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Abstract

For clinical decision support systems designed to help
physicians make diagnostic decisions, “disease similar-
ity” data is highly valuable in that they allow continu-
ous recommendation of diagnostic candidates. To build
such a recommendation algorithm, this paper explores a
method to measure disease similarity between diseases
on a simplified disease knowledge base. Our disease
knowledge base comprises disease master data, symp-
tom master data, and disease–symptom relations that
include clinical information of 1550 disorders. The cal-
culation of the disease similarity is performed on this
knowledge base, with i) standardized disease classifica-
tion, ii) probabilistic calculation, and iii) machine learn-
ing, and the results are evaluated with a gold standard
list audited by a physician. We also propose a novel
metric for evaluation of the algorithms to calculate the
disease similarity. A comparative study between the al-
gorithms revealed that the machine learning approach
outperforms the others. The results suggest that even a
superficial calculation on a simplified knowledge base
may satisfy the clinical needs in this problem domain.

Introduction
Clinical Decision Support Systems (CDSSs) are systems
that assist physicians to make diagnostic and therapeuti-
cal decisions (Berner 2007). For most implementations in
this class of systems, they are programmed to present dis-
ease candidates upon input of clinical findings of patients
by physicians. In such a candidate list, CDSSs may provide
a list of similar diseases for a disease that a user physician
focuses, so that the system can realize continuous recom-
mendation of diagnostic candidates.

The calculation of disease similarity lies within the core
of such a recommendation system, which measures the sim-
ilarity of any given diseases. The simplest approach here is
to count the number of overlapping findings that the diseases
may present. However, clinical manifestations of diseases
have a variety of modalities, and the similarity is not easily
calculated. For example, a disease may present a high body
temperature, which might be coded by a code for fever. Nev-
ertheless, there exist various variants of fever, such as high
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fever, low grade fever, continuous fever, and intermittent
fever. Similarly, a simple symptom, abdominal pain, may
have modifiers such as stabbing abdominal pain, and ab-
dominal pain that goes to right lower quadrant of abdomen.

These examples suggest that symptoms of diseases are
not simply expressed as a vector of symptoms. On the other
hand, it is very expensive to express exact knowledge of ex-
isting diseases, which may number in the several thousands,
and thus, a fully-fledged knowledge base is not a reason-
able choice to take for most occasions. Accordingly, the best
strategy here is to find a way to calculate a similarity met-
ric of reasonable performance on a simple vector-oriented
disease knowledge base.

In this paper, we tried to calculate disease similarly on
such a simplified disease knowledge base and evaluated sev-
eral possible approaches. First, the next section outlines the
materials used: the simplified disease knowledge base and
the training data. The section is followed by the description
of the proposed methods for the similarity calculation. Then,
the systematic evaluation is provided, coupled with the de-
tailed discussion. We then present related work, and con-
clude the paper in the last section.

Disease Knowledge Base and Similarity Data
The simplified disease knowledge base encodes the knowl-
edge of diseases into a very simple structure (Okumura et
al. 2014). This section descries the disease knowledge base,
which comprises disease master data, symptom master data,
and disease-symptom relations, coupled with the similarity
data used for the evaluation of the proposed approaches.

Disease Master Data
The disease master data is a table in our disease knowl-
edge base that contains basic attributes of the diseases in
the knowledge base, such as “Alzheimer’s disease” (D72),
“Gastric cancer” (D534), and “Allergic rhinitis” (D835). The
disease master data contains information of 1550 diseases,
and defines their unique IDs, names, synonyms, prevalence
and standardized disease codes. The prevalence of a disease
is simplified into a four-scale measure, as shown in Table 1.
The value of prevalence for a disease is referred to as P (Di)
throughout this paper. Note that the disease master data does
not have relation data between diseases.
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Table 1: Prevalence scale of a disease
Scale Frequency P (Di) Remark

4 0.01 Common disease
3 0.001 Ordinary disease
2 0.00001 Rare disease
1 0.000001 Very rare disease

Table 2: Frequency scale of a symptom
Scale Frequency P (Si) Remark

4 0.055 Common symptom
3 0.0055 Occasional symptom
2 0.000055 Rare symptom
1 0.0000055 Very rare symptom

