
Activity Monitoring and Prediction for Humans and
NAO Humanoid Robots Using Wearable Sensors

Saminda Abeyruwan, Faisal Sikder, Ubbo Visser, and Dilip Sarkar
University of Miami

Department of Computer Science
1365 Memorial Drive, Coral Gables, FL, 33146, USA
{saminda—faisalsikder—visser—sarkar}@cs.miami.edu

Abstract

While humans or biped humanoid robots perform activ-
ities such as jogging and running, an accident event such
as a fall may occur. This might cause damage to the hu-
man body or to the structural components of the robot.
For humans, immediate identification of a fall will al-
low fast responses, while for a robot, early prediction
can be used to take corrective measures to prevent a
fall. Modern wireless sensing devices can be attached
to humans or robots to collect motion data. We pro-
pose: 1) methods to learn and predict different activities
for humans and robots; and 2) software tools to real-
ize these functions on embedded devices. Our contribu-
tions include: 1) detection of falls for both humans and
robots within a unified framework; and 2) a novel soft-
ware development environment for embedded systems.
Our empirical evaluations demonstrate that with high
accuracy different types of fall-events are predicted us-
ing the same learning algorithms for humans and biped
humanoid robots.

Introduction
The humans as well as the biped humanoid robots com-
plete apparently simple activities — such as, jogging, and
running etc. — that requires complex computational tasks.
While performing these routine activities, accidents such as
falls may occur causing damage to the human body or to
the structural components of the humanoid robot (Li et al.
2009). In the near future human-robot will cooperatively
work together for solving problems that are difficult for both
groups. For instance, there has been an increasing demand
in domains such as rescue to use autonomous or teleoper-
ated humanoid robots to complete high-risk tasks, otherwise
would have been lethal to a human subject. Therefore, we
envision environments where humans and humanoid robots
collaboratively work to complete tasks.

Since both humans and biped humanoid robots have al-
most identical movements and are susceptible to similar ac-
cidents, we believe that the same set of learning algorithms
are suitable for both groups. To validate our hypotheses, we
develop a generalized approach for learning and predicting
activities of both groups. We have attached wearable sensing

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

devices to collect motion data and have used software tools
to interpret the sensor data to distinguish between regular
activities and fall events. The sensing devices are assembled
using (i) off-the-shelf hardware component boards and (ii)
a set of generalized software tools that we have developed.
The software tools collect data from the sensors, which we
used for learning to distinguish between routine activities
and fall events as well as predicting activities. The soft-
ware tools provide a modular functionality to use for collect-
ing data from any sensing devices, and to learn and predict
on/off-line. While attempts for identifying human motions
have already been investigated, to the best of our knowledge,
we are the first to investigate the prospect of using external
embedded devices to identify activities on a NAO humanoid
robot.

Related Work
The modern activity detection methods can be broadly cate-
gorized in to two groups based on: 1) inexpensive wearable
embedded devices; and 2) smart-phones. Wearable embed-
ded devices with add-on sensors provide options to develop
effective activity recognition methods for humans and biped
humanoid robots alike. The existing activity detection meth-
ods focus on special cases of fall detection in humans and
humanoid robots. These methods were primarily used in iso-
lation. (Ojetola, Gaura, and Brusey 2011) reported method
using accelerometers and gyroscopes to detect fall incidence
among the elderly people. The work reported detecting four
falling events: forward, backward, right, and left. They used
a decision tree to learn and classify falls and activities of
daily living (ADL). The method identified fall events with
precision of 81% and recall of 92%.

(Baek et al. 2013) proposed a fall detection system us-
ing necklace-shaped tri-axial accelerometer and gyroscope
sensors to classify the behavior and posture of the detec-
tion subject. Their method distinguished between ADL and
fall, with sensitivities greater than 80% and specificities of
100%. They experimented with ADLs such as: standing, sit-
ting in the chair or floor, laying, walking, running, going up-
stairs/downstairs, and bending, while, falling forward, back-
ward, leftward, rightward, and fall on the stairs were treated
as abnormal events.

