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Abstract 
We introduce an approach for representing and diagram-
ming machine-readable expert models for intelligent tutor-
ing systems (ITSs) and virtual practice/training environ-
ments.  Building on previous work on constraint-based ex-
pert models, we address the challenges of implementing ITS 
features within complex, ill-defined learning domains. Our 
constraint-based expert model (CBEM) can be used, in con-
junction with a real-time interpreter (the Monitor), to make 
accurate, real-time observations of student behavior in ill-
defined domains.  These observations can be used for in-situ 
feedback and dynamic, individualized experience tailoring 
and instruction. In this paper, we detail the structure and 
elements of the CBEM, describe instances of successful ap-
plication to several training domains, and introduce current 
and future research to extend and improve the paradigm. 

Introduction   
Intelligent Tutoring Systems (ITSs), when properly devel-
oped and deployed, can serve as cost-effective alternatives 
to the impractical option of providing learners with per-
sonal training assistants or tutors. ITSs typically consist of 
four basic components: the expert or domain model, the 
student model, the instructor model, and the learning envi-
ronment. Together, those four components deliver indi-
vidualized instruction or training.  
 
Developing expert and student models for ITSs is not triv-
ial, and it becomes even more challenging when working 
in an ill-defined domain. In an ill-defined domain 
(Omerod, 2006), the space of possible actions is typically 
large (Derry and Lajoie 1993), and it is not always possible 
to classify actions as correct or incorrect.  This is, in part, 
because the correctness of an action is so heavily depend-
ent on contextual factors that vary from situation to situa-
tion (Ogan, Wylie and Walker 2006).  Additionally, the 
rules underlying the domain may not be well-understood, 
and are thus not formalized. 
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Mitrovic and Ohlsson’s constraint-based modeling ap-
proach (1999) provides an alternate way to represent 
knowledge to address the challenges of working in an ill-
defined domain.  In this approach, a constraint is an or-
dered pair <R, S> where R is the relevance condition and S 
is the satisfaction condition.  R and S are stated in the form 
of propositions and can represent simple or complex pat-
terns. Constraints encode characteristics of correctness for 
a particular domain, thereby implicitly defining an enve-
lope of acceptable activity. 
 
The authors have developed a domain-general expert mod-
eling approach and toolset inspired by the constraint ap-
proach.  Constraints in the expert model form an implicit 
“envelope” that bounds behavior (Wray and Woods 2013). 
As long as learner behavior remains within the envelope, 
the system allows a wide range of learner actions. Con-
straint-based modeling provides an alternate way to repre-
sent knowledge that focuses on relationships between 
properties of a proposed solution instead of explicit asser-
tions and declarative statements. It is a flexible representa-
tion that has proven useful in addressing expert modeling 
challenges presented by ill-defined domains (Wray et al. 
2009).  
 
In this paper, we describe the components of our expert 
modeling approach and language for ill-defined domains 
and describe ill-defined domains where we have success-
fully applied the paradigm. 

Background 
A requirement for ITSs is the ability to track and assess 
student behavior during a session or exercise.  As ITS sys-
tems began to gain prominence during the late 1980s, the 
most popular methodology for achieving this became 
known as model tracing (Anderson et al 2014).  In model 
tracing, student performance is compared against an ex-
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plicit (typically graph-based) representation of correct per-
formance – an expert model. This comparison can be used 
to both assess the student’s deficiencies in a particular 
topic, and also to provide just-in-time hints to the students 
to unblock them.   
 
While model tracing approaches have proven effective in 
classical tutoring domains (e.g. high school mathematics 
and physics), they begin to break down in ill-defined do-
mains. Specifically, some frequently present students with 
situations for which there is no single correct response or 
path, but rather an envelope of correct strategies too nu-
merous to explicitly model. Mitrovic and Ohlsson (1999) 
define this envelope implicitly as a set of state/constraint 
ordered pairs, called constraints. These constraints, while 
not prescriptive, can be used to identify when and how a 
student makes an error even in ill-defined domains. An-
other relevant approach for representing political and 
group-based problem solving domains is known as issue-
based systems (Kunz and Rittel 1970), though its applica-
tion to training and educational systems is minimal. 
 
The authors’ primary area of interest is observation and 
targeted student tailoring (Wray, Folsom-Kovarik and 
Woods 2013) in virtual and constructive training environ-
ments. Like classical ITS domains, these environments in-
volve a student or novice who is attempting to execute a 
particular skill.  However, particularly in virtual training 
environments, it is infeasible to specify and enforce a spe-
cific sequence of correct behavior even in well-defined 
training domains, for a variety of reasons: 
 
• Even in restrictive domains there can a large space of 

activity that is correct or compliant at any given time 
• The virtual/constructive environment is nondeterminis-

tic, primarily because it involves the participation of 
other actors 

• The student can interact with the environment, and other 
actors in that environment, in a variety of ways, and 
only a subset of those interactions are relevant to pro-
ficiency observations 

 
As such, we were compelled to exploit a constraint-based 
approach to expert modeling – this approach is introduced 
in this paper.  Specifically, we sought to instantiate a con-
straint-based, easily composed expert model that could ef-
fectively be compared against student activity in these spe-
cific types of training and practice environments. 