Each disease in this knowledge base has disease codes,
expressed in the International Classification of Diseases
(ICD). ICD is a systematic classification of diseases built
by the World Health Organization (World Health Organiza-
tion 2011), and covers a vast class of diseases. Because ICD
is a systematic classification, it is highly likely that diseases
with similar ICD codes have similar properties. However,
the ICD system is made in an arbitrary way, and the num-
ber of disease items in each level of the ICD hierarchy is
unbalanced. Further, clinical manifestations of two diseases
with similar ICD codes may not necessarily look alike. Ac-
cordingly, the ICD codes are not a universal foundation for
similarity calculation of diseases. Toward appropriate calcu-
lation of disease similarity, we need other metrics, in addi-
tion to the classification of the diseases in question, such as
prevalence and symptoms.

Symptom Master Data
The symptom master data is also a table in our disease
knowledge base for clinical findings. The data includes 597
symptoms, such as “Fever” (S260), “Jaundice” (S394), “Ab-
dominal pain” (S808). The symptom master data also carry
frequency of symptoms, in a four-scale measure, as shown
in Table 2. The value for a symptom is referred to as P (Si)
throughout this paper.

Although the symptoms are listed in a uniform way, they
differ in various aspects and their importance is not iden-
tical. For example, even a healthy person may occasionally
experience malaise (S256), but altered level of consciousness
(S127) strongly suggests a serious disorder happening in the
patient. For this reason, each symptom is given a parameter,
significance, in a five-scale measure. The significance score
expresses medical importance of each symptom, implying
higher seriousness as the number steps up. The significance
score of a symptom Si is expressed as sig(Si), in the later
discussions.

The prevalence of diseases and the frequency of symp-
toms are substantial indexes that are statistically measurable.
However, in reality, it is not an easy task to fix the frequency
of all the diseases and the symptoms comprehensively and
precisely. Accordingly, we choose to use subjective estima-
tion of a physician, the last author of this article, for the
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Figure 1: An example of disease similarity data and system
output.

frequency parameters to calculate disease similarity in this
paper.

Disease-Symptom Relation
The disease-symptom relation is a data set that expresses re-
lations between diseases and symptoms, in the above-noted
masters. In our simplified knowledge base, each relation has
a subjective probability of a disease, given the existence of
the symptom in a patient. For example, “Jaundice” in a pa-
tient may suggest Hepatitis and Hemolytic anemia. Accord-
ingly, we have two relations “Jaundice → Hepatitis” and
“Jaundice→ Hemolytic anemia”, each of which has a sub-
jective probability in the knowledge base. They are, in fact,
diagnostic contribution of each symptom, and referred to as
P (Di|Sj) throughout the paper.

Gold-Standard and Evaluation Metric
For evaluation of the disease similarity we propose, it is
desirable that an objective and quantitative metric for the
similarity is available, coupled with the gold-standard data.
However, it is difficult to define the similarity between dis-
eases in a quantitative manner, and subjective probability
is used in the disease knowledge base for simplification, as
mentioned. Accordingly, for evaluation of the proposing cal-
culations, we decided to perform comparison of the rankings
in the list of similar diseases that the calculations generate,
with the list for similar diseases, not the absolute scores. To
this end, we built such lists for 80 common diseases in the
disease master data, subjectively evaluated by a physician,
against the 1550 diseases.

During the compilation process, we noticed that a physi-
cian cannot define strict ordering of diseases in the similar-
ity metric, although there are rough order between them. For
example, Influenza is more relevant to Allergic rhinitis, than
Appendicitis, but it is hardly possible for physicians to de-
termine which is more relevant to rhinitis, Influenza or Com-
mon cold. They perceive all the differences qualitatively, not
quantitatively, and the ordering in the list for similar diseases
can reflect rough positions in the physicians mind. Thus, we
decided to classify the diseases in the disease master data,
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roughly into three classes, according to the similarity to a
disease in question: similar (3), related (2), and unrelated
(1). The left side of Figure 1 shows an example of disease
similarity data for “External Hemorrhoid” (D871).

