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Abstract

Possibilistic logic is an important framework for rep-
resenting and reasoning with uncertain and inconsis-
tent pieces of information. Standard possibilistic logic
expressions are propositional logic formulas associated
with positive real degrees belonging to [0,1]. Recently, a
flexible representation of uncertain information, where
the weights associated with formulas or possible worlds
are in the form of intervals, has been proposed. This pa-
per focuses on the problem of normalization of interval-
based possibility distributions. We provide a natural
procedure to normalize a sub-normalized interval-based
possibility distribution. This procedure is based on the
concept of normalized compatible and standard possi-
bility distributions.

Introduction
Possibilistic logic (e.g, (Lang 2001; Dubois and Prade
2004)) is a well-known framework for dealing with uncer-
tainty and reasoning under inconsistent knowledge bases.
Uncertainty is syntactically represented by a set of weighted
formulas of the form K={(ϕi, αi): i=1, .., n} where ϕi’s
are propositional formulas and αi’s are real numbers be-
longing to [0,1]. The pair (ϕi, αi) means that ϕi is certain
(or important) to at least a degree αi. Uncertainty is also
represented at the semantic level by associating a possibil-
ity degree with each possible world (or interpretation). A
standard possibility distribution is said to be normalized if
there exists at least one interpretation which is fully consis-
tent, namely having a possibility degree of 1 (Dubois 2006;
2014).
Interval-based uncertainty representations (e.g, interval-
based probabilities) are well-known frameworks for encod-
ing, reasoning and decision making with poor information,
ill-known and imprecise beliefs, confidence intervals, multi-
source information, etc. (Nguyen and Kreinovich 2014;
Dubois 2006). The framework considered in this paper is
the one of interval-based possibilistic logic (Benferhat et al.
2011). At the syntactic level, pieces of information are repre-
sented by an interval-based possibilistic knowledge base, of
the form IK = {(ϕi, Ii) : i = 1, .., n} where Ii is a closed
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sub-interval of [0, 1]. The pair (ϕi, Ii), called an interval-
based weighted formula, means that the weight associated
with ϕi is one of the elements in Ii.
Similarly, the semantic of interval-based possibilistic logic
is an interval-based possibility distribution, denoted by Iπ,
where a sub-interval of [0,1] is assigned to each interpre-
tation or each possible world. An interval-based possibility
distribution is viewed as a family of standard compatible
possibility distributions obtained by combining all possible
values of intervals.
This paper focuses on the semantics part of possibilis-
tic logic and addresses the problem of normalizing a sub-
normalized interval-based possibility distribution. The nor-
malization problem appears for instance when merging sev-
eral standard or interval-based possibility distributions is-
sued from different sources. Even if it is reasonable to re-
quire that each individual possibility distribution is normal-
ized, it is unlikely that their fusion leads to a normalized
distribution. We propose a natural procedure which consists
in applying standard (min-based or product-based) normal-
ization on the set of all compatible standard possibility dis-
tributions associated with an interval-based possibility dis-
tribution. We show that for the min-based normalization,
the obtained result is no longer an interval-based possibility
distribution. However, when the product-based normaliza-
tion is used, then the result is indeed a normalized interval-
based possibility distribution. We provide the computation
of lower and upper endpoints associated with the result of
normalizing a sub-normalized interval-based possibility dis-
tribution.
The rest of this paper is organized as follows: Section 2
presents a brief refresher on possibilistic logic and interval-
based possibilistic logic. Section 3 presents the two forms
of normalization that may exist for interval-based possibility
distributions and discusses the case of degenerate possibility
distributions. Section 4 analyzes the compatible-based nor-
malization procedures of an interval-based possibility distri-
bution. Section 5 contains the main conclusions.

