
 

 

Lattice Queries for Search and Data Exploration 

Boris Galitsky 

Knowledge-Trail Inc. San Jose CA USA 

bgalitsky@hotmail.com 

 
 

 

Abstract 

We introduce the technique of lattice querying which auto-
matically forms the query from the set of text samples pro-
vided by a user, and produce search results by matching 
parse trees of this query with that of candidate answers. Lat-
tice queries allow increase in big data exploration efficiency 
since they form multiple “hypotheses” concerning user in-
tent and explore data from multiple respective angles. An 
importance of the lattice queries in data exploration is that 
only the most important keywords need to be submitted for 
web search, and neither a single document nor a keywords 
overlap delivers such the set of keywords. An open source 
plugin for ElasticSearch and a search request handler for 
SOLR are developed so that the proposed technology can be 
easily integrated with industrial search engines. 

 Introduction   

Today, it is hard to overestimate the popularity of infor-

mation access via search engines. Also, a vast number of 

distributed computing frameworks have been proposed for 

big data. They provide scalable storage and efficient re-

trieval, capable of collecting data from various sources, 

fast moving and fairly diverse. Modern open source big 

data search and exploration systems like Solr and Elas-

ticsearch are broadly used for access and analysis of big 

data. However, intelligence features such as search rele-

vance and adequate analysis, retrieval and exploration of 

large quantities of natural language texts are still lacking. 

Natural language text is still treated as a bag of words with 

their statistics in most industrial systems. In spite of the 

extensive capabilities of natural language parsing, they are 

still not leveraged by most search engines. 

   Also, frequently novice users of search engines experi-

ence difficulties formulating their queries, especially when 

these queries are long. It is often hard for user who is new 

to a domain to pick proper keywords. Even for advanced 

users exploring data via querying, including web queries, it 

is usually hard to estimate proper generality / specificity of 

                                                 
Copyright © 2015, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved. 
 

a query being formulated. Lattice querying makes it easier 

for a broad range of user and data exploration tasks to for-

mulate the query: given a few examples, it formulates the 

query automatically. 

 In this work we intend to merge the efficiency of distrib-

uted computing frame-work with the intelligence features 

of data exploration provided by NLP technologies. We 

introduce the technique of lattice querying which automat-

ically forms the query from the set of text samples provid-

ed by a user by generalizing them in the level of parse 

trees. Also the system produces search results by matching 

parse trees of this query with that of candidate answers. 

Lattice queries allow increase in big data exploration effi-

ciency since they form multiple “hypotheses” concerning 

user intent and explore data from multiple angles (general-

izations). 

    Exploring data, mostly keyword query and phrase query 

are popular, as well as natural language-like ones. Users of 

search engines appreciate more and more ‘fuzzy match’ 

queries, which help to explore new areas where the 

knowledge of exact key-words is lacking. Using syno-

nyms, taxonomies, ontologies and query expansions helps 

to substitute user keywords with the domain-specific ones 

to find what the system believes users are looking for 

(Galitsky 2003). 

   The idea of lattice query is illustrated in Fig. 1. Instead of 

a user formulating a query exploring a dataset, he or she 

proves a few samples (expressions of interest) so that the 

system formulates a query as an overlap (generalization) of 

these samples, applied in the form of a lattice (shown in 

bold on the bottom). 

    Proceeding from a keyword query to regexp or fuzzy 

one allows making search more general, flexible, assists in 

exploration of a new domain, as set of document with un-

known vocabulary. What can be a further step in this direc-

tion? We introduce lattice queries, based on natural lan-

guage expressions which are generalized into an actual 

query. 

 

534

Proceedings of the Twenty-Eighth International Florida Artificial Intelligence Research Society Conference



  
 

  

 

 

 
  

     

 
Fig. 1: Lattice query in comparison with regular queries 

 

   Nowadays, search engines ranging from open source to 

enterprise offer a broad range of queries with string charac-

ter-based similarity. They include Boolean queries, span 

queries which restrict the distances between keywords in a 

document, regular expressions queries which allow a range 

of characters at certain positions, fuzzy match queries and 

more-like-this which allow substitution of certain charac-

ters based on string distances.  Other kinds of queries allow 

expressing constraints in a particular dimension, such as 

geo-shape query. Proceeding from a keyword query to re-

gexp or fuzzy one allows making search more general, 

flexible, assists in exploration of a new domain, as set of 

document with unknown vocabulary. What can be a further 

step in this direction? We introduce lattice queries, based 

on natural language expressions which are generalized into 

an actual query. Instead of getting search results similar to 

a given expression (done by ‘more like this' query), we 

first build the commonality expression between all or sub-

sets of the given sample expressions, and then use it as a 

query. A frame query includes words as well as attributes 

such as entity types and verb attributes. 