(Leone, Rescio, and Siciliano 2013) prosed a system to
detect event that cause trauma, and disabilities using a tri-

342

Proceedings of the Twenty-Eighth International Florida Artificial Intelligence Research Society Conference



axial MEMS wearable wireless accelerometer. They used
support vector machine (SVM) for robust classification of
different events. (Bao and Intille 2004) reported of using five
small biaxial wire-free accelerometers attached on the left
bicep, right wrist, left quadriceps, right ankle, and right hip
to recognize 20 activities starting from walking to riding el-
evator to strength training to bicycling. They reported using
decision table, instance-based learning, decision tree, and
naı̈ve Bayes classifiers, where, decision tree showed the best
performance with 84% accuracy. Similar efforts have been
reported to detect human motions using motion tracking,
e.g., (Dumitrache and Pasca 2013; Kumar and Pandey 2013;
Krishnan and Cook 2014; Gao, Bourke, and Nelson 2014;
Álvarez-Garcı́a et al. 2015).

(Moya et al. 2015) proposed a fall detection, avoid-
ance, and damage reduction mechanism for biped humanoid
robots. They tried to simulate the real world environment
where humanoid robots have to walk over irregular surface,
running or playing sports, collision with other robots. Their
framework detected instability and performed fall avoid-
ance or at least low-damage falling mechanism was invoked.
Therefore, embedded devices with add-on sensors provide a
flexible platform to build may real world applications.

There is an increasing popularity in using smart-phones
to detect activities in health care domain. Using only the
accelerometer readings from a smart-phone, (Bai, Wu, and
Yu 2013) analyzed five actions of human walking, running,
standing up, sitting down, and jumping. They compared the
acceleration characteristics of these actions with three differ-
ent fall accelerations to infer the direction of the fall. Their
method recognize the fall activity, only when a predefined
set of conditions were met. But the method did not provide
any prediction or indication value, that a fall may occur in
future.

(Steidl, Schneider, and Hufnagl 2012) reported that the
sensors of the smart-phones from different manufactures
record values significantly incompatible ranges for identi-
cal tasks. Therefore, they trained a SVM classifier based on
the features extracted from raw accelerometer readings and
the directional changes of the constraining force exerted on
an accelerometer to detect fall events. They compared these
events to non-fall activities such as walking, running, jump-
ing, and some actives which resembles falls such as sitting
down on a chair. Their method detected fall events 84.8%
average accuracy across different smart-phones.

(Dernbach et al. 2012) explored methods to detect sim-
ple and complex activities using inertial sensors (accelerom-
eter and gyroscope) of an Android smart-phone. The sim-
ple activities included: biking, climbing stairs, driving, run-
ning, sitting, standing, walking, and state of the phone not on
the person. The complex activities were: cleaning, cooking,
medication, sweeping, washing hands, and watering plants.
Six different classifiers, multi-layer perceptron (MLP), naı̈ve
Bayes, Bayesian network, decision table, best-first tree, and
K-star, were trained on using the same feature extractor. For
simple activities, 93% accuracy using MLP were reported,
while, 50% success was achieved for complex activities.

(Shen, Lai, and Lai 2015) used a high-level fuzzy Petri net
for the analysis and the development of identifying normal

human actions such as sitting-down, squatting, walking, run-
ning, and jumping and abnormal events such as falling for-
ward, backward, sideways, and vertical. Their fall detection
method reported 94% accuracy. One disadvantage of their
process was that, some complex situations and movements
cannot be detected accurately; e.g., falling down from stairs,
multiple collisions, or temporal unbalance motions.

