
Increasing the Runtime Speed of Case-Based Plan Recognition

Michael Maynord
Computer Science Department

University of Maryland
College Park, MD 20742

maynord@umd.edu

Swaroop Vattam1,2 & David W. Aha2

1NRC Postdoctoral Research Fellow
2Navy Center for Applied Research in AI
Naval Research Laboratory, Code 5514

Washington, DC 20375
{swaroop.vattam.ctr.in,david.aha}@nrl.navy.mil

Abstract

We present PPC (Plan Projection and Clustering), an
algorithm that creates a plan hierarchy for case-based
plan recognition systems. PPC is motivated by a de-
sire to improve the response time of robots working
in collaboration with humans. It projects the plans of
a case base into a Euclidean space and iteratively clus-
ters plans within that space, producing an abstraction
hierarchy. Case retrieval traverses down this hierarchy,
and requires fewer comparisons than a search of the cor-
responding flat case base. Our approach also has the
advantage that it does not require substantial domain
knowledge. We report PPC’s empirical performance on
synthetically generated plans, showing that it increases
runtime speed without substantially reducing plan re-
trieval accuracy when the plans are generated using a
non-random distribution.

Introduction
We are developing an intelligent agent to control, in sim-
ulated scenarios, a robot that teams with a small detach-
ment of soldiers on a reconnaissance mission. The agent
communicates with its human teammates, and is expected
to respond to situations appropriately when no commands
are or can be given. For example, if the detachment comes
under enemy fire the robot should respond appropriately
(e.g., position itself between the enemy and its team) and
autonomously.

To detect that such a situation is occuring requires the
agent to infer the soldier’s plans (and deviations from them),
and that of the enemy (or other agents in the environment
that contribute to the situation), from their sequence of ac-
tions. This can be framed as the task of plan recognition
(Kautz and Allen 1986). One approach to plan recognition
is case-based plan recognition (CBPR) (Cox and Kerkez
2006). Using a case-based reasoning (CBR) (Lopez de Man-
taras et al. 2005) approach to solve this task has the advan-
tage that no model of the robot’s teammates is required to
recognize the plan being executed and predict their future
actions; all that is required is a plan library (or case base)
that enables retrieval of similar plans given similar observed
action sequences.

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

However, CBPR may require a large plan library that cor-
responds to the large number of situations that the robot
might reasonably be expected to encounter. This requires ef-
ficient indexing schemes to ensure that plan retrieval time
does not increase as a linear function of plan library size.
Long runtimes pose an issue when the robot is expected to
react quickly to some situations (e.g., enemy fire).

To address this we developed PPC (Plan Projection and
Clustering), an algorithm for increasing the runtime speed
of CBPR systems. PPC projects plans into a Euclidean space
and then hierarchically clusters them. In our empirical analy-
sis, we confirmed that PPC can increase runtime speed while
sacrificing only small reductions in plan retrieval accuracy
(approximately 4% reduction in accuracy, with an approxi-
mately 73% reduction in runtime, in our evaluation).

In the rest of this paper, we describe related work, intro-
duce PPC, describe its empirical study, discuss the results,
future work, and conclude.

Related Work
Plan recognition is often conceived of as the inverse of plan-
ning. We take inspiration for our approach to increasing
CBPR runtime speed from an automated planning perspec-
tive. Some automated planning algorithms leverage multi-
ple levels of abstraction; they generate a plan first at an
abstract level where planning processes are more tractable,
and then refine the generated plan at lower abstraction lev-
els (Sacerdoti 1974; Knoblock 1994). This enables devoting
fewer resources to processes at lower levels of abstraction
because the space is pruned by processes at higher levels of
abstraction. Abstraction makes a plan available for reason-
ing, including adaptation, at higher abstraction levels. For
example, Kambhampati and Hendler (1992) describe how a
(nonlinear) planner can accomodate incremental changes in
problem specifications (e.g., from a user) through successive
adaptations of a hierarchical plan.