Sentence-based Lattice Queries 

Let us start with an employee search example. Let us imag-

ine a company looking for the following individuals: 

A junior sale engineer expert travels to customers on site.  

A junior design expert goes to customer companies. 

A junior software engineer rushes to customer sites.  

Given the above set of samples, we need to form a job-

search query which would give us candidates somewhat 

similar to what we are looking for.  A trivial approach 

would be to just turn each sample into a query and attempt 

to find an exact match. However most of times it would not 

work, so such queries need to release some constraints. 

How to determine which constraints need to be dropped 

and which keywords are most important? 

  To do that, we apply generalization to the set of these 

samples. For the entities and attributes, we form the least 

general generalization. The seniority of the job (adjective) 

'junior' will stay. The job activity (noun phrase) varies, so 

we generalize them into <job-activity>. The higher-level 

reference to the job is 'expert' and is common for all three 

cases, so stays. The verb for job responsibility varies, so 

we use <action>, which can be further specified as  

<moving_action>, using verb-focused ontologies like 

VerbNet. To generalize the last noun phrase, we obtain the 

generalization <customer, NP>. 

junior <any job activity> expert <action> customer-NP. 

This is a lattice query, which is expected to be run against 

job descriptions and find the cases which are supposed to 

be most desired, according to the set of samples. 

In terms of parse trees of the potential sentences to be 

matched with the lattice query, we rewrite it as 

JJ-junior NP-* NN-expert VP-* NN-customer NP-* 

The lattice query read as find me a junior something expert  

doing-something-with customer of-something. 

Now we show how this template can applied to ac-

cept/reject a candidate answer Cisco junior sale repre-

sentative expert flew to customers data centers. 

  We represent the lattice query as a conjunction of noun 

phrases (NP) and verb phrases (VP) set: 

 [[NP [DT-a JJ-junior NN-* NN-* ], NP [NN*-customers 

]], [VP [VB-* TO-to NN*-customers ]]] 

 The first NP covers the beginning of the lattice query 

above, and the second NP covers the end. VP covers the 

second half of the lattice query starting from doing-

something... 

The generalization between the lattice query and a candi-

date answer is 

[[NP [JJ-junior NN-* NN-* ], NP [NN*-customers ]], [VP 

[VB-* TO-to NN*-customers ]]] 

One can see that the NP part is partially satisfied (the arti-

cle a does not occur in the candidate answer) and VP part 

is fully satisfied. 

   Here are the parse trees for three samples 

 

Fig. 2: Parse trees for three samples to form a lattice query 

 

We obtain the lattice query to run against a dataset: 

 [[NP [DT-a JJ-junior NN-* NN-* ], NP [NN*-customers 

]], [VP [VB-* TO-to NN*-customers ]]] 

   One can see that using lattice queries, one can be very 

sensitive in selecting search results. Searching for a token 

followed by a word with certain POS instead of just a sin-

gle token gives a control over false-positive rate. Automat-

ed derivation of such constraint allows user to focus on 

Regular 

search 

query 
data 

Expression 

of interest 1 

Expression 
of interest 3 

Expression 

of interest 2 

Lattice  

query 

 

 

 

 

 

 

 

 

535



cases instead of making efforts to generate a query which 

would keep expected search results in and unwanted out. 

Definition: a lattice query Q is satisfied by a sentence S, if 

Q^S = S. 

In practice a weak satisfaction is acceptable, where  

Q^S  S, but there are constraints on the parts of the lattice 

query: 

• A number of parts in  Q^S should be the same as in Q; 

• All words (not  POS-* placeholders) from Q should also 

be in Q^S. 

Paragraph-level Lattice Queries 

Text samples to form a lattice query can be typed, but also 

can be taken from text already written by someone. To 

expand the dimensionality of content exploration, samples 

can be paragraph-size texts (Galitsky 2014).  

   Let us consider an example of a safety-related explora-

tion task, where a researcher attempts to find a potential 

reason for an accident. Let us have the following texts as 

incidents descriptions. These descriptions should be gener-

alized into a lattice query to be run against a corpus of texts 

for the purpose of finding a root cause of a situation being 

described. 