Similar to existing methods, we have defined different
normal and abnormal activities for humans and NAO hu-
manoid robots. In order to validate our hypotheses that
the learning and predicting methods unifies across the two
groups, firstly, we have restricted the activities that can
be performed on a NAO robot. Therefore, in our experi-
ments, the human performed activities that are similar to the
robot, such as, walk or falling forward/backward so forth.
Secondly, we have extended the human activities to more
complex events. We have used Texas Instruments (TIs) mi-
crocontrollers and boosterpacks for our experiments, but,
one can use microcontrollers and sensor boards from other
sources.

Our Approach and Contributions

Many off-the-shelf hardware boards, such as, TI micro-
controller boards (MSP430TMLaunchPad, TivaTM C Series
TM4C123G LaunchPad, Tiva C Series TM4C129 Con-
nected LaunchPad) and add-on BoosterPacks with sensors
as well as wireless transmitter and receiver provide flexi-
ble platform for developing smart-devices for a wide rage of
low power and portable applications. For our experiments,
we have assembled a wireless sensing-device with a Tiva C
Series TM4C123G microcontroller board, and three boost-
erpacks — a Sensor Hub BoosterPack for sensing 9-axis
motion, a CC2533 BoosterPack for wireless networking,
and a Fuel-Tank BoosterPack for power. We also assem-
bled a wireless data collection device with a Tiva C Series
TM4C123G microcontroller board, and a CC2533 Booster-
Pack. These two devices were networked to create a wireless
sensor network (WSN) for collecting motion data from hu-
mans and NAO humanoid robots. The data collection device
is connected to a computer with a USB cable for logging
sensed data.

We have developed a set of software tools to create a
framework that allow us 1) to setup the WSN, 2) to col-
lect data, 3) to learn from sample examples, and 4) to mon-
itor and predict events. This framework is general enough
for other practitioners to use the available functionalities for
creating WSNs, collecting data, learning, and prediction.

The rest of the paper is organized as follows. First, we
describe the software development framework that we have
proposed and implemented. In the next section, we briefly
describe the experimental setup. In the penultimate sec-
tion, we present evaluation results for humans and NAO hu-
manoid robots. We have utilized two machine learning algo-
rithms and a thresholding based method to learn and iden-
tify normal and abnormal activities. Then we also have pre-
sented our observations and discussion. Finally, the paper is
concluded with a summary and future work.

343



ARM-Cortex-M-
Module

InterruptVectorRepresentation

PressureSensor
Module

LightSensor
Module

PressureHumi-
dityModule

Temperature
SensorModule

9-Axis-Motion
Module

BatteryStatSensor
Module

PressureSensor
Representation

LightSensor
Representation

PressureHumidity
Representation

Temperature
Representation

9-Axis-Motion
Representation

LowPowerFreq
Module

LearningModule

LearningRepresentation

PredictionModule

(a) (b) (c)

Figure 1: (a) Currently available software modules in our framework and a directed-graph representation of their functional
relationship; (b) a wireless sensor device (assembled from a TI Tiva C Series TM4C123G LaunchPad, a Sensor Hub Boost-
erPack, a CC2533 BoosterPack, and a Fuel Tank BoosterPack) attached to the back of a human subject; the device is running
our framework with only three motion-sensing modules; and (c) the same device configuration was used on the back of a NAO
humanoid robot.

Framework
The framework provides generic functionalities to develop
applications or rational agents on embedded devices that
sense and actuate using add-on boards. The execution paths
between sensors to actuators could contain complex behav-
ior manipulations and modeling decisions that needs to be
developed efficiently. Hence, the framework takes these con-
sideration into account and provides a topologically sorted
graph, based on the decision points provided by practition-
ers. The framework includes: 1) tools to develop modules
and representations that execute on the microcontrollers or
off-line, 2) the methods to access functionalities for phys-
ical robots, and 3) a real-time visualization system. Our
framework is lightweight, flexible, and consumes minimum
memory and computational resources. We have tested our
framework on multiple microcontrollers and on booster-
packs as stated above. We have written and distributed soft-
ware solutions to access devices on the boosterpacks such
as: (1) InvenSense MPU-9150: 9-axis MEMS motion track-
ing (thee-axis gyro, thee-axis accelerometer, and thee-axis
magnetometer); (2) Bosch Sensortec BMP180 pressure sen-
sor; (3) Sensirion SHT21 humidity and ambient temperature
sensor; (4) Intersil ISL29023 ambient and infrared light sen-
sor; and (5) TIs TMP006 non-contact infrared temperature
sensor.