For evaluation of the algorithms, there must be a method
to compare the output of the algorithms, which is a list
of diseases sorted by the magnitude of similarity, with the
handmade gold-standard in the three-scale measure. For this
comparison, we attempted to use a metric, Normalized Dis-
counted Cumulative Gain (NDCG) (Järvelin and Kekäläinen
2000). NDCG is a popular measure for ranking quality,
which evaluates not only binary relevance but graded rele-
vance scale ranking, as well. This measure first defines DCG
(Discounted Cumulative Gain), as follows, which is the sum
of the scores for the topmost p diseases in a ranking list
(Burges et al. 2005).

DCGp(D
′
i) =

p∑
k=1

2sim(k,D′
i) − 1

log2(k + 1)
(1)

D′
i is defined as system’s output for Di, as an ordered

list whose elements are similarity of diseases. For exam-
ple, the right-side instance of Figure 1 is defined as D′

i =
(3, 2, 1, 1, 2, 3, 1, 1, ...). In this equation, sim(k,D′

i) is k-th
disease in the disease similarity data for Di. Based on this
measure, NDCG is defined as follows. Di expresses the dis-
ease similarity data for Di. In the case of Figure 1, the dis-
ease similarity data becomes Di = (3, 3, 2, 2, 2, 2, 1, 1, ...).

NDCGp(D
′
i) =

DCGp(D
′
i)

DCGp(Di)
(2)

The normalized DCG is a reasonable metric to evaluate
algorithms that generate ranking as output. However, our
gold-standard is expressed in a three-scale measure, not a
ranking, although the output of algorithms is made in a full-
scale ranking. To bridge the gap, we need to cancel out the
influence caused by ordering of diseases in the same simi-
larity class. To this end, we define Normalized Disease Sim-
ilarity Measure (NDSM), modifying the NDCG, as follows.

NDSMp(D
′
i) =

DSMp(D
′
i)

DSMp(Di)
(3)

In this metric, DSMp(D
′
i) and f(x, k), used in DSMp(D

′
i),

are defined as (4) and (5), respectively.

DSMp(D
′
i) =

p∑
k=1

f(sim(k,D′
i), k) (4)

f(x, k) =


(len(Di)− k)/len(3) (x = 3)
(len(Di)− k)/(len(3)+

len(2)) (x = 2)
0 (x = 1)

(5)

where len(Di) is the size of disease similarity data for Di,
and len(x) is the number of items in a similarity class x
for Di. For example, the right-side list of Figure 1, gener-
ated by an algorithm, is evaluated as follows: DSMp(D

′
i) =

(len(D871) − 1)/len(3) + (len(D871) − 2)/(len(3) +
len(2)) + 0 + 0 + (len(D871)− 5)/(len(3) + len(2))...
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Figure 2: An example of ICD hierarchy

Owing to f(x, k) function, NDSMp cancels out ordering
in a same similarity class and prioritizes the high-similarity
classes, contrary to NDGp. Hereafter, parameter p is set to
250, because diseases below this line will not be helpful for
user physicians of target CDSSs.

Disease Similarity Calculations
This section presents approaches to calculate the disease
similarity we investigate in this study, namely, i) ICD-based
disease similarity, ii) probability-based disease similarity,
and iii) a machine learning-based approach.

1) ICD-based Disease Similarity (ICD)
It is natural to assume that diseases with similar ICDs are
similar, as mentioned in the previous section, and thus, we
attempted to quantify the distance between ICD codes. The
ICD classification system has a hierarchical organization,
exemplified in Figure 2. For diseases Di and Dj , let di, dj
be the depth of ICD for disease di, dj , respectively. Like-
wise, let LCS(Di, Dj) be the least common superconcept
of ICDs for Di, Dj . Now, the similarity between Di and Dj

is defined, as follows (Wu and Palmer 1994).

ICDdist(Di, Dj) =
2× LCS(Di, Dj)

di + dj
(6)

In the case of Figure 2, disease D1 has ICD “F41” and D2

has “F41.9”. The superconcept of two ICDs is “F41”, and is
calculated as 2× 3/(3.0+4.0) = 0.857. Note that a disease
may have two or more ICD codes. Accordingly, we extend
ICDdist(Di, Dj) as the least distance among the ICD pairs
given. During the evaluation of approaches, we refer to the
ICD-based similarity calculation as ICD.