Concept 
In this section we introduce a domain-general expert mod-
eling paradigm, the constraint-based expert model 

(CBEM).  Using this paradigm, developers of intelligent tu-
toring and training systems use a graphical diagramming 
language in an authoring UI to create models that describe 
the bounds on expected student behavior. The authoring UI 
exports the CBEMs to a machine-readable XML represen-
tation that is used by a real-time interpreter (the CBEM 
Monitor) to detect correct and incorrect behavior according 
to the CBEM description.   

CBEM Diagramming and Primitives 
For well-defined domains, where the possible solution 
paths are known and can be enumerated, it is possible to 
build effective expert models to support diagnosis of stu-
dent behavior. In ill-defined domains where this is not fea-
sible, we can get good traction by using constraints for di-
agnosis. Even with constraints, it can still be expensive to 
author all the constraints necessary for good instruction. 
We address this problem with a diagramming tool for 
authoring diagnostic constraints in ill-defined training do-
mains. We have developed a simple, domain-general dia-
gramming paradigm that can be used by content developers 
and subject-matter experts to compose CBEM models. The 
diagramming language includes the following primitives: 
 
• Context:  A context represents a particular situation un-

der which a set of constraints is applicable.  A context 
describes major segmentation of the training space 
(e.g. phases of a mission). Given the complexity of a 
training scenario and the domain, the student may iter-
ate through a variety of different contexts. Contexts 
are additive; more than one context may be active si-
multaneously. 

• Actions:  Actions are the space of all identifiable activ-
ity that can take place within the training scenario in-
cluding student and non-player character actions. 

• Logic-blocks:  Logic-blocks describe conditions of the 
training environment that can result either as a conse-
quence of time advancement or as side effects of ac-
tions. A logic-block can contain an arbitrary Boolean 
test of simulation state, including temporal or spatial 
conditions. 

• Clusters: Clusters are logical groupings of actions and 
logic-blocks that are used to indicate control flow 
through the constraint space. Clusters may be nested 
(sub-clusters) as needed to express relationships and 
groupings. Clusters have a type that represents how ac-
tions and logic-blocks in that cluster are interpreted.  

• Dependencies:  Dependencies are causal links between 
clusters that specify expected temporal ordering. 

• Selectors: Actions and logic-blocks may need parame-
ters, similar to the way that a verb in a sentence needs 
a subject. The subjects and targets of actions and 
logic-blocks are objects in the training environment 
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and are specified as parameters to actions and logic-
blocks using constructs called selectors.  

• Bindings: If a specific object described by a selector is 
needed for use in more than one successive action or 
logic-block, a handle to that object is created called a 
binding. 

 
Figure 1 - The CBEM Diagramming Language 

Figure 1 shows an example CBEM diagram using these 
primitives. This diagram represents a single context, C1. 
Within context C1, there are nine clusters (REQ1-REQ5, 
OPT1-OPT2, AVD1-AVD2 that contain sets of possible 
student actions (A1-A7) and logic-blocks (L1-L6)). Actions 
and logic-blocks are further defined by specific selectors 
(S*) or bindings (B*) that compose the events parameters.   
Clusters can be one of three types: 
 

• Required (REQ) clusters contain actions that 
must be executed by the student while that cluster 
is active 

• Optional (OPT) clusters contain actions that are 
relevant to the domain while that cluster is active 

• Avoid (AVD) clusters contain actions that are 
forbidden while that cluster is active 

 
Within C1, an arrow connects REQ2 and REQ3. The arrow 
is a dependency; events in REQ2 must be executed before 
the actions REQ3. For example, the action sequence 
A1!A2!L1!L2!L3 is correct, while A1!A2!L3!L1 
is incorrect. OPT and AVD sub-clusters may be nested in-
side of REQ clusters (e.g. OPT1 is nested inside REQ2). 
By combining nested clusters with dependencies, authors 
can express activities whose appropriateness changes 
throughout the course of the context. For example, the 
cluster REQ4 depends upon cluster REQ1 that in turn re-
quires that both sub-clusters REQ2 and REQ3 be com-
pleted. Action A6 is expressly forbidden after REQ1 is 
completed but before REQ4 is completed. However, once 

REQ4 has completed, A6 becomes a required action that 
must be completed. 
 