Our development framework, µEnergia (pronounced as:
“micro–Energia” and site: http://muenergia.saminda.org),
uses a notion of modules and representations to perform
computations. The modules implement functions, while the
representations exchange information from one module to
another. They are connected using directed arcs to form
a directed graph. In Figure 1a, the blue arrows shows the
provided representations, and the black arrows show the
requested representations. A module can provide multiple

representations. The framework computes the topologically
sorted graph out of the nodes. This is computed once, and
the nodes in the queue will be executed one after the other.
If there were to be cycles in the graph, the framework will
detect them and indicate them to the users.

The Figure 1a shows the modules and representations re-
lated to our experiments, where the boxes represent the com-
putational modules, while the rounded-boxes represent the
input to a module or an output from a module. For brevity, in
the rest of the paper, the computational modules are refereed
as modules. As an example, the module 9-Axis-Motion Mod-
ule contains logic to read from or write to MPU-9150 9-Axis
(Gyro+Accelerometer+Compass) MEMS MotionTracking
device on the sensor hub booster pack. The representation 9-
Axis-Motion Representation contains all the values that this
module shares with other modules in the framework. In this
graph, Learning Module requests values from 9-Axis-Motion
Representation to implement the learning function.

Experimental Setup
We have conducted our experiments on detecting eight regu-
lar movement activities and four fall events on humans. The
list of these activities and fall events are shown in Table 1.
For humanoid robots (NAO robots) we evaluated all these
activities and fall events, except stand-to-sit activity. A wire-
less 9-axis motion sensing device was attached to the back of
the subjects as shown in Fig. 1, and a wireless data collect-
ing device was connected to a computer. These two devices
formed a WSN. While each subject was performing each of
the prescribed activities, and fall events data was logged in
the computer for leaning and performance evaluation.

The motion data included 3-axis accelerometer readings,
3-axis gyroscope readings, and 3-axis magnetometer read-
ings. These datasets were used to calculate the quaternion

344



Sample Number
0 100 200 300 400 500 600

U
ni

ts

-15

-10

-5

0

5

10

15

20

_x

_y

_z
_3x
_3y
_3z

(a) Human walking forward.
Sample Number

0 100 200 300 400 500 600

U
ni

ts

-15

-10

-5

0

5

10

15

20

_x

_y

_z
_3x
_3y
_3z

(b) Human stand to seat.
Sample Number

0 100 200 300 400 500 600

U
ni

ts

-15

-10

-5

0

5

10

15

20

_x

_y

_z
_3x
_3y
_3z

(c) Robot fallen forward.
Sample Number

0 100 200 300 400 500 600

U
ni

ts

-15

-10

-5

0

5

10

15

20

_x

_y

_z
_3x
_3y
_3z

(d) Robot fallen backward.

Figure 2: Figures (a–b) shows 3-axis accelerometer and 3-axis gyroscope graph for human motions walking forward and stand
to seat. Figures (c–d) shows 3-axis accelerometer and 3-axis gyroscope graph for robot’s fallen forward and backward motions.

rotation axis of the device, and Euler angles roll, pitch, and
yaw. We have used the Direction Cosine Matrix (DCM) al-
gorithm for calculating Euler angles.

The rest of the section reports our data collection, data
processing, learning, and prediction results.

