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Abstract

As the current standard practice of manually recorded
vital signs through a few hours is giving way to con-
tinuous, automated measurement of high resolution vi-
tal signs, it brings a tremendous opportunity to pre-
dict patient outcomes and help to improve the early
care. However, making predictions in an effective way
is fairly challenging, because high resolution vital signs
data are multivariate, massive and noisy. Inspired by the
max-pooling approaches in Convolutional Neural Net-
works (CNN), we propose extensions of vanilla SAX-
BoP approach, called Pooling SAX-BoP to success-
fully predict patient outcomes from multivariate syn-
chronous vital signs data. Our experiments on two stan-
dard datasets demonstrate the Pooling SAX-BoP ap-
proaches are competitive with the current state-of-the-
arts on multivariate time series classification problems.
We also integrate Boosting algorithm as one of the most
powerful ensemble learning approaches on the BoP rep-
resentations to further improve the performance. Our
experimental results on the clinical data demonstrate
that our methods are accurate and stable for classifying
multivariate synchronous vital signs time series data.

Introduction
Non-invasive, continuous, high resolution vital signs data,
such as Electrocardiography (ECG) and Photoplethysmo-
graph (PPG), are commonly used in hospital settings for bet-
ter monitoring of patient outcomes to optimize early care.
Such intelligence amplifier will help doctors to judge pa-
tient status more accurately and quickly, thus to get thorough
preparation for future treatment (Kononenko 2001). This pa-
per is strongly motivated by the real world problem to pre-
dict the potential needs of the patient for pRBC (packed Red
Blood Cell) in next few hours from very high resolution vital
signs data (ECG and PPG).

We formulate this task as a regular multivariate time se-
ries classification problem. Because our data is massive and
noisy, the Symbolic Aggregation approXimation (SAX) ap-
proach is really a good representation approach for classi-
fication (Lin et al. 2003). It has been proved to be effec-
tive in several time series data mining tasks such as indexing
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(Camerra et al. 2010) and visualization (Kumar et al. 2005).
Moreover, Bag-of-Pattern makes use of SAX words to en-
code non-linearity and benefits from invariance to shift (Lin,
Khade, and Li 2012). Lin et al. reported the previous state-
of-the-art results using the One-Nearest-Neighbor classi-
fier (1NN) on UCR Time Series Classification/Clustering
databases (Keogh et al. ). Oates et al. applied SAX and BoP
to predict outcomes of traumatic brain injury (Oates et al.
2012a) and explored representation diversity by ensemble
voting to further improve classification performance (Oates
et al. 2012b).

SAX approach is suitable for univariate time series data.
Multivariate time series data is not only characterized by
individual attributes, but also by the relationships between
the attributes (Bankó and Abonyi 2012). Such information
is not captured by the similarity between the individual se-
quences (Weng and Shen 2008). To deal with the classifi-
cation problem on multivariate time series, several similar-
ity measurements including Edit distance with Real Penalty
(ERP) and Time Warping Edit Distance (TWED) are sum-
marized and tested on several benchmark dataset (Lin J
2012). Recently, a new symbolic representation for multi-
variate time series classification (SMTS) is proposed. SMTS
builds a tree learner with two ensembles to learn the segmen-
tations and a high-dimensional codebook (Baydogan and
Runger 2014).

While above methods provide new perspective to handle
multivariate data, some are time consuming (e.g. SMTS),
some are effective but cannot address the curse of dimen-
sionality (distance on raw data). Can we design such a
method to handle the specific type of multivariate physi-
ological time series data? We note that strong correlation
lies among multivariate time series, especially among the
synchronous physiological data. Yu et al. made a progress
to automatically estimate the reliability of reference heart
rates (HRr) derived from ECG and PPG waveforms which
is recorded by monitors (Yu et al. 2006). Lu et al. compared
5-minute recordings to demonstrate a very high correlation
level in the temporal and frequency domains with the nonlin-
ear dynamic analyses between HRV measures derived from
PPG and ECG (Lu et al. 2009). They confirmed where HRV
measures can be accurately derived in healthy subjects. PPG
could also provide the accurate interpulse intervals as a prac-
tical alternative to ECG for HRV analysis. Such strong cor-
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relations will greatly simplify the feature fusion procedure
for us. Some work has been proposed to visualize the corre-
lation among multivariate physiological time series data(Or-
donez, Adviser-Oates, and Adviser-Desjardins 2012).