Several case-based planning researchers have used multi-
ple abstraction levels to represent plans (Cox, Munoz-Avila,
and Bergmann 2005). When solving a new problem, these
algorithms typically perform case retrieval first at a highly
abstract representation level, and then (if needed) reuse the
retrieved plan to constrain search on successively lower ab-
straction levels. This yields two primary advantages. First,
depending on the indexing strategy and how abstractions

385

Proceedings of the Twenty-Eighth International Florida Artificial Intelligence Research Society Conference

are encoded, it can permit a single plan to be retrieved and
adapted in a larger variety of ways (i.e., increase its cover-
age) than if it is represented only at its most concrete level.
Second, and central to this paper, under some conditions
this approach can reduce overall retrieval complexity and
time. For example, Smyth and Cunningham (1992) describe
how this approach can be applied to a software design task.
Bergmann and Wilke (1996) instead focus on a process plan-
ning task. They found that abstraction substantially reduced
retrieval (and adaptation) time. Branting and Aha (1995) re-
port similar results (for a synthetic planning task), as have
several other investigators.

Using hierarchical representations for algorithms related
to the k-nearest neighbor classifier has long been a focus
in studies on supervised learning, as has been reported in
several disciplines. Within the CBR community, Wess et al.
(1993) were one of the first groups to contribute to this topic.
They use k-d trees to obtain O(log2n) average retrieval
times, where n is the number of cases. They also introduce
several extensions, including virtual bounds to constrain
search. They report substantial reductions in retrieval time in
comparison to using the original k-d tree algorithm. Daele-
mans et al. (1997) instead use tries to hierarchically repre-
sent cases in natural language processing tasks, and found
that it also substantially reduces retrieval time (and storage
requirements). (Müller and Bergmann 2014) describe their
Hierarchical Bisecting Partitioning Around Medoids algo-
rithm for creating binary cluster trees for use as a fast index
structure in process-oriented CBR. Many other researchers
have reported similar results.

In contrast, most prior work on CBPR (e.g., Fagan and
Cunningham (2003); Cox and Kerkez (2006); Tecuci and
Porter (2009); Molineaux et al. (2009)) has not investigated
the use of hierarchical indexing techniques. An exception
is the recent work by Sánchez-Ruiz and Ontañón (2014),
who introduce Least Common Subsumer (LCS) Trees and
apply them to induce a hierarchical clustering on cases
(i.e., 〈plan,goal〉 pairs). Their refinement approach for com-
puting plan similarity, in comparison with other similarity
functions, attains a high accuracy for goal prediction while
also substantially reducing retrieval time. Our approach in-
stead generates vectors from plans represented as action-
state graphs before indexing them hierarchically. Our future
work will include an empirical comparison with the LCS
Trees method.

Finally, our work in this paper complements our group’s
earlier work (Vattam, Aha, and Floyd 2014), which did not
investigate the use of indexing strategies such as the one we
introduce in his paper.

Hierarchy Construction and Plan Retrieval
Representing plans at multiple levels of abstraction to reap
CBPR efficiency gains requires selecting a plan trans-
formation/abstraction technique. We propose a domain-
independent technique that we expect will work well, to
varying degrees, for a variety of plan representations and do-
mains. In this section we describe how PPC constructs plan
hierarchies and how plans are subsequently retrieved.

Figure 1: An example predicate encoding graph ε(p) corre-
sponding to p = put(block : a, block : b, table : t)

Figure 2: An example of an action state sequence
graph εs for s =<(null, {on(a, floor), on(b, floor)}),
(put(a, table), {on(a, table)}), (put(b, a), {on(a, table),
on(b, a)}) >

Representation of plans
We model a plan as an action-state sequence
s = < (a0, s0), ..., (an, sn) >, where each ai is an
action and si is the state obtained by executing ai in si−1.
Further, for any s to be a plan, s0 and sn must be initial
and goal states, and a0 be null. An action a in (a, s) ∈ s is
a ground literal p = p(o1 : t1, ..., on : tn), where p ∈ P (a
finite set of predicate symbols), oi ∈ O (a finite set of typed
constants representing objects), and ti is an instance of oi.
A state s in (a, s) ∈ s is a set of facts {p1,p2, ...}.