As a result of generalization from two above cases, we will 

obtain a set of expressions for various ways of  formulating 

commonalities between these cases. We will use the fol-

lowing snapshot of a corpus of text to illustrate how a lat-

tice query is matched with a paragraph:  

We link two phrases in different sentences since they are 

connected by a rhetoric relation based on However … 

We are also linking phrases of different sentences based on 

communicative actions: 

As a result of generalizing two paragraphs, we obtain the 

lattice query: 

Notice that potential safety-related “issues” are ice-axe, 

snow, crampons, being at a … field during later afternoon, 

being dangerous, necessity to use ice-axe, crossing the 

snow, and others. These issues occur in both samples, so 

that are of a potential interest. Now we can run the formed 

lattice query against the corpus and observe which issues 

extracted above are confirmed. A simple way to look at it 

is as a Boolean OR query: find me the conditions from the 

list which is satisfied by the corpus. The generalization for 

the lattice query and the paragraph above turns out to be 

satisfactory: 

 

Hence we got the confirmation from the corpus that the 

above hypotheses, encoded into this lattice query, are true. 

Notice that forming a data exploration queries from the 

original paragraphs would contain too many keywords and 

would produce too much marginally relevant results. 

Crossing the snow slope was dangerous. They informed in 

the blog that an ice axe should be used. However, I am 

reporting that crossing the snow field in the late afternoon 

I had to use crampons.  

 

I could not cross the snow creek since it was dangerous. 

This was because the previous hiker reported that ice axe 

should be used in late afternoon.  To inform the fellow hik-

ers, I had to use crampons going across the show field in 

the late afternoon. 

I had to use crampons to cross snow slopes without an ice 

axe in late afternoon this spring. However in summer I do 

not feel it was dangerous crossing the snow. 

  

rel: <sent=1-word=1..inform> ===> 

<sent=2-word=4..report> 

From [<1>NP'They':PRP] 

TO [<4>NP'am':VBP, NP'reporting':VBG, 

<8>NP'the':DT, <9>NP'snow':NN, 

<10>NP'field':NN, <11>NP'in':IN, 

<12>NP'the':DT, <13>NP'late':JJ, 

<14>NP'afternoon':NN, <15>NP'I':PRP, 

<16>NP'had':VBD, <17>NP'to':TO, 

<18>NP'use':VB, <19>NP'crampons':NNS] 

 

rel: <sent=1-word=6..report> ===> 

<sent=2-word=1..inform> 

From [<4>NP'the':DT, 

<5>NP'previous':JJ, <6>NP'hiker':NN] 

TO [<1>NP'To':TO, <2>NP'inform':VB, 

<3>NP'the':DT, <4>NP'fellow':JJ, 

<5>NP'hikers':NNS] 

[[NP [NN-ice NN-axe ], NP [DT-the NN-

snow NN-* ], NP [PRP-i ], NP [NNS-

crampons ], NP [DT-the TO-to VB-* ], NP 

[VB-* DT-the NN-* NN-field IN-in DT-the 

JJ-late NN-afternoon (TIME) ]], [VP 

[VB-was JJ-dangerous ], VP [VB-* IN-* 

DT-the NN-* VB-* ], VP [VB-* IN-* DT-

the IN-that NN-ice NN-axe MD-should VB-

be VB-used ], VP [VB-* NN-* VB-use ], 

VP [DT-the IN-in ], VP [VB-reporting 

IN-in JJ-late NN-afternoon (TIME) ], VP 

[VB-* NN*-* NN-* NN*-* ], VP [VB-

crossing DT-the NN-snow NN-* IN-* ], VP 

[DT-the NN-* NN-field IN-in DT-the JJ-

late NN-afternoon (TIME) ], VP [VB-had 

TO-to VB-use NNS-crampons ]]] 

[[NP [NN-ice NN-axe ], NP [NN-snow NN*-* ], 

NP [DT-the NN-snow ], NP [PRP-i ], NP [NNS-

crampons ], NP [NN-* NN-* IN-in JJ-late NN-

afternoon (TIME) ]], [VP [VB-was JJ-

dangerous ], VP [VB-* VB-use ], VP [VB-* 

NN*-* IN-* ], VP [VB-crossing NN-snow NN*-* 

IN-* ], VP [VB-crossing DT-the NN-snow ], VP 

[VB-had TO-to VB-use NNS-crampons ], VP [TO-

to VB-* NN*-* ]]] => matched 

536



Generalization Operation 

The purpose of an abstract generalization is to find the 

commonality between portions of text at various levels. 