Another work that our approaches mainly based on is the
special pooling structure in Convolutional Neural Networks
(CNN), one of the most successful deep learning architec-
tures (LeCun et al. 1989). In this work, we explored to cope
with classification problem on synchronous high resolution
vital signs data based on the new Pooling SAX algorithms
with BoP representations (Pooling SAX-BoP) and Boosting
methods (Freund and Schapire 1995). Our contributions are:
• Extending SAX method to multivariate synchronous vital

signs time series by applying pooling structures. Relying
on the assumption that strong correlation exists among
different variables, Pooling SAX can effectively extract
the principal information among different synchronous
variables.

• Comparing with majority voting (Oates et al. 2012b),
we integrated Boosting algorithm with Pooling SAX-Bop
representations to further improve the ensemble learning
performance on clinical data.

• Proposing a pipeline to process the clinical multivariate
vital signs data on predicting patient outcomes.

Pooling SAX-BoP Approaches
The principal idea of SAX is to smooth the input time series
using Piecewise Aggregation Approximation (PAA) and as-
sign symbols to the PAA bins. The overall time series trend
is extracted as a sequence of symbols.

The algorithm requires three parameters: window length
w, number of symbols s and alphabet size a. Different pa-
rameters lead to different representations of the time se-
ries. Given a normalized time series of length L, we first
reduce the dimensionality by dividing it into [L/w] non-
overlapping sliding windows with skip size 1. Each slid-
ing window is partitioned into s subwindows. Mean val-
ues are computed to reduce volume and smooth the noise.
Then PAA values are mapped to a probability density func-
tionN (0, 1), which is divided into several equiprobable seg-
ments. Letters starting from A to Z are assigned to each PAA
values according to their corresponding segments (1).

After discretization and symbolization, Bag-of-Patterns
(BoP) are built by a sliding window of length w and convert
each subsequence into s SAX words. BoPs catch the features
shared in the same structure among different instance and
regardless of where they occur. We build our features based
on BoP histogram of word counts that is analogous with the
bag-of-words (Wang et al. 2013; Lin, Khade, and Li 2012;
Baydogan, Runger, and Tuv 2013).

Pooling from Multivariate SAX Word
We proposed a post-processing stage to pool the signifi-
cant SAX word of each variable with different weighting
schemes that is analogous to multiple pooling structures
for feature extraction in Convolutional Neural Networks
(CNNs). Instead of weights trained by the label, we ap-
ply the non-parametric weights to determine the information

Figure 1: PAA and SAX word for the ECG data. The time
series of length 4000 are partitioned into 8 segments. In each
segment we compute means to map them to the equiprobable
interval. After discretization by PAA and symbolization by
SAX, we convert the time series into SAX word sequence
CABDAEBB.

density of each variable and pool out the significant words at
each time. Finally, we use the pooled-out sequence as single
outputs of the multivariate symbolic sequence to build the
BoPs. We call such feature extraction and fusion procedure
the Pooling SAX-BoP approaches.
Definition. Let X t

k denotes a subsequence/bin of time series
in the channel k at time t. Operator G denotes the process
of calculating PAA values in each bin, F is the function to
map PAA values to the corresponding SAX word with respect
to the standard normal distribution N (0, 1).Wk is the non-
parametric weights, S is the pooling output.

Given a subsequence/bin in a sliding window of multiple
time series (MTS) X t

1 ,X t
2 , · · · ,X t

k, the pooling functions of
four approaches are given below.
• Max Pooling

KMax = arg max
k
Wk · F(G(X t

k))

S = F(G(X t
KMax

)) (1)
Considering the toy example, we extract the SAX word,
[a] and [c] from a bin in the bivariate time series. Given
W1 = 0.8, W2 = 0.2, consider [a] × 0.8 = 1 × 0.8 >
3× 0.2 = [c]× 0.2, so S = [a].
• Min Pooling

KMin = arg min
k
Wk · F(G(X t

k))

S = F(G(X t
KMin

)) (2)
Considering the same toy example above with the SAX
word [a] and [c]. GivenW1 = 0.8,W2 = 0.2, [c]× 0.2 <
[a]× 0.8, then S = [c].
• Max-Min Pooling

After extracting two significant SAX words (their variable
index KMin and KMax) from pooling function in Equa-
tion. (1) and (2),

S = [F(G(X t
KMax

)),F(G(X t
KMin

))] (3)
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Table 1: CV error rates on two standard datasets
ECG wafer