Activity Annotation: The annotation for different human
and robot motion activities are shown in Figure 2. Ac-
celerometer and gyroscope’s x, y and z axis are shown for
different motions. We can observe that transition from a rou-
tine motion activity to a fall event takes between 180 to 250
ms. Figure 2 (a–b) shows the activity annotations for human
motions (walking forward and sitting down). Figure 2 (c–d)
shows activity annotations for the NAO robot. The following
section provides the evaluation matrices of our experiments.

Evaluation Results
We have structured this section in a way that we discuss
feature extraction, data processing, machine learning, and
experimental results for both the human and robotic experi-
ments. We have tested our hypotheses using Regularized Lo-
gistic Regression (LLR) and Support Vector Machine (SVM)
algorithms. We have used a randomly generated 80%–20%
partition for training and cross-validation on our learning
dataset. We have used an independent test set to report our
results. We have used standard parameter sweeping tech-
niques to find the classifier parameters that provide the opti-
mal trade-off between the bias and the variance, while pre-
cision, recall, and F1-scores have been used to obtain the
optimal value.

Feature Extraction
We have configured the motion sensor to sample at every
20ms, which is equivalent to 50Hz sampling rate. In or-
der to identify activities: 1) we have used a window size of
400ms (20 samples); and 2) we have allowed 10 samples
(200ms) to overlap between windows. The selection of the
window size is based on the observation that transition from
routine activities to a fall event takes between 180−250ms.
Thus, a window size of 400ms will include both fall event
and non-fall event data for classification. For each window,
we have calculated the running average of all 9-axis values.
This has produced nine values per window, which has been

used as features. We also added a bias term to provide addi-
tional capacity for the learning algorithms. The accelerom-
eter readings are in meter per square second (m/s2), gy-
roscope readings are in 3-axis in radian per square second
(rads/s2), and the magnetometer readings are in Tesla (T ).

As a preprocessing step, the features, except the bias, have
been subjected to feature standardization. We have indepen-
dently set each dimension of the sample to have zero-mean
and unit-variance. We achieved this by first computing the
mean of each dimension across the dataset and subtracting
this from each dimension. Then each dimension is divided
by its standard deviation.

Experiments with a Human
We have defined a protocol that collects data for seven nor-
mal activities and four falling events as shown in Table
1. The normal activities include walking (forward, back-
ward, left, and right), marching, and rotating (left and right).
Falling (forward, backward, left, and right) has been con-
sidered as an abnormal event. The same protocol has also
been applied to the humanoid robot (Table 2), because mo-
tion characteristics of the human and the robot are very sim-
ilar. In addition, we have defined an extended activity, stand
to seat, on the human. Therefore, we have conducted twelve
motions in total on the human subject. Example plots for
1) walking forward; and 2) from standing to sitting down
are shown in Figures 2a and 2b respectively.

Table 1: Logistic regression and SVM classification for hu-
man activities.

Logistic regression SVM classification
Activity TP TN FP FN TP TN FP FN
Walking forward 91% 90% 10% 9% 96% 93% 7% 4%
Walking backward 82% 86% 14% 18% 81% 84% 16% 19%
Walking left 86% 86% 14% 14% 89% 90% 10% 11%
Walking right 86% 86% 14% 14% 89% 90% 10% 11%
Falling forward 94% 93% 7% 6% 96% 93% 7% 4%
Falling Backward 84% 88% 12% 16% 84% 87% 13% 16%
Falling left 92% 91% 9% 8% 93% 93% 7% 7%
Falling Right 92% 91% 9% 8% 92% 93% 7% 8%
Marching 91% 90% 10% 9% 95% 93% 7% 5%
Rotate counter-clockwise 91% 89% 11% 9% 93% 91% 9% 7%
Rotate clockwise 92% 89% 11% 8% 94% 91% 9% 6%
Stand to seat 96% 92% 8% 4% 96% 92% 8% 4%

345



Results: Table 1 shows the final results for LLR classifi-
cation, where, true positive, true negative, false positive, and
false negative are abbreviated with TP, TN, FP, and FN re-
spectively. For walking forward on an average, the accuracy
is 91%, similarly, for falling forward and marching the ac-
curacies are 94% and 91% on an average, respectively. We
found comparatively low accuracy in walking backward and
falling backward. Rotation has accuracy on an average more
than 90%. We also observed that detection of the walking ac-
tivity is less than other activities that we experimented with.