The generalization operation occurs on the levels of Article 

/ Paragraph / Sentence /Phrase/Individual word. 

  At each level except the lowest one, the result of the gen-

eralization of two expressions is a set of expressions. In 

such a set, expressions for which less-general expressions 

exist are eliminated. The generalization of two sets of ex-

pressions is a set of the sets that are the results of the pair-

wise generalization of these expressions. 

   Definition 1: Generalization of words 

The result of generalization of two words,  

 w1 ^ w2 = <  lemma(w1) ^ lemma(w2),  pos(w1) ^ pos(w2)>.  

lemma(w1) ^ lemma(w2) is either  w1=w2 , if the words are 

the same, or ‘*’ otherwise (a placeholder for an arbitrary 

word, if words w1 and w2 are different. 

pos(w1) ^ pos(w2) is either part-of-speech pos(w1) ^ 

pos(w2), or ‘*’ otherwise (if their parts-of-speech are dif-

ferent). 

    Definition 2: Generalization of phrases: 
 Only phrase of the same type can be generalized; 

 For noun phrases, only those with the same head 
noun can be generalized. The generalization result 
includes this head noun. The head of a phrase is 
the word that determines the syntactic type of that 
phrase or analogously the stem that determines the 
semantic category of a compound of which it is a 
part. The rest of the words in phrases is general-
ized according to Definition 1. 

 For verb phrases, they should have the same verb. 

 For other types of phrases, generalization occurs 
analogously. Notice that English is primarily a 
head-initial language. Structure is descending as 
speech and processing move from left to right. 
Most dependencies have the head preceding its 
dependent(s), although there are also head-final 
dependencies in parse trees. For instance, the de-
terminer-noun and adjective-noun dependencies 

are head-final as well as the subject-verb depend-
encies. Most other dependencies in English are, 
however, head-initial; the mixed nature of head-
initial and head-final structures is common across 
languages. 

    Definition 3: Generalization of sentences. 

S1 ^S2 = ᴗp  ᴗi p1i^p2j , where p1i and p2j  are phrases from 

sentences S1  and S2 S1 of type p{ NP, VP, …} 

    We outline the algorithm for generalization two sentenc-

es below, which concerns paths of syntactic trees rather 

than sub-trees because these paths are tightly connected 

with language phrases. Regarding the operations on trees, 

we follow the work of (Kapoor & Ramesh 1995).    

     Although it is a formal operation on abstract trees, the 

generalization operation yields semantic information about 

the commonalities between sentences. Rather than extract-

ing common keywords, the generalization operation pro-

duces a syntactic expression that can be semantically inter-

preted. 

Evaluation 

We conduct evaluation for complex information extraction 

tasks such as identifying communicative actions and de-

tecting emotional states. Also, we perform evaluation for 

the rhetoric relation domain: this task is necessary to build 

a set of parse trees for a paragraph, linking its parse trees. 

We draw the comparison between information extraction 

based on the means available within Elasticsearch and Solr 

latticework:  

 keyword Boolean queries,  

 span queries where the distance between 

keywords in text is constrained, and 

 lattice query-based information extraction. 

The corpus is based on he set of customer complains, 

where both communicative actions and emotions are fre-

quent and essential for complaint analysis tasks. Evaluation 

was conducted by quality assurance personnel. 

Method 

Task 

Keywords and Regexps Keywords and Regexp Queries Span and ‘Like’ Queries Lattice queries 

P/R speed P/R Speed P/R speed P/R speed 

Communicative actions 64 71 1 63 72 0.02 68 70 0.05 82 75 15.1 

Emotional state 62 70 1.2 59 70 0.02 64 68 0.05 80 74 18.2 

Rhetoric relation 56 65 1.5 56 66 0.02 59 70 0.05 77 70 25.4 

Table 1: Evaluation of lattice query-based information extraction tasks 

537



Table 2: Evaluation of web mining via lattice queries 

 

We observe in Table 1 that the information extraction F-

measure for keywords and regular expressions is both 64% 

for querying indexed data and string search (although the 

former is about 50 times faster). Relying on span queries 

gives just 2% increase in F-measure, whereas using lattice 

queries delivers further 10% improvement.  