We then encode a plan s as an action sequence graph
εs . Due to space constraints, here we provide an ex-
ample of an action sequence graph. (Please see (Vattam,
Aha, and Floyd 2014) for additional details.) There are
two steps to encode s as εs. First, for each p in s (be
it an action or a state fact) we encode it as a predicate
encoding graph ε(p). For example, suppose the predicate
p = put(block : a, block : b, table : t) appears as an action
in the fifth (k = 5) action-state pair of s. The nodes of
this predicate are {A5put

}, {a}, {b}, and {t}, and suppose
the edges are [A5put

, a], [a, b], [a, t], and [b, t], with labels
{A0,1

5put
}, {A1,2

5put
}, {A1,3

5put
}, and {A2,3

5put
} respectively.

Figure 1 displays the encoding graph for this predicate. If p
was a state fact, the A’s in the labels would be replaced by
S’s. Second, we take a union of all the predicate encoding
graphs to obtain εs = ∪(a,s)∈s(ε(a) ∪ (∪p∈sε(p))).
Figure 2 shows an example of a complete action
sequence graph for s = < (null, {on(a, floor),
on(b, floor)}), (put(a, table), {on(a, table)}), (put(b, a),
{on(a, table), on(b, a)}) >

For a given plan library L, PPC constructs a plan hierar-
chy using the following steps:

1. Create Distance Matrix: Select and apply a distance

386

metric d to each pair of plans in L to produce a distance
matrix M . The choice of d is a parameter to PPC.

2. Project Plans: Project the plans of L into a Euclidean
space of N dimensions, where the projection method and
N are parameters.

3. Plan Clustering: Iteratively cluster the plans in Euclidean
space, starting with a single cluster containing all plans.
Continue until k clusters are generated. Both the choice
of clustering algorithm and k are parameters to PPC.

The induced clusters denote abstractions for the plans
they contain in the sense that representing a plan through
cluster membership is coarse and concise but captures im-
portant information on the nature of the plan as determined
by d. This approach may generate non-optimal hierarchies,
but its advantage is that it does not depend on in-depth
knowledge of the structure of plans in potential queries and
in the case base, which may require intimate knowledge of
the planner and domain. For example, in our domain, where
an agent controls a robot embedded with a human team, the
planners are humans and the domain is the physical world,
both of which are challenging to model.

PPC performs plan retrieval using the following steps:

1. Hierarchical Matching: Recursively match a query (i.e.,
a given plan) to its closest cluster, continuing until a set of
plans at a leaf node is reached.

2. Concrete-Level Matching: Return the best-matching
plan within this set using the distance metric d used to
create M .

Each of PPC’s five parameters can be tuned to obtain opti-
mal performance for a given plan library. In the next section
we vary N and k, while holding the choices for the projec-
tion method, distance metric, and clustering algorithm con-
stant. There will be a trade-off between retrieval accuracy
and runtime; what constitutes “optimal” performance will
depend upon the desired accuracy/runtime balance.

Empirical Study
We empirically evaluated the performance (i.e., speed and
accuracy) of PPC to assess two hypotheses:

H1: PPC’s performance should increase when plans are
stored with their state information.

H2: PPC’s performance should increase when there are
groups of plans in the plan library (i.e., where plans in
a group have similar start and end states).

H1 is worth investigating because state information (i.e.,
other than action sequences and action arguments) is often
readily available, and can in principle be used to improve
performance beyond approaches that use only action infor-
mation. Likewise, H2 is worth investigating as the perfor-
mance of PPC will depend on the characteristics of the plan
library, and we expect that one such relevant characteristic
would be the degree to which the library contains distinct
groups of plans.

As a baseline, we also report the performance of plan re-
trieval when given a flat (i.e., non-hierarchical) case base.

Empirical Method
We used two performance metrics: (1) the number of plan
comparison operations (i.e., distance metric computations)
and (2) accuracy (the proportion of queries for which the
correct case was retrieved) . The first metric is a primary
factor in the runtime of CBPR systems, while we use the
second, rather than precision, due to our testing methodol-
ogy. In particular, we used a leave-one-in strategy (Aha and
Breslow 1997), where we sample each plan in the plan li-
brary (without removing it), and use it as a query for plan
retrieval. Accuracy is then the percentage of plans that are
themselves retrieved when used as a query.1 We repeated
this process 20 times, and calculated the average number of
plan comparisons and average accuracy for different settings
of N and k, as described below.