2. A brief refresher on standard and
interval-based possibilistic logic

Possibility theory is an alternative uncertainty theory suited
for representing and reasoning with uncertain and incom-
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plete information (Dubois 2006; 2014). The concept of pos-
sibility distribution π is a fundamental building block of pos-
sibility theory; it is a function from the set of possible worlds
or interpretations Ω to [0, 1]. π(ω) represents the degree of
consistency (or feasibility) of the interpretation ω with re-
spect to the available knowledge. π(ω)=1 means that ω is
fully consistent with the available knowledge, while π(ω)=0
means that ω is impossible. π(ω)>π(ω′) simply means that
ω is more consistent or more feasible than ω′. Note that pos-
sibility degrees are interpreted either i) qualitatively (in min-
based possibility theory) where only the ”ordering” of the
values is important, or quantitatively (in product-based pos-
sibility theory where the possibilistic scale [0,1] is numerical
and one of the possible interpretations of quantitative possi-
bility degrees is viewing π(ω) as degrees of surprise as in
ordinal conditional functions (Spohn 1988).
Another important concept in possibility theory is the one of
possibility measure, denoted Π(ϕ), and computing the pos-
sibility degree of an event ϕ⊆Ω. It is defined as follows:

Π(ϕ) = max
ω∈ϕ

(π(ω)).

The necessity measure is the dual of possibility measure
and evaluates the certainty implied by the current knowledge
of the world. Namely, N(ϕ)=1−Π(ϕ) where ϕ denotes the
complement of ϕ.
A possibility distribution π is said to be normalized if there
exists an interpretation ω such that π(ω)=1; it is said to be
sub-normalized otherwise. Sub-normalized possibility dis-
tributions encode inconsistent sets of beliefs or constraints.

Standard possibilistic logic

We consider a finite propositional language L. We denote
by Ω the finite set of interpretations of L (universe of dis-
course), and by ω an element of Ω. A possibilistic formula
is a pair (ϕi, αi) where ϕ is an element of L and α∈[0, 1]
is a valuation of ϕ representing N(ϕ). A possibilistic base
K={(ϕi, αi) : i = 1, .., n} is then a set of possibilistic for-
mulas. Possibilistic knowledge bases are well-known com-
pact representations of possibility distributions. Each piece
of information (ϕi,αi) from a possibilistic knowledge base
can be viewed as a constraint which restricts a set of possi-
ble interpretations. If an interpretation ω satisfies ϕi then its
possibility degree is equal to 1 (ω is completely compatible
with the belief ϕi), otherwise it is equal to 1−αi (the more
ϕi is certain, the less ω is possible). In particular, if αi=1,
then the degree of any interpretation falsifying ϕi is equal to
0, namely is impossible. More generally, given a possibilis-
tic base K, we can generate a unique possibility distribution
where interpretations ω satisfying all the propositional for-
mulas in K have the highest possible degree π(ω)=1 (since
they are fully consistent), whereas the others are pre-ordered
with respect to the highest formulas they falsify. More for-
mally: ∀ω∈Ω,

πK(ω) =

{
1 if ∀(ϕi, αi) ∈ K,ω |= ϕ;
1−max{αi : (ϕi, αi) ∈ K,ω 2 ϕi} otherwise.

(1)

Interval-based possibilitic logic
This subsection gives a brief refresher on interval-based pos-
sibilistic logic (Benferhat et al. 2011) where uncertainty is
not described with single values but by intervals of possible
degrees. We use closed sub-intervals I⊆[0, 1] to encode the
uncertainty associated with formulas or interpretations. If I
is an interval, then we denote by dIe and bIc its upper and
lower endpoints respectively.
Compatible possibility distributions An interval-based
possibility distribution, denoted by Iπ, is a function from Ω
to I. Iπ(ω)=I means that the possibility degree of ω is one
of the elements of I . An interval-based possibility distribu-
tion is viewed as a family of compatible standard possibility
distributions defined by:
Definition 1 (Compatible possibility distributions). Let
Iπ be an interval based possibility distribution. A possibil-
ity distribution π is said to be compatible with Iπ iff ∀ω∈Ω,
π(ω)∈Iπ(ω).

Of course, compatible distributions are not unique. We de-
note by C(Iπ) the set of all compatible possibility distribu-
tions with Iπ. Example 1 gives an example of interval-based
possibility distribution Iπ. Standard possibility distributions
π1 and π2 are compatible while possibility distribution π3 is
not compatible because π3(ω3)6∈Iπ(ω3).
Example 1. Let Iπ be an interval-based possibility distri-
bution over Ω={ω1, ω2, ω3}.