Pooling SAX Max 0.115 0.0293
Pooling SAX Min 0.115 0.0168

Pooling SAX Max-Min 0.115 0.0242
Pooling SAX 3M 0.115 0.0242

SMTS 0.134 0.01
Euclidean 0.1778 0.0833

DTW(full) 0.1889 0.0909
DTW(window) 0.1722 0.0656

EDR 0.2 0.3131
ERP 0.1944 0.0556

LCSS 0.1278 0.1363
LCSS Relaxed 0.1278 0.1091

TWED 0.1278 0.0318

Considering the same example with the maximum pool-
ing word [a] and the minimum pooling word [c]. then
S = [a, c].

• Max-Min-Mean Pooling (3M Pooling)
Still this need to figure out the significant SAX word
indexKMin and KMax from pooling function in Equa-
tion. (1) and (2), we consider the weighted average of the
SAX word among different channels as

SMean = d
K∑

k=1

Wk

Z
· F(G(X t

k))e

Z =
K∑

k=1

Wk

(4)

Then

S = [F(G(X t
KMax

)),SMean,F(G(X t
KMin

))] (5)

Given two synchronous SAX words [a] and [c] with the
weights W1 = 0.8, W2 = 0.2, from Equation. (4),
SMean = d1× 0.8 + 3× 0.2e = 2 = b, then S = [a, b, c]

Above four pooling approaches are actually inspired from
the pooling architecture in CNNs. Max pooling in CNN at-
tempts to extract the significant weight vectors with respect
to the labels to achieve translation invariance. For multivari-
ate time series, we suppose to pool out the most significant
channels with more information density. Max/Min Pooling
provide us the translation invariance cross multiple chan-
nels at the same temporal interval. Max-Min pooling and
3M pooling are much like the multiple K-pooling. The mo-
tivation stems from the significance of the extreme values in
time series. 3M pooling combines the average pooling with
multiple K-pooling. In 3M pooling, we suppose to observe
how the weighted average value regulates the behavior of
the BoP representations together with max and min values.

The weight scheme Wk is a series of non-parametric
weights. They decide the significance level of each SAX
word in different channels at the same temporal interval.
We have multiple choices to define Wk. Entropy (Shan-
non 2001) concerns more about the information density of

Table 2: Test error rates on two standard dataset
ECG wafer

SMTS 0.182 0.035
MTSBF 0.165 0.015

Pooling SAX Max 0.16 0.02
Pooling SAX Min 0.18 0.033

Pooling SAX Max-Min 0.20 0.031
Pooling SAX 3M 0.18 0.039

each channel, average KL-divergence (Kullback and Leibler
1951) measures the difference between the object variable
and other variables. Permutation Entropy (Bandt and Pompe
2002) evaluates the complexity of a given time series. All
these measurements are nonparametric but have different
computation complexity and focus on different aspects. In
this paper, we mainly explore the physiological time se-
ries data. As aforementioned discussion, strong correlations
are always observed among different channels/variables.
We care more about the information density in each syn-
chronous variables as they tend to have more significant reg-
ulations in synchronous data. Our weight scheme is defined
as the rescaled variance:

Wk =

∑Lk

t=1(X t
k − X̄k)2

L
(6)

In the above equation, X t
k is rescaled into the interval

[0, 1]. Rescaled variance evaluates the information density
regardless of the magnitude in each channel. This weight
scheme regulates the pooling behavior to extract the signifi-
cant features while preferring the channels with more infor-
mation.

After pooling out the single sequence of SAX word from
the multivariate time series, we build the Bag-of-Patterns to
classify the multivariate time series with 1NN classifier.

Experiments on Standard Dataset and High
Resolution Vital Signs Data
Lin et al. compared multiple distance measurements for
classification on multivariate time series and use 10 fold
cross-validation (CV) to evaluate the performance (Lin J
2012). They chose four multivariate time series datasets.
Two of them are too short to use SAX approaches (the aver-
age length of ”AUSLAN” is 57 and the lengths of ”Japanese
Vowels” range from 7 to 29). We use the other two dataset
and compare the CV error rate with other approaches (in-
clude the current state-of-the-art approach SMTS (Baydo-
gan and Runger 2014)) in Table. 1. Baydogan et al. split
these two dataset as training and testing. They reported the
performance on the training-testing manner with their SMTS
and MTSBF methods. We also train our approach with CV
on the training set and compare the performance on the test
set (Table. 2). Our methods are proved to be quite competi-
tive with the SMTS approach while our approaches are sim-
pler (average running time is 3 hours) without any ensemble
framework. However, SMTS needs two ensembles to learn a
tree-based codebook. Their average running time is reported
to be 18 hours.
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Figure 2: Ranked classification error rate/precision/recall of pooling SAX-BoP on 100 bootstrap vital signs dataset.