   We also evaluate the data exploration scenarios using 

search engine APIs. Instead of formulating a single com-

plex question and submit it for search, a user is required to 

describe her situation in steps, so that the system would 

assist with formulating hypotheses on what is important 

and what is not. The system automatically derives general-

izations and builds the respective set of lattice queries. 

Then search engine API is used to search the web with 

lattice queries and automatically filter out results which are 

not covered by the lattice query. To do the latter, the sys-

tem generalizes each candidate search results with the lat-

tice query and rejects the ones not covered, similar to the 

information extraction scenario. 

   This year I purchased my Anthem Blue Cross insurance 

through my employer. What is the maximum out-of-pocket 

expense for a family of two in case of emergency? 

  Last year I acquired my individual Kaiser health insur-

ance for emergency cases only. How much would be my 

out of pocket expense within a year for emergency services 

for my wife and kids? 

The system finds a commonality between these paragraphs 

and forms a lattice query, so that the search results are as 

close to this query as possible. An alternative approach is 

to derive a set of lattice queries, varying generalization 

results, and delivering those search results which are cov-

ered the best with one of the lattice query from this set (not 

evaluated here). 

   We show the percentage of relevant search results, de-

pending on how queries are formed. We ran 20 queries for 

each evaluation setting and consider first 20 results for 

each. Each search results is consider as either relevant or 

not, and we do not differentiate between top search results 

and 15
th

-20
th

 ones. We use Bing search engine API for 

these experiments. Evaluation of lattice querying on the 

web was conducted by the author. 

    One can see that for the sentence-level analysis, there  is 

14% improvement proceeding from keyword overlap to 

parse structures delivering phrases for web search, and 

further 8% improvement leveraging lattice queries derived 

from a pair of sentences. For the paragraphs, there are re-

spective 21% and 22% improvement, since web search 

engine don’t do well with paragraph-sized queries. If the 

number of keywords in a query is high, it is hard for a 

search engine to select which keywords are important, and 

term frequency becomes the major ranking factor. Also, for 

such queries, a search engine cannot rely on learned user 

selections from previous querying, hence the quality of 

search results are so low. 

    The proposed technique seems to be an adequate solu-

tion for cross-sentence alignment (Chambers et al 2007, 

MacCartney et al 2008). One application of this problem is 

automated solving of numerical equations formulated as 

algebra word problems (Kushman et al 2014). To form a 

representation for an elementary algebra problem text, we 

would use a training set of pairs textT – equationT and 

produce an alignment of text and textT by means of gener-

alization text ^ text  which is an expression which can be 

converted into a numerical expression. The capability to 

“solve” an algebraic problem is based on the completeness 

of a training set: for each type of equation, there should be 

a textual algebraic problem for it. Also, the problem of 

phrase alignment for such areas a machine translation has 

been explored in (Jiang and Conrath 1997). 

    In this work we introduced a new type of query for 

search engine framework, the lattice query, which is in-

tended to facilitate the process of an abstract data explora-

tion. Instead of having a user formulate a query, one or 

more instances are automatically formed from sample ex-

Method 

Task 

Forming lattice 

query as keyword 

overlap for two 

sentences 

Forming lattice 

query as parse 

structure of a 

sentence 

Lattice queries 

for two 

sentences 

Forming lattice 

query as keyword 

overlap for 

paragraphs 

Forming lattice 

query as parse 

structure 

Lattice queries 

for two 

paragraphs 

Legal 

research 

59 62 70 43 51 62 

Marketing 

research 

55 68 69 46 53 64 

Health 

research  

52 65 71 42 55 67 

Technology 

research 

57 63 68 45 53 64 

History 

research 

60 65 72 42 52 65 

538



pressions. To derive a lattice query, as well as measure 

relevance of a question to an answer, an operation of syn-

tactic generalization (Galitsky et al 2012) is used. It finds a 

maximal common sub-trees between the parse trees for the 

sample text fragments, and also it finds the maximum 

common sub-trees between the parse trees for the lattice 

query and that of the candidate answers. In the latter case, 

the size of the common sub-trees is a measure of relevance 

for a given candidate search results. 