ω Iπ(ω)
ω1 [.7, 1]
ω2 [.6, .8]
ω3 [.4, .5]

ω π1(ω)
ω1 1
ω2 .7
ω3 .4

ω π2(ω)
ω1 1
ω2 .6
ω3 .5

ω π3(ω)
ω1 1
ω2 .7
ω3 1

Table 1: Example of an interval-based possibility distribu-
tion Iπ, two compatible distributions π1 and π2 and a non
compatible distribution π3.

Definition 1 gives minimal requirements for the notion of
compatible possibility distributions. One may additionally
require that a compatible possibility distribution should be
normalized as it is done in interval-based probability distri-
butions (Walley 1991). Since the problem considered in the
paper is the one of normalizing an interval-based possibil-
ity distribution, such requirement is not added. Of course, if
there exists an interpretation ω such that Iπ(ω)=[1, 1] then
such additional requirement is always satisfied as in Exam-
ple 1.

The syntactic representation of interval-based possibilis-
tic logic generalizes the notion of a possibilistic base to an
interval-based possibilistic knowledge base.
Definition 2 (Interval-based possibilistic base). An
interval-based possibilistic base, denoted by IK, is a multi-
set of formulas associated with intervals:
IK={(ϕ, I),ϕ∈L and I is a closed sub-interval of [0,1]}
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The intuitive interpretation of (ϕ, I) is that the certainty
degree of ϕ is one of the elements of I .

From interval-based possibilistic bases to interval-based
possibility distributions

As in standard possibilistic logic, an interval-based
knowledge base IK is also a compact representation of an
interval-based possibility distribution πIK .
Definition 3 (Interval-based possibility distribution). Let
IK be an interval-based possibilistic base, then:

πIK(ω) = [bπIK(ω)c , dπIK(ω)e]
where:

bπIK(ω)c =

{
1 if ∀(ϕ, I) ∈ IK, ω |= ϕ
1−max{dIe : (ϕi, I) ∈ K,ω 2 ϕi} otherwise.

and

dπIK(ω)e =

{
1 if ∀(ϕ, I) ∈ IK, ω |= ϕ
1−max{bIc : (ϕi, I) ∈ K,ω 2 ϕi} otherwise.

Definition 3 clearly extends the one given by Equation
1 when bIc = dIe, namely when intervals associated with
formulas are singletons.

Remark: In (Benferhat et al. 2011) it is assumed that the
lower endpoint bIc associated with propositional formu-
las should be strictly positive. In this paper, intervals with
nul lower endpoints are accepted. An interval of the form
[0, dIe], associated with a formula ϕ, means that either ϕ
is not believed (the source that provided the formula is not
reliable) or it is believed to at most a degree dIe.
Example 2. Let IK={(a, [.5, .7]), (a∨b, [.6, .9]), (a∧c, [.2, .4])}
be an interval-based possibilistic base where a, b and c
are three symbols of a propositional language L. The
interval-based possibility distribution corresponding to IK
according to Definition 3 is given in Table 2.

ω Iπ(ω)
abc [1, 1]

ab¬c [.6, .8]
a¬bc [1, 1]

a¬b¬c [.6, .8]
¬abc [.3, .5]
¬ab¬c [.3, .5]
¬a¬bc [.1, .4]
¬a¬b¬c [.1, .4]

Table 2: Example of interval-based possibility distribution
induced by an interval-based possibilistic base.

Semantic normalization
Weak and strong normalized interval-based
possibility distributions
In standard possibility theory, a possibility distribution π is
said to be normalized if there exists an interpretation ω such
that π(ω)=1. This reflects the presence of an interpretation

(or a solution) that is fully coherent (or compatible, satis-
factory) with respect to the set or available knowledge (or
constraints, preferences). A possibility distribution π is said
to be sub-normalized if:

h(π) = max{π(ω) : ω ∈ Ω} (2)
is less than 1. h(π) is called the normalization degree of π.