Figure 2 illustrates how easy it is to use CBEM to model 
any domain, for example, bread making. Here, ingredients 
may be added in any order, but not all of them are required. 

Figure 2 – Bread CBEM 

Flavoring ingredients are optional. A binding (B:Bowl) en-
sures that all ingredients are added to the same bowl. De-
pendencies enforce strict ordering where appropriate (e.g. 
Make Dough must occur before Raise Dough, and Raise 
Dough would be followed by Bake Bread). Abstract do-
main concepts (e.g. MixUntilContains or SizeDoubled) can 
easily be represented as logic-blocks. Dependency nesting 
combined with AVD and OPT clusters enables some ac-
tivities to be relevant throughout the context (e.g. Health 
and Dress Code) whereas others (e.g. Interrupt Raise or 
Add Flavorings) are only appropriate during a specific part 
of the context, as dictated by their containing REQ cluster.  

Identifying and Classifying Student Behavior 
The constraint patterns a CBEM describes are used to clas-
sify student behavior. The run time interpreter (Monitor) 
can be envisioned as a set of if-then statements that are 
continuously evaluated and activate when the ‘if’ condi-
tions become true (causing the ‘then’ effects to occur). The 
types of classifications the Monitor can make include: 
 
• Correct behavior occurs when all of the required ac-

tions and logic-blocks contained in a REQ cluster have 
been completed. For example REQ2 is complete when 
A1, A2 and L1 are completed.  

• Commission errors occur when an action or logic-
block inside an AVD cluster is completed. For exam-
ple, when L6 is completed, a commission error occurs.   

• Dependency errors occur when the student performs a 
context-appropriate action in the wrong order. De-
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pendency errors are detected when the student exe-
cutes an action in a REQ cluster that depends on the 
completion of a second REQ cluster that is not com-
plete, where both clusters are in the same context. For 
example, if A2 has not been completed (REQ2) is not 
complete and L2 in REQ3 is completed, then a de-
pendency error occurs.  

• Omission errors occur when the student fails to com-
plete a required action in a context.  These errors are 
detected when the context changes, or goes out of 
scope, and all of its REQ clusters have not been com-
pleted. For example, if context C1 goes out of scope 
before action A5 occurs, an omission error occurs. 

• Context errors occur when the student performs an ac-
tion that is not appropriate for the context. For exam-
ple if action A10 which does not exist in context C1 is 
executed, a context error occurs. 

 
Note that this constraint classification makes the tenuous 
assumption that student/trainee activity can always be as-
sessed as correct or incorrect. In the summary section, we 
provide thoughts on possible extensions and modifications 
to the classification breakdown above to support ‘gray ar-
eas’ of student behavior and activity with respect to our 
constraint methodology. 

RUNTIME INTERPRETATION 
The CBEM diagramming constructs can be represented in 
a machine-readable format.  The authors have developed a 
run-time interpreter (the Monitor) for the machine-readable 
format.  The Monitor is data driven and loosely coupled to 
the training environment. To configure the Monitor for use 
with a specific training environment, it is instantiated using 
a set of data known as domain bindings. Domain bindings 
enumerate the type of objects, actions and logic-blocks 
supported by that particular training environment.   
 
Scenario authors create CBEMs to specify machine-
readable constraints for student activity that are relevant to 
specific training scenarios. The Monitor imports the 
CBEMs and actively observes the sequence of actions gen-
erated in the training environment, comparing the student 
actions to the constraints found in the CBEMs to detect 
correct and incorrect student behavior. To do this, the 
Monitor uses an efficient pattern-matching engine (Laird, 
2012). The representation of the CBEM converts easily 
into a working-memory representation, while activity in 
the training environment is converted into the agent’s 
working memory. The Monitor uses its pattern-matching 
machinery to identify situations in the runtime activity feed 
coming from the training environment that match patterns 
described by the CBEM model author.   

 
The Monitor is part of a larger, general-purpose Dynamic 
Tailoring System (Wray, Folsom-Kovarik and Woods 
2013). The Monitor’s output is consumed by a component 
called the Pedagogical Manager, which maintains an esti-
mate of student proficiency and selects mediation strate-
gies. 

APPLICATIONS 
The authors have successfully applied the CBEM to a vari-
ety of different domains containing ill-defined content.  
We describe these applications below. 

Course of Action Analysis 
We have developed an instructional game (illustrated in 
Figure 3) focusing on Course of Action Analysis (COAA) 
which incorporates CBEMs and the runtime Monitor 
(Wray, Woods and Priest 2012).  COAA involves step-by-
step evaluation of candidate courses of action (COAs) to 
find gaps, to recognize the need for synchronization (com-
bat power), to coordinate unit actions with those of other 
units, and to improve understanding of the plan. The 
COAA instructional game allows a student to practice cre-
ating a COA and executing the wargaming process. Effec-
tive practice requires guidance and feedback. We inte-
grated the Monitor and supporting CBEMs to deliver guid-
ance and feedback based on the specific actions of individ-
ual students.  