In the next experiment, we test our approach on the bivari-
ate high resolution vital signs data. The clinical data is col-
lected in the University of Maryland, Medical School. All
the data is anonymous in order to protect the privacy. The
ECG and PPG data of 556 patients were recorded in 68 to
128 minutes long with 240 Hz sampling rate. Default value
(e.g. -31556 when there is no input) and missing value are al-
lowed. The length of 237 samples are less than 128 minutes.
The data is quite massive with more than 1.7 million data
points. The labels indicate if a patient needs blood transfu-
sion of pRBC or not in the next 6 hours. The data is highly
skewed with only 17 positive samples.

Considering the vital signs data is highly periodical, we
preprocess the data second by second. Among 7680 seconds,
we get rid of any interval with the default or missing value.
This may lead to information loss, because some seconds
only contain few missing number or default value. However,
inconsistency caused by missing number and default value
may exert deeper hazard due to the noise and false infor-
mation. Based on the fact that the normalized time series
has approximate Gaussian distribution (Lin et al. 2003), we
applied variance filter to further regulate the outliers. Ac-
cording to the 3-Sigma rule (Pukelsheim 1994), if a value
locates beyond three times deviations away from the mean,
the probability of that point incurring is naturally lower than
0.27%. Thus, we truncate these outliers to the lower and up-
per bounds. What we need is the overall trend encoded in
the time series, the last step of preprocessing is calculating
means in each second to reduce the volume and keeping the
overall trend analogously to PAA.

To guarantee the results on our dataset is not biased, we
build 100 new balanced datasets using bootstrap (Manly
2006) by keeping all the 17 positive samples fixed and
randomly choosing 17 negative samples with replacement.
To compare the performance of the Pooling SAX-BoP ap-
proaches on clinical data, we also test standard SAX-BoP
approach on each single variable of the vital signs data and
report the statistics of the best 1NN classifier error rate,
precision and recall with Leave-One-Out cross validation
(LOOCV) on the 100 bootstrap dataset (Table . 3).

Figure. 2 shows the ranked curve of classification er-
ror rate, precision and recall of four pooling SAX-BoP ap-
proaches on 100 resampled bootstrap datasets. In our ex-
periments, except for the Max Pooling, all other three ap-
proaches has the equivalent best error rate (0.117) among all

Table 3: The LOOCV statistics of the best performance for
standard SAX-BoP and multivariate Pooling SAX-BoP on
100 bootstrap dataset

Error Rate Precision Recall

PPG 0.192 ± (0.037) 0.813 ± (0.043) 0.808 ± (0.037)
ECG 0.256 ± (0.038) 0.748 ± (0.037) 0.744 ± (0.038)

MAX 0.169 ± (0.017) 0.831 ± (0.017) 0.831 ± (0.02)
MIN 0.196 ± (0.049) 0.807 ± (0.048) 0.804 ± (0.047)

MAX-MIN 0.188 ± (0.048) 0.813 ± (0.047) 0.811 ± (0.046)
3M 0.181 ± (0.040) 0.824 ± (0.040) 0.818 ± (0.034)

dataset. Although Max Pooling cannot reach to the best per-
formance as others, it is more stable with slight oscillation
in the performance curve. It also demonstrates better average
statistics with small standard deviation. Our experiments on
the clinical physiological data imply that Pooling SAX-BoP
approaches improve the expressive power of the BoP repre-
sentations and enhance the classification performance. They
not only demonstrate the competitive state-of-the-art perfor-
mance on standard datasets, but also work well to solve the
real world problems.