If π is sub-normalized then there are two main ways to
normalize a sub-normalized possibility distribution π:
• (product-based normalization) either we shift up pro-

portionally all the interpretations, and we get:

◦P (π)(ω) =
π(ω)

h(π)
(3)

• (min-based normalization) or we only increase the de-
grees of the best interpretations until reaching the degree
1, and we get:

◦B(π)(ω) =

{
1 if π(ω) = h(π)
π(ω) otherwise (4)

When we deal with the interval-based possibility theory,
there are two natural ways to define a normalized interval-
based possibility distribution.
Weak normalization: An interval-based possibility distri-

bution Iπ is said to be weakly normalized if there exists
an interpretation ω such that dIπ(ω)e = 1. In terms of
compatible possibility distributions, a weak normalization
guarantees the existence of at least one normalized possi-
bility distribution π which is compatible with an interval-
based distribution.

Strong normalization: An interval-based possibility dis-
tribution Iπ is said to be strongly normalized if there ex-
ists an interpretation ω such that π(ω)=[1, 1]. In terms of
compatible possibility distributions, a strong normaliza-
tion requires that all the compatible possibility distribu-
tions, of an interval-based possibility distribution, should
be normalized.
Sub-normalized interval-based possibility distributions

are those that are not weakly normalized. More precisely,
Definition 4 (Subnormalized distribution). An interval-
based possibility distribution is said to be sub-normalized
if there is no interpretation ω such that dIπ(ω)e = 1.

In the following, we use again, for the sake of simplicity,
h(Iπ) to denote the normalization interval of Iπ defined by:

h(Iπ) =
[
max{bIπ(ω)c : ω ∈ Ω},max{dIπ(ω)e : ω ∈ Ω}

]
(5)

Degenerate interval-based possibility distribution
Before presenting how to normalize a sub-normalized
interval-based possibility distribution, let us consider the de-
generate case where ∀ω ∈ Ω, Iπ(ω) = [0, 0]. Such interval-
based possibility distribution expresses a very strong con-
flict. A normalization of such degenerate interval-based pos-
sibility distribution gives:
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∀ω ∈ Ω, ◦c(Iπ)(ω) = [1, 1].

◦c(Iπ) reflects total ignorance situations.

In the rest of this paper, it is assumed that all interval-
based possibility distributions Iπ are not degenerate, namely
there exists at least one interpretation such that dIe > 0.

Compatible-based normalization
A natural way to define ◦c(Iπ) is to simply use the concept
of compatible possibility distributions, as it is illustrated by
the following figure.

A sub-normalized interval-based
possibility distribution Iπ

. . . . . .π1 a compatible possibility
distribution of Iπ

πn a compatible possibility
distribution of Iπ

Compute ◦P (π1)(resp. ◦B(π1)) Compute ◦P (πn) (resp. ◦B(πn)). . . . . .

◦c(Iπ)(ω)={◦P (Iπi)(ω) : ω ∈ Ω and i = 1..n}
(resp. ◦cB(Iπ)(ω)={◦B(Iπi)(ω): ω ∈ Ω and i = 1..n})

To be more precise, let Iπ be a sub-normalized possibility
distribution and C(Iπ) be the set of compatible possibility
distributions of Iπ. Then, for best-based normalization de-
fine :

◦cB(Iπ)(ω) = {◦B(π)(ω) : ω ∈ Ω, π ∈ C(Iπ)}, (6)

where ◦B(π) is given by Equation 4.

Equation 6 means that in order to normalize an interval-
based possibility distribution Iπ: i) first generate all the
compatible possibility distributions, ii) then normalize each
of these compatible distributions using Equation 4, and iii)
lastly collect all the possible degrees of an interpretation ω
to obtain ◦cB(Iπ)(ω).

Unfortunately, when using min-based normalization
◦cB(Iπ)(ω) is not an interval as it is shown by the following
counter-example:
Example 3. The following table contains an example of a
sub-normalized interval-based possibility distribution :

ωi ∈ Ω Iπ(ω)
ω1 [.8, .9]
ω2 [.5, .8]
ω3 [0, 0]
ω4 [0, 0]

One can check that for every compatible distribution π
such that π(ω2) ∈ [.5, .8[ we have ◦B(π)(ω2) ∈ [.5, .8[
(since π(ω1) ≥ .8). Now for compatible possibility distri-
butions where π(ω2) = .8 we have either ◦B(π)(ω2) = .8
(if π(ω1) > .8) or ◦B(π)(ω2) = 1 (if π(ω1) = .8). Hence :
◦B(π)(ω2) = [.5, .8] ∪ {1}.