Figure 3 – COAA Using CBEM and Monitor 

To explore the effectiveness of this approach, Soldiers 
were run through a study to compare the COAA instruc-
tional game to a control that approximates how games are 
typically used in simulation centers (Priest Walker and 
Wray 2014). In the control, the number of omission and 
commission errors indicated an inability to self-diagnose 
and correct for those types of errors based on static, after-
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practice feedback. Furthermore, control participants were 
making the same errors over and over, indicating that these 
errors were a sign of trainees not learning from their mis-
takes. In contrast, participants using the COAA instruc-
tional game were able to virtually eliminate errors of omis-
sion and commission from later, more complex scenarios, 
indicating a learning effect. 

Interpersonal Communication 
A second application is being developed for the Immersive 
Naval Officer Training System (INOTS) that seeks to pro-
vide a controlled role-play environment for Navy officer 
training (Campbell et al. 2011). INOTS focuses on inter-
personal leadership skills by providing practice in helping 
subordinates handle conflict, whether it is with shipmates 
or problems in their personal lives.  

Figure 4 – INOTS 

The INOTS system evaluates the student’s understanding 
of scenario learning objectives by monitoring the dialog 
choices they make within the scenario.  The monitoring is 
currently supported by a detailed hand-authoring process. 
A knowledge engineer annotates each action in the dialog 
tree with assessments about learning objective performance 
that serves as both an expert model and the assessment por-
tion of the pedagogical model for the INOTS ITS. Our 
work is focused on authoring tools that replace the tedious 
hand authoring process with user interfaces that are more 
streamlined and focused. Rather than an implicit expert 
model, we are using a CBEM model as the explicit repre-
sentation, and are developing the Emma authoring UI for 
creating CBEMs using the visual diagramming language. 

Observational Skills 
A third application of CBEMs and the Monitor is within a 
training application in which US Marines observe a village 
from a Virtual Observation Platform (VOP) (Wray and 
Woods 2013). Marines learn to construct a general baseline 
of understanding from sustained attention to activities in a 
village. Needed skills range from low-level signals (recog-
nizing the proxemics and kinesics of individual villagers), 

to developing an abstract mental representation of the “pat-
terns of life” (Schatz et al. 2012). Figure 5 shows the 
Monitor evaluating logic-blocks and detecting a commis-
sion error when the student does not properly report on the 
observed village activity. 
 

 
Figure 5 – Monitor Activity in VOP 

SUMMARY 
Inspired by Mitrovic and Ohlsson’s unordered, constraint-
based modeling approach (1999), we have constructed a 
hybrid system capable of representing both fully unordered 
constraint specifications as well as limited representation 
of ordering constraints. By using clusters to group unor-
dered constraints, and dependencies to give temporal or-
dering to some parts of the constraint model, we have de-
veloped a wide range of student behaviors that can be rep-
resented.  
Our approach to expert modeling consists of three primary 
components: 
 

• A machine-readable constraint-based expert 
model (or CBEM) specification  

• An authorable diagramming language used to 
build CBEMs 

• A real-time interpreter, or Monitor, capable of 
detecting student errors based on the CBEM 

 
The constraint-based approach has been successfully ap-
plied to address the challenges of modeling student behav-
ior in several ill-defined domains, including mediation 
skills, tactical course-of-action planning, and perceptual 
skills. In these and other training domains, CBEMs are ca-
pable of characterizing the bounds on correct behavior, 
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such that a domain-general monitoring system can examine 
and classify student actions. By combining this flexible 
representation with a diagramming paradigm that can be 
used by content developers and subject matter experts, we 
have created a methodology and set of software tools with 
which intelligent tutoring strategies can be applied to ill-
defined learning and training domains.  
 
Future work:  Expanded temporal constraint management 
such as relative timeframes is desired. For example, instead 
of specifying that a student perform an action within a 
fixed time period such as “within 30 seconds”, it would be 
preferable to more loosely specify a relative timeframe 
such as “soon enough”, where soon enough can be relative 
to both the current CBEM context and the student’s skill 
profile.  
 
Another direction for future work is fuzzy distinctions. 
REQ and AVD cluster types are appropriate for training 
domains that have clear right and wrong distinctions. But 
in some domains, the student could perform a range of ac-
tions some that are better or worse than others, but none of 
which are strictly right or wrong. For example, in a social 
situation the student may be required to give a greeting, but 
whether a “terse”, “friendly” or “wary” greeting is “best” is 
highly dependent upon context. A CBEM construct that 
can indicate a fuzzy relative ranking of similar actions such 
as greetings is desired for such domains. 
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