
P , ui(ri, ci) = vi(t

i) where ti ∈ π is composed of the
agents represented by the roles in ci. By the same argument
as in the previous case, we get that π′ is also core stable.
Therefore if A is in CS ASHG then f(A) is in CS RBHG.

Therefore f(A) is in CS RBHG iff A is in CS ASHG.
Thus, we have shown that f is a reduction from CS ASHG
to CS RBHG. �

Definition 5 The language SCS RBHG consists of those
instances of RBHG for which there exists a non-empty strict
core stable solution.

Theorem 5 SCS RBHG is NP-complete.

Proof Sketch 5 We use the same reduction as in Theorem 1,
and show that the reduction preserves strict core stability of
the partitions. �

Definition 6 The grand coalition for RBHG is an partition
π of all agents to a single team t. In RBHG, there are sev-
eral possible grand coalitions with different distributions of
roles.

Definition 7 The language GRAND PO RBHG consists
of those instances of RBHG for which there exists a parti-
tion consisting of the grand coalition and some assignment
of agents to roles that is Pareto optimal.

Theorem 6 GRAND PO RBHG is coNP-complete.

Proof 6 First we show that GRAND PO RBHG is in coNP.
Given two partitions π and π′ for an instance of RBHG, we
can check in polynomial time if π′ is a partition such that
ui(r

′i, c′i) ≥ ui(r
i, ci) for all pi ∈ P and uj(r′j , c′j) >

uj(r
j , cj) for at least one pj ∈ P . Thus, given an instance

f(A) of RBHG and a grand coalition π, it is NP to decide
that π is not Pareto optimal.

We will show that the reduction given in the proof of The-
orem 1 is also a reduction from GRAND PO ASHG to
GRAND PO RBHG.

Let f(A) be in GRAND PO RBHG and let π be a Pareto
optimal partition of f(A) consisting of the grand coalition.
Observe that each agent in pi ∈ π must be assigned to ri ∈
R, or else π could not be Pareto optimal.

Observation 9 By the construction, each agent pi ∈ P has
ui(r, c) = −MaxAbsValue(A) · |P | − 1 when r 6= ri. Since

π is a Pareto optimal partition, each agent pi ∈ π must
be assigned to ri ∈ R. Otherwise the partition could be
improved by assigning each agent pi to its role ri.

Consider for example an instance f(A) of RBHG
where P = {p1, p2, p3, p4}. Denote the composition
cg = {r1, r2, r3, r4}. Let u1(r1, cg) = 1, u2(r2, cg) =
−2, u3(r3, cg) = 0 and u4(r4, cg) = 2. Let
−MaxAbsValue(A) = −2. Let πg be a partition consisting
of the grand coalition with the composition cg . Should any
agent change roles to form a new partition π′g , this will de-
crease the utility of each agent to−MaxAbsValue(A) · |P |−
1 = −9.

Therefore if a partition π consisting of the grand coalition
is Pareto optimal, it can only be one in which each agent
pi ∈ P is assigned to ri ∈ R. This holds for any instance
generated by the construction. We can guarantee that there
is no π′g with a composition c′g 6= cg which is Pareto optimal.
However, πg is not guaranteed to be Pareto optimal.

From π, a Pareto optimal partition of f(A), we construct
a partition π′ of A using f−1. Since π maps each pi ∈ P
to the role ri representing f−1(pi) = ni ∈ N , we have that
f−1(π) = π′ is a well-defined partition of A. We claim that
π′ is Pareto optimal.

Suppose there were a partition π′δ of A such that, for each
ni ∈ N assigned to its team tiδ ∈ π′δ , vi(tiδ) ≥ vi(N) and
for at least one nj ∈ N assigned to its team tjδ ∈ πdelta′,
vj(t

j
δ) > vi(N). Then by the construction, there must be a

partition f(π′δ) of f(A) such that each agent pi is assigned
to ri and, for each pi ∈ P , ui(ri, ciδ) ≥ ui(ri, ci) and, for at
least one pj ∈ P , uj(rj , c

j
δ) > ui(r

j , cj). This contradicts
the premise that π is Pareto optimal. Therefore if f(A) is in
GRAND PO RBHG then A is in GRAND PO ASHG.

Now let π be a Pareto optimal partition of A. Let π′ =
f(π) be the corresponding partition of f(A). For each agent
pi ∈ P , ui(ri, ci) = vi(t

i) where ti ∈ π is composed of
agents represented by roles in ci. By the same argument as
in the previous case, we get that π′ is also Pareto optimal.
Therefore if A is in GRAND PO ASHG then f(A) is in
GRAND PO RTHG.

Therefore f(A) is in GRAND PO RBHG iff A is in
GRAND PO ASHG. Thus, we have shown that f is a re-
duction from GRAND PO ASHG to GRAND PO RBHG.

�

Definition 8 The language GRAND CSCS RBHG con-
sists of those instances of RBHG for which there exists a par-
tition consisting of the grand coalition and some assignment
of agents to roles which is contractual strict core stable.

Theorem 7 GRAND CSCS RBHG is coNP-complete.

Proof Sketch 7 We use the same reduction as in Theorem 1,
and show that the reduction preserves contractual strict core
stability of the partitions. �

Conclusions
In this paper, we defined the RBHG model and investigated
the complexity of finding stable partitions of RBHG in-
stances. We considered different notions of stability in coali-
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tion formation games in terms of allowable movements from
a given partition.

We defined several stability problems in RBHG. We
showed that finding Nash stable, envy free and Nash stable,
individually stable, core stable, and strict core stable solu-
tions are all generally NP-complete. We showed that finding
contractual strict core stable and Pareto optimal solutions are
both coNP-complete.

We plan to develop heuristic approximations for these
stability problems in general RBHG. Additionally, new re-
strictions on utility functions, the sets of available roles and
compositions, and the sets of movement available to agents
may be considered. Leveraging restrictions on these vari-
ables may allow for fast algorithms on special instances of
RBHG which have not yet been investigated.

When agents can make decisions about their partitions,
the primary goal should be to make those decisions easy.
We propose that, in any setting where agent utilities are he-
donic and the agents are afforded some ability to defect from
a partition, stable partition should be considered the primary
goal for a central authority. Optimization of a utility function
will not matter if the agents can simply defect from the par-
tition we worked so hard to achieve. Available methods of
movement should be considered for each real world setting.
Stability against such movements must be ensured before
any optimization can be considered worthwhile.
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