The results for SVM classifier is summarized in Table ??.
On an average, accuracy for each type of activity is higher
than LLR classifier with on an average 96% for walking,
95% for marching, and 96% for falling forward. Both type
of rotations have little higher accuracy over LLR. As a con-
sequence, SVM classifier has less false positives and false
negative compared to LLR. Our experiments reveal that the
SVM classifier performs better than the logistic regression
classifier. However, due to memory and computational re-
strictions on the embedded devices, we have found that the
logistic regression classifier is a better choice. Our feature
vector consists of the mean normalized sensor reading and a
bias term. We plan to combine and prune features to improve
the classification accuracy for future work.

Experiments with a NAO Robot
Our NAO robots have an omni-directional walking engine.
Walking motions are regulated by linear velocities ẋv and
ẏv , and an angular velocity θ̇v as input parameters. Depend-
ing on these values we can let the robot walk (forward, back-
ward, and side-ways) and rotate (clockwise and counter-
clockwise) with different speeds. In this study, we have con-
sidered (1) marching (ẋv = 0, ẏv = 0, θ̇v = 0); (2) walking
forward/backward (ẋv = ±200, ẏv = 0, θ̇v = 0); (3) walk-
ing side-ways (ẋv = 0, ẏv = ±200, θ̇v = 0); and (4) ro-
tating clockwise/counter-clockwise (ẋv = 0, ẏv = 0, θ̇v =
±0.5) as normal states, while all the other activities are clas-
sified as fallen states.

Table 2: Logistic regression and SVM classification for
robot activities.

Logistic regression SVM classification
Activity TP TN FP FN TP TN FP FN
Walking forward 91% 90% 10% 9% 93% 91% 9% 7 %
Walking backward 90% 90% 10% 10% 93% 91% 9% 7%
Walking left 92% 90% 10% 8% 94% 90% 10% 6%
Walking right 89% 90% 10% 11% 90% 91% 9% 10%
Falling forward 94% 93% 7% 6% 98% 93% 7% 2%
Falling Backward 94% 93% 7% 6% 98% 93% 7% 2%
Falling left 95% 93% 7% 5% 99% 94% 6% 1%
Falling Right 94% 93% 7% 6% 98% 93% 7% 2%
Marching 91% 89% 11% 9% 90% 91% 11% 10%
Rotate counter-clockwise 97% 92% 8% 3% 97% 93% 7% 3%
Rotate clockwise 98% 92% 8% 2% 96% 93% 7% 4%

We have attached the sensors on the back of the NAO hu-
manoid robot as shown in Figure 1c and used the following
protocol to collect the datasets. First, we set the velocity pa-
rameters and activate the walking engine of the robot. Then,
we collect the motion data transmitted by the wireless device

attached at the back of the robot. Finally, we marked the start
point of the sample stream and collect data approximately
for a minute and marked the end of the sample stream. This
is an episode of a normal or a fallen state. We repeat the de-
scribed protocol for collecting multiple episodes to obtain
our learning ensemble. To collect samples for fallen states,
we have configured the walking engine to marching activity.
Then, we safely pushed the robot to different directions to
inducing the fallen state. Similarly, we marked the sample
streams to generate several episodes for the learning ensem-
ble.

Results: The results for LLR and SVM classifiers are
summarized in Table 2. The results are similar to that of hu-
man activities and fall events, and for conserving space we
omit detail discussion of the results. It is worthwhile to note
that the SVM identified events more accurately than LLR as
observed for human activities.