ICD is a widely-used standard for disease classification.
Consequently, ICDdist(Di, Dj) can universally quantify
the disease similarity between diseases. However, the rela-
tionship between diseases is not appropriately determined
solely with the ICD distance. In fact, our preliminary ex-
periment failed to detect similar diseases for “menopausal
disorder”, “atopic dermatitis”, and so on. In such cases, it
is necessary to discover relations of diseases, based on the
clinical manifestations they present.



2) Probability-Based Disease Similarity (Prob)
Similarity between diseases can be evaluated in respect to
their mechanism, as well as to their presenting symptoms.
For evaluation of the similarity of diseases with a finite set
of independent symptoms, the simplest approach is to calcu-
late the Jaccard Coefficient (Jaccard 1912) between the set
of symptoms for the diseases. However, even if the two dis-
eases share identical symptoms, a symptom may occur more
frequently in one disease, and the other may rarely present
the symptom. Obviously, it is an oversimplification that eas-
ily leads to diagnostic errors. Accordingly, we attempted to
take the frequency of symptoms into consideration here.

The calculation of symptomatic frequency requires the
conditional probability P (Sj |Di), for any given set of dis-
eases and symptoms. However, the disease knowledge base
contains only P (Di|Sj), as descried in the previous sec-
tion. Accordingly, we make rough Bayesian estimation
of P (Sj |Di), utilizing probabilities P (Di|Sj),P (Sj), and
P (Di), stored in the knowledge base, as (7). Note that this
calculation is inaccurate in nature, because all the probabili-
ties are subjective.

P (Sj |Di) =
P (Di|Sj)P (Sj)

P (Di)
(7)

Additionally, we attempt to incorporate the significance of
symptoms for the calculation of the probability-based simi-
larity, because physicians would prioritize the similarity be-
tween symptoms of high medical importance, over trivial
symptoms.

The calculation first assumes disease Di and Dj as sets
of symptoms, and extracts |Di ∩ Dj | as S. Then, let Sx

be the subset of the symptoms S with significance x. Like-
wise, let X be the set of value significance can take, which
is X = {1, 2, 3, 4, 5}. Now, we define the probability-
based similarity, as (8), incorporating the probability by the
Bayesian estimation and the significance metric we intro-
duced.

Prob(Di, Dj) =
∑
x∈X

x log10
∑
s∈Sx

(1 + P (s|Di)
2) (8)

In (8), a logarithm is taken to avoid the case where matches
in significant symptoms are overwhelmed by abundant
symptoms of low significance. Also in (8), P (s|Di) is
squared to emphasize the high-probability over the low-
probability. The resulting approach, to calculate the simi-
larity based on the probability, is referred to as Prob in the
comparative study below.

3) A Machine Learning Approach (CRR)
The ICD-based approach and the probability-based ap-
proach have distinct characteristics, both of which have their
own rationale. Accordingly, a deliberate hybridization of the
approaches might outperform the two, exploiting the advan-
tages and compensating for the shortcomings. For the com-
bination of the approaches, we investigated machine learn-
ing techniques, and there are algorithms to learn ranking of

Table 3: Feature list for the machine learning approach,
(CRR). The Di and Dj are diseases, S is the set of symp-
toms shared by Di and Dj and s is symptom s ∈ S.

Each symptom s ∈ S
The length of S
The conditional frequency of symptom P (s|Di)
The conditional frequency of disease P (Dj |s)
The conditional frequency of symptom P (s|Di)
The conditional frequency of disease P (Dj |s)
The significance of symptom sig(s)
The similarity of Di and Di by ICD ICDdist(Di, Dj)

instances, which have been used for many applications in
Information Retrieval, Natural Language Processing, Data
Mining, and others (Li 2011).

For the calculation of disease similarity, the input query is
a target disease Di, and the input instance is the list of dis-
eases excluding Di. The expected output is the ranking list
sorted by the disease similarity for Di, trained by the gold-
standard data. For example, in the case of Figure 1, the input
query is “External Hemorrhoid” (D871), the input instance
is the list of diseases excluding D871, and the output would
be the ranking list of similar diseases for D871.