The situation is different when using propositional-based
normalization (Equation 3) instead of best-based normaliza-
tion (Equation 4). Namely, define:

◦c(Iπ)(ω) = {◦P (π)(ω) : ω ∈ Ω, π ∈ C(Iπ)} (7)

In this case, for each ω ∈ Ω, ◦c(Iπ)(ω) is an interval as it
is shown by the following proposition.

Proposition 1. Let Iπ be a sub-normalized interval-based
possibility distribution. Then ◦c(Iπ) given by Equation 7 is
an interval-based possibility distribution.

Proof. Let us show that ◦c(Iπ)(ω) is indeed an interval. As-
sume that there exist two numbers α and β such that:

• α < β,
• α ∈ ◦c(Iπ)(ω), β ∈ ◦c(Iπ)(ω), and
• ∀γ such that α < γ < β we have γ 6∈ ◦c(Iπ)(ω).

The assumption α ∈ ◦c(Iπ)(ω) means that there exists a
compatible possibility distribution π such that :

α =
π(ω)

h(π)
.

Since α < β then trivially there exists ε such that:

α =
π(ω)

h(π)
<
π(ω) + ε

h(π)
< β.

Therefore it is enough to define a new compati-
ble possibility distribution π′ such that π′(ω)=π(ω)+ε
and ∀ω′, π′(ω′)=π(ω′). Clearly, π′ is compatible and

◦P (π′(ω))=
π(ω) + ε

h(π)
∈ ◦c(Iπ)(ω).

It remains to specify the lower and upper endpoints
of ◦c(Iπ)(ω). Recall that, from Equation 3, for a given
sub-normalized compatible possibility distribution π we

have ∀ω∈Ω, ◦P (π)=
π(ω)

h(π)
. Therefore, intuitively to get for

instance the upper endpoint of ◦c(Iπ)(ω) it is enough to
select a compatible distribution that provides the smallest
value for π(ω) (namely, when it is possible π(ω)=bIπ(ω)c)
and the largest value for h(π) (namely, when it is possible
h(π) = dh(Iπ)e).

The following two propositions give these endpoints de-
pending whether there exist a unique interpretation or sev-
eral interpretations having their upper endpoints equal to
dh(Iπ)e.
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Proposition 2. Let Iπ be a sub-normalized interval-based
possibility distribution. If there exist more than one interpre-
tation having their upper endpoints equal to dh(Iπ)e, then
∀ω ∈ Ω:

◦c(Iπ)(ω) =

[
bIπ(ω)c
dh(Iπ)e

,min

(
1,
dIπ(ω)e
bh(Iπ)c

)]
Proof. Let ω∈Ω be an interpretation.

• The lower endpoint b◦c(Iπ)(ω)c is equal to
bIπ(ω)c
dh(Iπ)e

. In-

deed, this possibility degree
bIπ(ω)c
dh(Iπ)e

exists and is ob-

tained by considering a compatible possibility distribution
π where h(π) = dh(Iπ)e (remember that π(ω) ≤ h(π)).
Besides, since for each compatible possibility distribution
π′ we have h(π′) ≤ dh(Iπ′)e and π′(ω) ≥ bIπ(ω)c then

◦P (π′)(ω) ≥ bπ(ω)c
dh(Iπ)e

.

• Similarly, the upper endpoint d◦c(Iπ)(ω)e is equal

to min

(
1,
dIπ(ω)e
bh(Iπ)c

)
. Again, this possibility degree

min

(
1,
dIπ(ω)e
bh(Iπ)c

)
exists and is obtained, by consider-

ing a compatible possibility π where h(π) = bh(Iπ)c
and π(ω) = min (bh(Iπ)c, dIπ(ω)e). Let us show that
for every compatible possibility distribution π′, we have

◦P (π′)(ω) ≤ min

(
1,
dIπ(ω)e
bh(Iπ)c

)
. Let us consider two

cases:
– If dIπ(ω)e < bh(Iπ)c then for every compatible pos-

sibility distribution π′, we have:

π′(ω) ≤ dIπ(ω)e (hence

π′(ω) ≤ min (bh(Iπ)c , dIπ(ω)e) since dIπ(ω)e < bh(Iπ)c)
and

h(π′) ≥ bh(Iπ)c .
Therefore

◦P (π′)(ω) =
π′(ω)

h(π′)

≤ min (bh(Iπ)c , dIπ(ω)e)
bh(Iπ)c = min

(
1,
dIπ(ω)e
bh(Iπ)c

)
.