We tested our hypotheses by applying PPC to plan li-
braries generated from scenarios using, for this initial study,
the blocks world domain. We generated 8 plan libraries,
each of which includes 60 plans. Plans were generated us-
ing PyHop (Nau 2013), a Python implementation similar
to SHOP2 (Nau et al. 2003) with a model of the blocks
world domain. We evaluated performance over plans involv-
ing block sets of two different sizes to determine the effect
that the complexity of the domain and its associated plans
would have on PPC. In particular, our first set of four li-
braries involve scenarios that contain 8 blocks, while the
latter set of four libraries involve scenarios that contain 26
blocks.

The plan libraries within each set differ according to two
conditions. The first condition concerns whether the plans
include state information, which allows us to test H1 (i.e.,
plans without state information consist of only action se-
quences and action arguments). To test H2, we compared
performance between plans involving random states and
plans involving ordered states to observe the effect that this
has on PPC’s performance. The plans of the unstructured
libraries, involving random states, were produced by, start-
ing with no blocks on the table, iteratively placing blocks
on either the table or on another free block until all blocks
were placed. The plans of the structured libraries, involving
non-random block configurations, were produced by select-
ing one of three start states and one of two goals states, ap-
plying perturbations to those states, and generating a plan to
go from start to goal state.

PPC has five parameters, as mentioned previously. First,
the distance metric d we used in our experiments is John-
son’s (1985) similarity metric, which is defined as follows:
Let G1 and G2 be the action-sequence graphs of two plans
being compared. The set of vertices in each graph is di-
vided into l partitions by label type, and then sorted in a
non-increasing total order by degree. Let Li

1 and Li
2 denote

1PPC’s accuracy can be less than 100% because retrieval uses
cluster centroids as a guide, and a query is not guaranteed to be
assigned to the cluster that contains its most similar case. To il-
lustrate, consider two clusters: {1, 2, 3} and {3.1, 3.1, 3.1}, with
centroids 2 and 3.1, respectively. A query ”3” will be assigned to
the second cluster (because 3 is closer to centroid 3.1 than to cen-
troid 2) even though it is contained within the first cluster.

387

the sorted degree sequences of a partition i in the action-
sequence graphs G1 and G2, respectively. An upper bound
on the number of vertices V (G1, G2) and edges E(G1, G2)
of the MCS of these two graphs can then be computed as:

|mcs(G1, G2)| = V (G1, G2) + E(G1, G2)

where:

V (G1, G2) =
∑l

i=1 min(|Li
1|, |Li

2|), E(G1, G2)

=
⌊∑l

i=1

∑min(|Li
1|,|L

i
2|)

j=1 min(|E(vi,j1)|, |E(vi,j2)|)/2
⌋

and where vi,j1 denotes the jth vertex of the Li
1 sorted de-

gree sequence, and E(vi,j1) denotes the set of edges con-
nected to vertex vi,j1 . Johnson’s similarity is given by:
sim(G1, G2) = (|mcs(G1, G2)|)2/(|G1||G2|). (Please see
Vattam et al. (2014) for an example similarity calculation of
two graphs using this metric.)

Second, we used multidimensional scaling (MDS)
(Kruskal 1964) to project plans. It takes as input a set of
distances between entities, as represented in a distance ma-
trix, and projects them into Euclidean space such that the
distance between points, associated with plans, is preserved
with a certain tolerance (a given set of distance relations will
not necessarily be precisely expressible using a set of points
in N-dimensional Euclidean space). We set N ∈ [2, 9] but,
due to space constraints, will discuss only a sample of these
results.

Finally, for PPC’s clustering method, we used k-means
and set k ∈ [2, 6] to produce a hierarchy. We selected k-
means because it is well known, works well, and is fast.

PPC starts with all plans in one cluster, and divides this
into sub-clusters to produce one level of the hierarchy. It then
recurses on each sub-cluster until a desired depth is attained.
Each leaf of the hierarchy will consist of a set of plans rather
than a set of cluster centers. For each cluster the plan clos-
est to the cluster center was selected to represent it. When
matching a query to a cluster, it is compared against that
cluster’s representative plan using distance metric d. Query-
ing the case base thus involves only distances as produced
by d between plans; the query is not projected into the same
Euclidean spaced used to construct the hierarchy. Partly due
to the simplicity of the datasets, we set the number of levels
in our abstraction hierarchies to 2 (i.e., one level of clusters
and one level of ground plans). Additional layers would be
of greater use on more structured and differentiable datasets.