Even though the above learning methods provide accurate
results, there are microcontrollers with very limited compu-
tational and memory capacities. In such devices, it is better
to use less memory expensive methods such as Kalman fil-
tering, which is reported in the next section.

Kalman Filtering: We have designed a thresholding base
activity predictor in these experiments. Using the same
datasets, we have calculated the roll, pitch, and yaw an-
gles using the DCM algorithm. In order to achieve an effec-
tive threshold-based decision making, we have filtered the
roll, pitch, and yaw values using a Kalman filter (Welch and
Bishop 1995). Figures 3 (a–b) show the raw and the filtered
values of the roll and the pitch values for marching and walk
backward. The other activities show similar plots.

The thresholding method suggests that, if the filtered roll
values are within the range [90 ± 15] (degrees) and the fil-
tered pitch values are within the rage [0 ± 15] (degrees),
then with 100% accuracy, the NAO robot will be in a nor-
mal state. Otherwise, we can safely assume that the robot is
in a fallen state. Figures 3 (c–d) show the roll and pitch an-
gles (raw and filtered) for a typical fallen robot. If the filtered
roll value is less that 60 degrees, we can safely assume that
the robot is falling forward. If the filtered roll values is more
than 100◦ we can assume that the robot is falling backward.
To detect the events falling to the left and right, we have used
the filtered pitch values. If the filtered pitch value is less than
-50◦, we can assume that the robot is falling to the left side,
while if the filtered pitch values is more than 50◦, we can
assume that the robot is falling to the right side. With these
thresholds for a separate test cases, the thresholding method
has detected fallen state with 100% accuracy.

Even though the thresholding method successfully distin-
guished between normal and fallen activities, it was unable
to detect states within the normal activities, i.e., walking for-
ward to walking backward so on. This one of the limitation
of using thresholding methods, which has been overcome
by the learning methods. We use Kalman filter in this exper-
iments because of its efficacy and the choice of the filter is
entirely arbitrary depending on the computational resources
of the microcontroller.

346



0 100 200 300 400 500 600 700 800
−40

−20

0

20

40

60

80

100

Sampling

D
eg

re
es

 

 

Raw roll
Filtered roll
Raw pitch
Filtered pitch

(a) Marching in place.

0 100 200 300 400 500 600 700 800
−20

0

20

40

60

80

100

Sampling

D
eg

re
es

 

 

Raw roll
Filtered roll
Raw pitch
Filtered pitch

(b) Walking backward.

0 50 100 150 200 250
−20

0

20

40

60

80

100

120

Sampling

D
eg

re
es

 

 

Raw roll
Filtered roll
Raw pitch
Filtered pitch

(c) Falling forward.

0 50 100 150
−20

0

20

40

60

80

100

120

140

160

180

Sampling

D
eg

re
es

 

 

Raw roll
Filtered roll
Raw pitch
Filtered pitch

(d) Falling backward.

Figure 3: Figures (a–b) show the roll and pitch angles (raw and filtered) for normal behaviors marching in place and walking
backward. Figures (c–d) show the raw and filtered roll and pitch angles for fallen forward and backwards states of NAO
humanoid robot.

Conclusions and Future Work
Falling events could cause damage to both humans and
robots. Using prediction information, corrective measures
can be engaged to avoid many fall events. Similarly, for hu-
mans, after a fall is identified, rescue services can be called
upon. We have reported a wireless sensing device that have
assembled using off-the-shelf hardware components. Using
two devices, we have created a sensor network for collect-
ing motion data from humans and biped humanoid robots.
The sensing devices were connected to the back of the sub-
jects and the data collecting device was connected to a lap-
top which archived the data. We have used two machine
learning algorithms and thresholding methods to identify
both normal and abnormal activities within 91%–100% ac-
curacy. Comparing the encouraging experimental results we
achieved, our future work will be to use multiple sensing de-
vices to create a sensor network to detect complex activities
with higher sampling rates.