– If dIπ(ω)e ≥ bh(Iπ)c then trivially:

◦P (π′)(ω) ≤ min

(
1,
dIπ(ω)e
bh(Iπ)c

)

since min
(

1,
dIπ(ω)e
bh(Iπ)c

)
= 1.

Next proposition concerns a very particular situation
where there exists exactly one interpretation ω such that
d◦c(Iπ)(ω)e=dh(Iπ)e. In this case, only the lower endpoint
of the interpretation ω will differ. More precisely:

Proposition 3. Let Iπ be a sub-normalized interval-
based possibility distribution. If there exists exactly one
interpretation ω such that dIπ(ω)e=dh(Iπ)e. Define
secondbest(Iπ)=max{dIπ(ω′)e : ω′ ∈ Ω and dIπ(ω′)e 6=
dh(Iπ)e}. Then:

◦c(Iπ)(ω′)=



[
bIπ(ω′)c
dh(Iπ)e ,min

(
1,
dIπ(ω′)e
bh(Iπ)c

)]
if ω′ 6= ω

[1, 1]if ω′ = ω and secondbest(Iπ) = 0[
bIπ(ω)c

secondbest(Iπ)
, 1

]
otherwise.

Proof. In the situation where there exists exactly one inter-
pretation ω such that dIπ(ω)e=dh(Iπ)e. Then first ∀ω′ 6=ω,
we have :

◦c(Iπ)(ω′) =

[
bIπ(ω′)b
dh(Iπ)e

,min

(
1,
dIπ(ω′)e
bh(Iπ)c

)]
The proof for this case is exactly the same as the one given

in Proposition 2.
Now regarding the interpretation ω, there are two cases to

consider :

• if secondbest(Iπ)=0 then this means that ∀ω′ 6=
ω, Iπ(ω′)=[0, 0]. Hence, for each compatible possibility
distribution π we have ◦P (ω)=1 and ∀ω′ 6=ω, ◦P (ω′)=0.
Hence, ◦c(Iπ)(ω)=[1, 1] and ∀ω′ 6=ω, ◦c(Iπ)(ω′)=[0, 0].

• if secondbest(Iπ) 6= 0 then this means that ∃ω′ 6=ω, such
that Iπ(ω′)6=[0, 0]. In this case,

◦c(Iπ)(ω) =

[
bIπ(ω)c

secondbest(Iπ)
, 1

]
.

The upper endpoint (1) is obtained by considering a com-
patible possibility distribution π where π(ω)=dh(Iπ)e.
The lower endpoint is obtained by considering an-
other compatible possibility distribution π′ where
π′(ω)=bIπ(ω)c (the smallest possible degree for ω in
Iπ) and for some ω′, π′(ω)=secondbest(Iπ) (such ω′

exists by assumption that secondbest(Iπ) 6= 0). One can
check that for each compatible possibility distribution π”
we have π”(ω)≥bIπ(ω)c and h(π”) ≤ secondbest(Iπ).

Therefore, ◦P (π”)(ω)=
π”(ω)

h(π”)
≥ bIπ(ω)c
secondbest(Iπ)

.

The following algorithm summarizes the computation of
◦c(Iπ) on the basis of the above propositions.
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Algorithm 1 Compatible-based normalization of interval-
based possibility distributions
Input: An interval-based possibility distribution Iπ
Output: ◦c(Iπ) a normalized interval-based possibility distribu-

tion
if ∀ω ∈ Ω, Iπ(ω) = [0, 0] (degenerate case) then
∀ω ∈ Ω, ◦c(Iπ)(ω) = [1, 1]

else if Iπ is weakly normalized then
◦c(Iπ) = Iπ

else if there exists a unique ω such that dIπ(ω)e = dh(Iπ)e
then

if ∀ω′ 6= ω, Iπ(ω′) = [0, 0] then
◦c(Iπ)(ω) = [1, 1]
∀ω′ 6= ω, ◦c(Iπ)(ω′) = [0, 0].

else
Let secondbest(Iπ)=max{dIπ(ω′)e:
ω′∈Ω and Iπ(ω′) 6= dh(Iπ)e}.