There exists various models to learn the ranking of in-
stances, and we selected Combined Regression and Rank-
ing (CRR) (Sculley 2010). CRR is a method which com-
bines pairwise rank-based and regression objectives using
standard stochastic gradient. Sculley (2010) shows that CRR
often achieves performance equivalent to the best of both
ranking-only and regression-only approaches. The feature
list used in our study is shown in Table 3. This setting
incorporates the ICD-based and the probability-based ap-
proaches, and may reflect implicit knowledge of physicians
that is encoded in the training data. We call this calculation
method for the similarity of diseases CRR.

Experimental Results and Discussion
Experimental Setting
For the calculations of disease similarity, ICD and Prob
can perform the calculation without any training. In contrast,
CRR needs the disease similarity data to build the model.
Accordingly, in the evaluation of CRR, the disease similar-
ity data is used for leave-one-out cross-validation, using 79
diseases as the training data, and one disease for the evalu-
ation of the output. For construction of the CRR model, the
sofia-ml package 1 is used.

Results
Table 4 shows the experimental results of the proposed
methods. Comparing the averages of the scores for 80 dis-
eases each for the calculations, CRR outperformed the other
two, and ICD performed better than Prob. The number
of the best cases, in Table 4, indicates the number of dis-
eases where each method scored the best, suggesting that

1https://code.google.com/p/sofia-ml/
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Table 4: The results of disease similarity calculation. Each
score is an average for the 80 diseases.

Method NDCG NDSM # of best cases
ICD 0.846 0.707 16
Prob 0.815 0.734 5
CRR 0.890 0.899 59
Total – – 80

CRR is not always the best approach. For statistical signif-
icance, Wilcoxon signed rank test on the NDSM scores
confirmed CRR over ICD (p = 0.001), and CRR over Prob
(p = 0.001), but the difference between Prob and ICD was
not significant (p = 0.20).

There are 16 cases where ICD performed the best, which
includes cases for “Deep-Seated Candidiasis” (D177) and
“IIa-type hyperlipoproteinemia” (D482). Likewise, Prob
outperformed the others in 5 cases, including “Allergic con-
junctivitis” (D1380) and “Hemorrhoid” (D1418).

Analysis
The experiments clarified that CRR achieved the highest per-
formance, on average. However, there are cases in which the
others performed better. Figure 3 shows actual outputs for
such an example, “(Deep-Seated) Candidiasis” (D177). The
figure extracts the topmost seven items that CRR and ICD
algorithms selected as the most relevant.

Candidiasis is an infection of fungus into a variety of body
parts, mostly skin and respiratory system at first, and oc-
casionally occurs in patients whose immunity is compro-
mised. This nature promotes CRR and Prob to favor dis-
eases with dermatological and respiratory symptoms. How-
ever, because there are so many diseases that present such
common symptoms, the chances might increase for these
methods to inadequately choose such diseases.

Meanwhile, ICD is a classification system, based on eti-
ology of diseases, and thus, the algorithm extracts diseases
with similar mechanisms, in this case, diseases that are
caused by fungus and observed in immunocompromised pa-
tients. Indeed, physicians would also favor such diseases, if
they are asked to choose relevant diseases for Candidiasis,
because they are characterized as such. Presumably, CRR
might have lost cases for such a reason.

The difference between NDCG and NDSM indicates
that the advantage of CRR becomes more remarkable, if the
evaluation ignores the changes of rankings in a same class
and prioritize the diseases in higher classes. This observa-
tion, as well as the advantage of CRR exemplified in Table 4,
would hold true even for different knowledge bases, or even
if we revise our data, considering the volume of the data we
used.

Discussion
ICD picks up similar diseases based on the mechanism of
the disease. Meanwhile, there are a variety of cases in which
other types of similarity is more valuable to help physicians
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Figure 3: The example of CRR and ICD results of “(Deep-
Seated) Candidiasis” (D177) (top 7). The left side is the re-
sult of CRR, the right side is the result of ICD.

make diagnosis. For example, in the task to find similar dis-
eases for certain diseases that are characterized by abdomi-
nal pain or headache, physicians would focus on the symp-
toms, not the mechanisms. There are various types of simi-
larities and physicians switch their strategies to take, based
on the contexts. The high performance of CRR is ascribed to
the adapting nature of machine learning techniques.