References
Álvarez-Garcı́a, J. A.; Morillo, L. M. S.; de La Concepción,
M. Á. Á.; Fernández-Montes, A.; and Ramı́rez, J. A. O.
2015. Evaluating wearable activity recognition and fall de-
tection systems. In 6th European Conference of the Interna-
tional Federation for Medical and Biological Engineering,
653–656. Springer.
Baek, W.-S.; Kim, D.-M.; Bashir, F.; and Pyun, J.-Y. 2013.
Real life applicable fall detection system based on wireless
body area network. In Consumer Communications and Net-
working Conference (CCNC), 2013 IEEE, 62–67. IEEE.
Bai, Y.-W.; Wu, S.-C.; and Yu, C. H. 2013. Recognition of
direction of fall by smartphone. In Electrical and Computer
Engineering (CCECE), 2013 26th Annual IEEE Canadian
Conference on, 1–6. IEEE.
Bao, L., and Intille, S. S. 2004. Activity recognition from
user-annotated acceleration data. 1–17. Springer.
Dernbach, S.; Das, B.; Krishnan, N. C.; Thomas, B. L.; and
Cook, D. J. 2012. Simple and complex activity recognition
through smart phones. In Intelligent Environments, 214–
221. IEEE.

Dumitrache, M., and Pasca, S. 2013. Fall detection algo-
rithm based on triaxial accelerometer data. In E-Health and
Bioengineering Conference (EHB), 2013, 1–4. IEEE.
Gao, L.; Bourke, A.; and Nelson, J. 2014. Evaluation of
accelerometer based multi-sensor versus single-sensor ac-
tivity recognition systems. Medical engineering & physics
36(6):779–785.
Krishnan, N. C., and Cook, D. J. 2014. Activity recognition
on streaming sensor data. Pervasive and Mobile Computing
10:138–154.
Kumar, P., and Pandey, P. C. 2013. A Wearable Inertial
Sensing Device for Fall Detection and Motion Tracking. In
Proc. Annu. IEEE Conf. INDICON, Mumbai, India, 1–6.
Leone, A.; Rescio, G.; and Siciliano, P. 2013. Supervised
wearable wireless system for fall detection. In Measure-
ments and Networking Proceedings (M&N), 2013 IEEE In-
ternational Workshop on, 200–205. IEEE.
Li, Q.; Stankovic, J. A.; Hanson, M. A.; Barth, A. T.; Lach,
J.; and Zhou, G. 2009. Accurate, fast fall detection using
gyroscopes and accelerometer-derived posture information.
In 6th International Workshop on Wearable and Implantable
Body Sensor Networks (BSN), 2009, 138–143.
Moya, J.; Ruiz-del Solar, J.; Orchard, M.; and Parra-
Tsunekawa, I. 2015. Fall Detection and Damage Reduc-
tion in Biped Humanoid Robots. International Journal of
Humanoid Robotics. DOI: 10.1142/S0219843615500012.
Ojetola, O.; Gaura, E. I.; and Brusey, J. 2011. Fall detection
with wearable sensors–safe (smart fall detection). In Intelli-
gent Environments (IE), 2011 7th International Conference
on, 318–321. IEEE.
Shen, V. R.; Lai, H.-Y.; and Lai, A.-F. 2015. The imple-
mentation of a smartphone-based fall detection system us-
ing a high-level fuzzy petri net. Applied Soft Computing
26(0):390 – 400.
Steidl, S.; Schneider, C.; and Hufnagl, M. 2012. Fall de-
tection by recognizing patterns in direction changes of con-
straining forces. In Proceedings of the eHealth 2012, 27–32.
OCG.
Welch, G., and Bishop, G. 1995. An Introduction to the
Kalman Filter. Technical report, Chapel Hill, NC, USA.

347