◦c(Iπ)(ω) = [
bIπ(ω)c

secondbest(Iπ)
, 1]

∀ω′ 6=ω,◦c(Iπ)(ω′)=

[
bIπ(ω′)c
dh(Iπ)e ,min

(
1,
dIπ(ω′)e
bh(Iπ)c

)]
end if

else
∀ω ∈ Ω, ◦c(Iπ)(ω) =

[
bIπ(ω)c
dh(Iπ)e ,min

(
1,
dIπ(ω)e
bh(Iπ)c

)]
end if

The following proposition shows that ◦c(Iπ) is, in gen-
eral, weakly normalized. It also provides under which con-
ditions ◦c(Iπ) is strongly normalized.

Proposition 4. Let Iπ be an interval-based possibility dis-
tribution. Then:

• ◦c(Iπ) is weakly normalized.
• ◦c(Iπ) is strongly normalized if and only if there exists an

interpretation ω such that ∀ω′ 6=ω, bIπ(ω)c ≥ dIπ(ω′)e.

Proof. Let Iπ be an interval-based possibility distribution. Then:

• To see that ◦c(Iπ) is weakly normalized, it is enough to choose
a compatible possibility distribution π and an interpretation ω
such that π(ω)=dh(Iπ)e. This means that ∀ω′ 6= ω, π(ω) ≥
π(ω′). Hence, ◦P (π)(ω)=1. Therefore d◦c(Iπ)(ω)e=1.

• Let us show that ◦c(Iπ) is strongly normalized if and only if
there exists an interpretation ω such that ∀ω′ 6=ω, bIπ(ω)c ≥
dIπ(ω′)e.
– Assume that there exists an interpretation ω such that ∀ω′ 6=ω,
bIπ(ω)c≥dIπ(ω′)e. Then for each compatible possibility
distribution π, we have ∀ω′ 6=ω, π(ω)≥π(ω′). This also
means that in each compatible possibility distribution π we
have ◦P (π)(ω) = 1. Therefore b◦c(Iπ)(ω)c=1 and hence
◦c(Iπ)(ω) = [1, 1] and ◦c(Iπ) is strongly normalized.

– Now assume there is no interpretation ω such that ∀ω′ 6=ω,
bIπ(ω)c≥dIπ(ω′)e. Then for each ω∈Ω, it is possible to
get a compatible distribution π such π(ω)<π(ω′) for some
ω′∈Ω. Therefore b◦c(Iπ)(ω)c<1 and hence ◦c(Iπ) is not
strongly normalized.

Example 4. Let us consider again Example 3. From
this example, we have bh(Iπ)c=.5 and dh(Iπ)e=.9.
Besides, there exists exactly one interpretation such

that dIπ(ω)e=dh(Iπ)e; this interpretation is ω1. Now,
secondbest(Iπ)=.8. Lastly, the normalization of Iπ of Ex-
ample 3 gives the distribution of Table 3.

ωi∈Ω Iπ(ω)
ω1 [1, 1]
ω2 [ .5.9 , 1]
ω3 [ 0, 0]
ω4 [ 0, 0]

Table 3: Normalized distribution for Iπ of Example 3.

Conclusions
This paper dealt with foundational issues of interval-based
possibilistic knowledge bases. More precisely, it dealt with
the issue of normalizing an interval-based possibility distri-
bution underlying an interval-based possibilistic base. The
normalization is based on the concept of compatible stan-
dard possibility distribution. We showed that using the min-
based normalization, the result is not an interval-based dis-
tribution. However, when the product-based normalization is
used, the result is an interval-based possibility distribution.
We provided precise lower and upper endpoints of the re-
sult of normalizing interval-based possibility distributions.
Future works will analyse the syntactic counterpart of the
normalization procedure when the input is an inconsistent
interval-based possibilistic knowledge base.
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