Results
We applied PPC to the 8 plan libraries described in the
preceding section. We denote these libraries using Ln,l,i,
where n ∈ {8, 26} refers to the number of blocks used,
l ∈ {s, u} refers to whether the library’s plans are structured
or unstructured, and i ∈ {t, f} indicates whether state
information was included with these plans.

Table 1 displays the results, when n = 8 (i.e., scenarios
with 8 blocks), for the baseline (i.e., no clustering) and for
one setting of PPC, namely when N = 9 and k = 2. Ta-
ble 2 displays similar results for when n = 26, this time

Table 1: Average number of plan comparisons (#PC) and
retrieval accuracy (ACC) for plans whose scenarios contain
8 blocks. The results are shown for a Flat library and for PPC
when N = 9 and k = 2.

Flat PPC9,2

Library #PC ACC #PC ACC
L8,u,t 60 1.00 33.55 0.96
L8,u,f 60 0.95 39.76 0.79
L8,s,t 60 0.75 32.53 0.73
L8,s,f 60 0.42 31.68 0.32

Table 2: Same as Table 1, but where scenarios contain 26
blocks, and for PPC N = 9 and k = 6.

Flat PPC9,6

Library #PC ACC #PC ACC
L26,u,t 60 1.00 16.08 0.31
L26,u,f 60 1.00 15.92 0.32
L26,s,t 60 1.00 16.17 0.96
L26,s,f 60 0.68 16.34 0.59

when N = 9 and k = 6. These parameter values were rep-
resentative of PPC’s results. When using a flat library, im-
perfect retrieval accuracies occurred because Johnson’s sim-
ilarity metric could not always distinguish between correct
and similar matches.

PPC’s average accuracy for L26,s,t (Table 2) was higher
than both L26,s,f and L26,u,t; this supports both H1 and H2.
However, while the accuracy of L8,s,t (Table 1) was higher
than L8,s,f , it was not higher than L8,u,t. Thus, this supports
H1 but not H2.

Tight groupings of plans can improve the quality of clus-
tering and plan retrieval. However, it can also complicate
matching the query to a plan, given the similarity of plans
within each group. The reason that average accuracy is lower
for L8,s,t than for L8,u,t, both when using a flat plan li-
brary and when using PPC, is that the similarity between
plans within a group is too high to easily distinguish them.
We surmise that PPC needs more than 8 blocks to increase
recognition accuracy for libraries with ”structure”.

The low accuracies of L26,u,t and L26,u,f in comparison
to L8,u,t and L8,u,f is largely due to the different k values
(see Figure 5 for the relation of k and accuracy for L26,u,t).

Figures 3 and 4 provide more detail concerning the utility
of including state information in PPC’s plan representation;
it compares the accuracy of L26,s,t and L26,s,f for various
values of N when k = 6. As shown, the accuracy of L26,s,t

exceeds that of L26,s,f , supporting H1. For N = 9, this
difference is statistically significant according to Welch’s t-
test (p < 0.01).

Similarly, Figures 3 and 5 provide more detail on PPC’s
performance when the plan library is structured; it compares
the accuracy of L26,s,t and L26,u,t for the same values for
N and k. As shown, the accuracy of L26,s,t exceeds that of
L26,u,t, supporting H2. For N = 9 and k = 6, this differ-
ence is again statistically significant (p < 0.01).

In summary, these results indicate that PPC’s recognition
accuracy increases when state information is included with

388

Figure 3: PPC’s average accuracy for L26,s,t when varying
the number of MDS-projected dimensions.

Figure 4: PPC’s average accuracy for L26,s,f when varying
the number of MDS-projected dimensions.

the stored plans. Furthermore, for libraries whose plans are
grouped, if the domain is sufficiently rich such that the mem-
bers of each group are distinguishable (by the similarity met-
ric), then PPC’s average recognition accuracy will be higher
than for similar, but ”unstructured”, plan libraries.