    In our evaluation we compared the conventional infor-

mation extraction approach where extraction rules are ex-

pressed using keywords and regular expressions, with the 

one where rules are frame queries. We observed that frame 

queries improve both precision and recall of information 

extraction by producing more sensitive rules, compared to 

sample expressions which would serve as extraction rules 

otherwise. For the web search, if one wants to find infor-

mation relevant to a few portions of text, such as blog post-

ings, Facebook reply or couple of articles of interest, lattice 

queries are a handy tool. It forms a web search (frame) 

query to find relevant results on the web and access their 

similarity. An importance of the lattice queries in data ex-

ploration is that only the most important keywords are 

submitted for web search, and  neither single document nor 

keyword overlap deliver such the set of keywords. 

Conclusions 

In this work we introduced a new type of query for search 

engine framework, the lattice query, which is intended to 

facilitate the process of an abstract data exploration. In-

stead of having a user formulate a query, one or more in-

stances are automatically formed from sample expressions. 

To derive a lattice query, as well as measure relevance of a 

question to an answer, an operation of syntactic generaliza-

tion (Galitsky 2014) is used. It finds a maximal common 

sub-trees between the parse trees for the sample text frag-

ments, and also it finds the maximum common sub-trees 

between the parse trees for the lattice query and that of the 

candidate answers. In the latter case, the size of the com-

mon sub-trees is a measure of relevance for a given candi-

date search results. 

    In our evaluation we compared the conventional in-

formation extraction approach where extraction rules are 

expressed using keywords and regular expressions, with 

the one where rules are frame queries. We observed that 

frame queries improve both precision and recall of infor-

mation extraction by producing more sensitive rules, com-

pared to sample expressions which would serve as extrac-

tion rules otherwise. For the web search, if one wants to 

find information relevant to a few portions of text, such as 

blog postings, Facebook reply or couple of articles of in-

terest, lattice queries are a handy tool. It forms a web 

search (frame) query to find relevant results on the web 

and access their similarity. An importance of the lattice 

queries in data exploration is that only the most important 

keywords are submitted for web search, and  neither single 

document nor keyword overlap deliver such the set of 

keywords. 

 The experimental environment, extended tree learning 

functionality, and  the evaluation framework is available at 

http://code.google.com/p/relevance-based-on-parse-trees. 

References 

Borgida ER, McGuinness, DL. 1996.  Asking Queries about  
Frames.  Proceedings of the 5th Int. Conf. on the Principles of 
Knowledge Representation and Reasoning 1996, 340—349. 

MacCartney, B. Michel Galley, and Christopher D. Manning, 
2008.  A phrase-based alignment model for natural language in-
ference. The Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP-08), Honolulu, HI, October 2008. 

Jiang JJ and D. W. Conrath. 1997. Semantic similarity based on 
corpus statistics and lexical taxonomy. Proceedings of the Inter-
national Conference on Research in Computational Linguistics. 

DeNero J. and D. Klein. 2008. The Complexity of Phrase Align-
ment Problems. In Proceedings of ACL/HLT-08, pages 25–28. 

Galitsky, B. 2003. Natural language question answering system: 
Technique of semantic headers. Advanced Knowledge Interna-
tional, Australia.  

Galitsky, B., de la Rosa JL, Dobrocsi G. 2012. Inferring the se-
mantic properties of sentences by mining syntactic parse trees. 
Data & Knowledge Engineering. Volume 81-82, November, 21-
45. 

Galitsky, B. 2012. Machine Learning of Syntactic Parse Trees for 
Search and Classification of Text. 2012. Engineering Application 
of AI, http://dx.doi.org/10.1016/j.engappai.2012.09.017. 

Galitsky, B. 2014. Learning parse structure of paragraphs and its 
applications in search. Engineering Applications of Artificial 
Intelligence. 01/2014; 32:160–184. 

Chambers, N, D. Cer, T. Grenager, D. Hall, C. Kiddon,. Mac-
Cartney, M. C. de Marneffe, D. Ramage, E. Yeh, and C. D. Man-
ning. 2007. Learning Alignments and Leveraging Natural Logic. 
In Proceedings of the ACL-07 Workshop on Textual Entailment 
and Paraphrasing. 

Kushman, N., Yoav Artzi, Luke Zettlemoyer, and Regina Barzi-
lay.  Learning to Automatically Solve Algebra Word Problems.  
ACL 2014. 

Kapoor. S. and Ramesh, H. 1995.Algorithms for generating all 
spanning trees of undirected and weighted graphs, SIAM J. Com-
put., Vol. 24 

539

http://code.google.com/p/relevance-based-on-parse-trees