Ensemble Learning on BoP Representations
Using Boosting Algorithm

SAX reduces the dimensionality but also drops much details
in the raw data. The Pooling SAX methods attempt to ex-
tract the significant SAX words while preserving the core
information. This means SAX based approaches run the risk
of information loss where the key structures in specific time
series might be discarded, thus leads to the samples to be
misclassified. Some work has been proposed to exploit rep-
resentational diversity for time series classification via en-
sembles of the representations (Oates et al. 2012b). We ran-
domly select a balanced dataset to test majority voting ap-
proach as a baseline. That is, a subset of those classifiers is
chosen and allowed to vote on the class labels for test set
instances, with the unweighted majority used to predict the
class label. We chose the subset by keeping only those rep-
resentations with top K lowest error rates of the best repre-
sentation as measured by 1NN error on the training set.

In Figure. 3 (a), we observe the effect of information loss
in the voting results. As the number of voting agents increase
from 10 to 70, there is no change in LOOCV error rates
for Max Pooilng SAX. The enhancement of performance on
other pooling structures is also not so clear. That is, informa-
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Figure 3: LOOCV Error Rate of a) majority voting (left) and b) Boosting (right) with Pooling SAX-BoP approaches on vital
signs data.

tion loss leads to the failure to interpret key features among
the top Pooling SAX-BoP representations.

Boosting on Pooling SAX-BoP Representations
To address misclassification caused by feature missing in
the Pooling SAX-BoP approaches, we apply Boosting al-
gorithm to build a non-linear classifier (Freund, Schapire,
and others 1996). Boosting adaptively changes the sample
weights according to previous classification results to fo-
cus on the toughest samples. The missing feature dimension
caused by information loss is hit by the larger weight during
the iterative process. Instead of increasing the dimensional-
ity of the feature space in kernel methods, we use Boost-
ing to tune the linear classification hyperplane of several
weak classifiers into a nonlinear classification hyperplane
by weighted summation. Despite of missing dimension, the
nonlinear hyperplane potentially classify some tough sam-
ples in the linear situations.

We apply a slightly modified version of Boosting algo-
rithm for SAX-BoP representations to classify the balanced
vital signs dataset. The trick is to combine each SAX-BoP
patterns with a 1NN classifier as a weak learner in Boost-
ing algorithm. What Boosting does for 1NN classifier is to
create an ensemble of models with locally modified distance
weighting (Athitsos and Sclaroff 2005). After approximately
10 turns voting, the converged performance is significantly
enhanced (Figure 3 (b)).

Recall that we preprocessed high resolution vital signs
data by averaging in each second interval. If voting through
the diversity of BoP representation enrich the information
and enhance the performance, multiple preprocessing fre-
quencies can also capture different temporal information in
the vital signs data, respectively. In preprocessing stage, we
calculate the mean value in each 1 , 0.5 and 0.3 second in-
terval and combine the Pooling SAX-BoPs on these three
preprocessing frequencies together into one large dataset.
Because better weak learner will be selected in each itera-
tion from the samples of three resampling frequencies, dif-
ferent resampling rate will mix various temporal diversity
into Boosting algorithm to further enhance the classification
performance and accelerate the converge speed (Figure.4).
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Figure 4: LOOCV Error Rate of Boosting algorithm with
Pooling SAX-BoP approaches on the vital signs data of mul-
tiple frequency.

Boosting runs the risking of overfitting. The direct appli-
cation of VC theory shows that boosting can work well if
providing simple weak classifiers which satisfy the weak
learning condition, and if running for enough but not too
many rounds (Schapire 2013). We update the error rate from
the optimal SAX-BoP representation and 1NN classifiers
with the higher accuracy than 50%. The convergence curve
in Figure. 3 (b) shows that Boosting algorithm in our case
does not need many iterations (About 10 turns) to converge
to its stable performance. We applied the fully trained Boost-
ing classifier on the balanced dataset of multiple frequency
to classify the fully 556 samples. The Boosting classifier
achieved 4.856% error rate. Meanwhile, predicting using the
trained Boosting classifier is very fast and convenient for
real-time classification of physiological data in a second-by-
second manner.

Conclusion and Future Work
In this paper, we proposed the pooling SAX-BoP with
Boosting algorithm to solve classification problem on the
multivariate vital signs time series data. The experiments
on two standard datasets and the clinical vital signs data
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demonstrate the effectiveness and efficiency of the Pooling
SAX-BoP approach. Our approach achieved competitive re-
sults with two current state-of-the-art multivariate time se-
ries classifiers. Instead of majority voting, Boosting algo-
rithm is applied to significantly improve the performance.

Future work includes exploring the correlation between
multivariate vital signs data through statistics and feature
selection technique to further improve the performance. We
also plan to explore more clinical vital signs data to predict
patient outcomes.
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