Discussion
Our study showed that PPC speeds up plan retrieval with
only small reductions to accuracy (for plan libraries that
are structured and include state information, in accordance
with H1 and H2) with no knowledge of either the planner
or the domain. Algorithms that are more effective at reduc-
ing runtime while maintaining accuracy may use heuristics
garnered from detailed knowledge of the task model of the
agents and the domain in which they act. However, this is not
always feasible, given the knowledge engineering resources
available. For example, recognizing the plans of other agents
in an open environment such as the physical world is diffi-
cult. Thus, there is a need for a general algorithm such as
PPC to reduce the runtime of CBPR systems.

We expect that accuracy will be lower without state in-
formation, which can help to distinguish plans. Accuracy is
sometimes lower for structured plan libraries. We conjecture

Figure 5: PPC’s average accuracy for L26,u,t when varying
the number of MDS-projected dimensions.

that this is because structured plan libraries contain sets of
plans with higher intra-group similarity.

Future Work
We used leave-one-in experiments and did not test PPC’s
ability when queried with a novel plan. To do so, we will
use PPC for SET-PR, a plan recognizer for controlling an
unmanned ground robot that is assisting a detached recon-
naissance team. SET-PR is designed for domains with partial
observabilty and noisy actions (Vattam et al. 2014). We will
test PPC’s ability to retrieve plans for SET-PR in real-time
simulations, measuring its speed and SET-PR’s perfomance.
We will also empirically compare PPC versus Sánchez-Ruiz
and Ontañón’s (2014) LCS Trees algorithm. Also, we will
examine the use of multiple abstraction hierarchies asso-
ciated with different plan lengths. This would be desirable
if the chosen distance metric could not effectively compare
plans of different lengths, as is true for Johnson’s distance
metric.

Representing plans as points in Euclidean space allows
PPC to be used with any clustering method that use Eu-
clidean spatial representations. Some clustering algorithms
operate directly over a similarity matrix, making projection
into Euclidean space unnecessary. Spectral clustering meth-
ods can operate over a similarity matrix. K-medoids can
as well and has the advantage that each cluster is associ-
ated with a single data-point (which would be its representa-
tive plan). Future work includes comparing the performance
across different clustering methods, including those that do
not require projecting into Euclidean space.

Conclusion
Case-based plan recognizers have usually been investigated
with relatively small plan libraries, which are amenable for
fast plan retrieval. However, real-world environments may
require fast retrieval from much larger libraries. We de-
scribed PPC, an algorithm that creates an abstraction hier-
archy to index plans. During plan retrieval it traverses down
this hierarchy and searches only the subset of plans asso-
ciated with the matched cluster in a leaf. The hierarchy is

389

created by projecting plans into a Euclidean space and then
peforming iterative clustering.

We found that PPC increased runtime speed by a factor
greater than 3. When applied to a plan library containing
both state information and structure, PPC recorded only rel-
atively small accuracy degradations. We examined two hy-
potheses: H1 (i.e., PPC’s performance increases when plans
are stored with state information) and H2 (i.e., PPC’s perfor-
mance is higher for plan libraries whose plans are sampled
from groups). We found support for H1 and H2 when using
26 blocks. When using 8 blocks, H1 was supported, but not
H2. This is likely because 8 blocks does not provide a tex-
tured enough domain for plans within groupings to be easily
differentiable. A key property of PPC is that it achieves this
reduction in the number of plan comparisons without requir-
ing domain- and agent-specific heuristics, whose creation is
dependent on the skill of a knowledge engineer.

Acknowledgements
Thanks to OSD ASD (R&E) for sponsoring this research.
The first author was supported as a 2014 NREIP intern at
NRL while conducting this research. The views and opin-
ions contained in this paper are those of the authors and
should not be interpreted as representing the official views
or policies, either expressed or implied, of NRL or OSD.