However, the experimental results exhibited 21 cases
where ICD and Prob outperformed CRR, suggesting room
for further improvement. The straightforward approach here
is to find a factor that can predict the method of the high-
est performance, given a certain disease. In search for such
a predictor, several hypotheses are possible. First and fore-
most, Prob would be advantageous if the symptoms in-
cludes significant ones. Second, a disease with only trivial
symptoms might favor ICD. Third, the category of a dis-
ease, which is readily available in the ICD code, might pre-
dict the superior approach. Fourth, the significance of the
symptom that appears most frequently in a disease might be
the predictor. As illustrated, there are a variety of possible
predictors that are worth investigating in the future study.

Once a predictor is found, the integration of the algo-
rithms would be simple: to use the predictor to switch the
algorithm, or to incorporate the predictor as a feature in the
machine learning. For the proof of the latter approach, we
extracted the 16 cases where ICD performed the best, and
cross-validated the cases by training the CRR model. In 12
diseases, out of 16 diseases, CRR achieved a higher score
than ICD, and the Wilcoxon signed rank test confirmed the
significance (p = 0.01). The result suggests that an appro-
priate predictor can improve the overall performance, even
with a simple machine learning approach.

Related Work
Researchers have been compiling the knowledge source of
diseases in a machine-readable format, particularly in the
biomedical informatics field: Gene Ontology (Gene Ontol-
ogy Consortium 2004), the Human Phenotype Ontology
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(Robinson and Mundlos 2010), Disease Ontology (Schriml
et al. 2012), and Online Mendelian Inheritance in Man
(Hamosh et al. 2005) and so on. They include knowl-
edge bases and ontologies that express features of disease
in graph structure, and thus, the similarity between con-
cepts can be measured by the similarity in the concep-
tual relations (Pesquita et al. 2009; Suthram et al. 2010;
Mathur and Dinakarpandian 2012; Cheng et al. 2014).

Such a semantic similarity can be applied to the cal-
culation of disease similarity. Mathur and Dinakarpandian
(2012) calculated the similarity using genetic relations.
Cheng et al. (2014) combined function-based and semantic-
based similarities to calculate disease similarity, using the
data set in (Pakhomov et al. 2010) as benchmark. Be-
cause relationships between diseases and symptoms are of-
ten modeled with Bayesian networks (Shwe et al. 1991),
they can also be used to calculate disease similarity, in terms
of probability.

The limitation of these approaches is their completeness.
Although there exist thousands of diseases, most of the
researches in the semantic similarity between diseases at-
tempted to test on limited set of diseases against a few tar-
gets. Our research selected 80 cases in 1550 diseases, and
calculated the similarity against 1550 diseases in the sim-
plified knowledge base, which highly surpasses the settings
of the previous attempts. Because there are a variety of dis-
eases, the coverage of the data has decisive importance for
the generality of results.

Our further contribution includes a similarity calculation
of reasonable quality, utilizing a simplified knowledge base
with subjective probability. The performance is achieved
without detailed knowledge of diseases, which reduces the
cost to develop such a recommendation algorithm for clini-
cal decision support systems.

Conclusion
In this paper, we investigated methods to calculate the sim-
ilarity between diseases, defining a metric for evaluation
of the algorithms. Experimental results suggest that dis-
ease similarity is calculated at reasonable quality, even with
a superficial calculation on a simplified knowledge base.
More precisely, the comparative study suggested that a ma-
chine learning approach outperforms the disease classifica-
tion based approach and the probabilistic approach. The ma-
chine learning approach is advantageous, because it can nat-
urally incorporate both the symptomatic knowledge and the
etiological knowledge, as well as undocumented preference
of user phycisians.

As the future work, it is highly valuable to investigate
a factor that predicts a dominant algorithm to measure the
similarity for distinct diseases. Additionally, it would also
be beneficial to extend the data set to include more diseases,
toward further generality of the study.
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