References
Aha, D. W., and Breslow, L. A. 1997. Refining conversa-
tional case libraries. In Proceedings of the Second Inter-
national Conference on Case-Based Reasoning, 267–278.
Springer.
Bergmann, R., and Wilke, W. 1996. On the role of ab-
straction in case-based reasoning. In Proceedings of the
Third European Workshop on Case-Based Reasoning, 28–
43. Springer.
Branting, L. K., and Aha, D. W. 1995. Stratified case-based
reasoning: Reusing hierarchical problem solving episodes.
In Proceedings of the Fourteenth International Joint Con-
ference on Artificial Intelligence, 384–390. Morgan Kauf-
mann.
Cox, M. T., and Kerkez, B. 2006. Case-based plan recog-
nition with novel input. Control and Intelligent Systems
34:96–104.
Cox, M. T.; Munoz-Avila, H.; and Bergmann, R. 2005.
Case-based planning. Knowledge Engineering Review
20:283–287.
Daelemans, W.; van den Bosch, A.; and Weijters, T. 1997.
Igtree: Using trees for compression and classification in lazy
learning algorithms. Artificial Intelligence Review 11:407–
432.
Fagan, M., and Cunningham, P. 2003. Case-based plan
recognition in computer games. In Proceedings of the Fifth
International Conference on Case-Based Reasoning, 161–
170. Springer.
Johnson, M. 1985. Relating metrics, lines and variables
defined on graphs to problems in medicinal chemistry. In
Alavi, Y.; Chartrand, G.; Lick, D.; Wall, C.; and Lesniak,

L., eds., Graph theory with applications to algorithms and
computer science. John Wiley & Sons.
Kambhamapti, S., and Hendler, J. A. 1992. A validation-
structure-based theory of plan modifications. Artificial In-
telligence 55:193–258.
Kautz, H., and Allen, J. F. 1986. Generalized plan recog-
nition. In Proceedings of the Fifth National Conference on
Artificial Intelligence, 32–38. Morgan Kaufmann.
Knoblock, C. 1994. Automatically generating abstractions
for planning. Artificial Intelligence 68:243–302.
Kruskal, J. 1964. Multidimensional scaling by optimizing
goodness of fit to a nonmetric hypothesis. Psychometrika
29(1):1–27.
Lopez de Mantaras, R.; McSherry, D.; Bridge, D.; Leake,
D.; Smyth, B.; Craw, S.; Faltings, B.; Maher, M. L.; Cox,
M. T.; Forbus, K.; et al. 2005. Retrieval, reuse, revision and
retention in case-based reasoning. Knowledge Engineering
Review 20(03):215–240.
Molineaux, M.; Aha, D. W.; and Sukthankar, G. 2009. Beat-
ing the defense: Using plan recognition to inform learning
agents. In Proceedings of the Twenty-Second International
FLAIRS Conference, 337–343. AAAI Press.
Müller, G., and Bergmann, R. 2014. A cluster-based ap-
proach to improve similarity-based retrieval for process-
oriented case-based reasoning. In Proceedings of the Twen-
tieth European Conference on Artificial Intelligence, 639–
644. IOS Press.
Nau, D. S.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock,
J. W.; Wu, D.; and Yaman, F. 2003. Shop2: An htn planning
system. Journal of Artificial Intelligence Research 20:379–
404.
Nau, D. 2013. Game applications of HTN planning with
state variables. In Buro, M.; Éric Jacopin; and Vassos, S.,
eds., Planning in Games: Papers from the ICAPS Workshop.
Sacerdoti, E. D. 1974. Planning in a hierarchy of abstraction
spaces. Artificial intelligence 5:115–135.
Sanchez-Ruiz, A. A., and Ontanon, S. 2014. Least com-
mon subsumer trees for plan retrieval. In Proceedings of
the Twenty-Second International Conference on Case-Based
Reasoning, 405–419. Springer.
Smyth, B., and Cunningham, P. 1992. Deja vu: A hierar-
chical case-based reasoning system for software design. In
Proceedings of the Tenth European Conference on Artificial
Intelligence, 587–589. Wiley and Sons.
Tecuci, D., and Porter, B. W. 2009. Memory based goal
schema recognition. In Proceedings of the Twenty-Second
International FLAIRS Conference, 111–116. AAAI Press.
Vattam, S.; Aha, D. W.; and Floyd, M. 2014. Case-based
plan recognition using action sequence graphs. In Pro-
ceedings of the Twenty-Second International Conference on
Case-Based Reasoning, 495–510. Springer.
Wess, S.; Althoff, K.-D.; and Derwand, G. 1993. Using k-d
trees to improve the retrieval step in case-based reasoning. In
First European Workshop on Case-Based Reasoning, 167–
181. Springer.

390

