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Abstract 

In this paper we present a physiological computing 
approach based on electroencephalogram (EEG) signals to 
adaptively sequence the learning content according to the 
learners’ mental states. The system draws on techniques 
from Brain Computer Interface and educational psychology 
to automatically select the next best learning activity 
according to changes in the learners’ mental states such as 
attention and workload. The objective of this system is to 
maintain the learner in a positive mental state throughout 
the tutoring session. 

 

Introduction  

One of the main objectives of Intelligent Tutoring Systems 

(ITS) is to provide to the user an adapted and 

individualized learning environment. This adaptation can 

be operated with regards to several considerations 

(cognitive, educational, emotional, social, etc.), and can be 

related to different aspects of the system’s interaction 

strategy (selection of the next learning step, providing an 

individualized feedback, or help, etc.). The emergence of 

affective computing over the last years has greatly 

enhanced the capabilities of these systems to understand 

the learners’ needs and behaviors (Fairclough, 2009; Jraidi 

et al., 2013a). Research in the field of ITS is increasingly 

directed towards the integration of new techniques that can 

provide relevant indicators about the learners’ affective 

states. 

 Furthermore, a growing body of research in the fields of 

artificial intelligence, intelligent user interface, psychology 

and physiological computing has been devoted to modeling 

and developing systems that are capable of assessing and 

adapting intelligently to the users’ internal states using 

physiological (Jraidi et al., 2013b; Jraidi et al., 2013c). The 

aim of these systems is to enhance the user’s performance 
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and improve his interaction experience, by continuously 

analyzing, predicting and adapting to his internal state.  

Mental workload and engagement are among the most 

commonly used indicators to dynamically assess changes 

in the users’ states (Berka et al., 2004; Chaouachi et al., 

2010). Several physiological sensors such as heart rate 

variability, oculomotor activity, pupillometry, body 

temperature, respiration and galvanic skin responses have 

been employed to detect mental state changes (Cain, 2007). 

However, the electroencephalography (EEG) is considered 

as the only physiological signal that can reliably and 

precisely track restrained changes in mental attention (or 

engagement) and workload, and that can be identified and 

quantified on a millisecond time-frame.    

In this paper, we present a new ITS called MENTOR 

(MENtal tuTOR), which is entirely based on the analysis 

of the learners’ engagement and workload extracted from 

the EEG data. The system uses these indexes in order to 

sequence the learning activities accordingly. An 

experimental study was conducted to evaluate our system. 

The goal was to verify the following two hypotheses:  

1. The integration of the engagement and the workload 

brain indexes in an ITS can have a real impact on the 

learners’ outcomes.  

2. Using a mental state-based strategy in this type of 

adaptation can improve the learner’s experience 

regarding their tutoring session.  

Related work 

Developing EEG indexes for workload and engagement 

assessment is a well-developed research domain. Several 

linear and non-linear classification and regression methods 

were used to measure these indexes in different kinds of 

cognitive tasks such as memorization, language processing, 

visual or auditory tasks. These methods rely mainly on a 

frequency processing approach using either the Power 

Spectral Density (PSD) or Event Related Potential (ERP) 
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techniques to extract relevant EEG features(Berka et al., 

2004). Wilson (Wilson, 2005) used an Artificial Neural 

Network (ANN) to classify operators’ workload level by 

taking the users’ EEG data as well as other physiological 

features as an input. The reported results showed up to 

90% of classification accuracy. Gevins et al. (Gevins et al., 

2005) used spectral features to feed a neural network 

classifying the user’s workload while performing various 

memorization tasks. Berka and colleagues developed a 

workload index using Discriminant Function Analysis 

(DFA) for monitoring alertness and cognitive workload in 

different environments (Berka et al., 2007).  In the 

educational context, the index developed by Berka and his 

colleague was used within a learning environment to 

analyze the students’ behaviors while acquiring skills 

during a problem solving session (Stevens et al., 2007). In 

this paper, we propose to extend this approach by 

presenting a tutoring system whose adaptive strategy is 

entirely based on the values of the engagement and the 

workload indexes. 

System design 

MENTOR is a tutoring system that uses indicators 

extracted from the EEG physiological data to adjust the 

learning activities according to the learner’s mental state. 

The system uses the Emotiv EEG headset 

(www.emotiv.com) to collect EEG raw signals. The 

reasons of choosing this EEG device is that it can be 

connected wireless to any machine through the receiving 

USB. The Emotiv device is also light, easy to use and does 

not require any particular material configuration. The 

Emotiv headset contains 16 electrodes located according to 

the 10-20 international standards. It allows recording 

simultaneously 14 regions (O1, O2, P7, P8, T7, T8, FC5, 

FC6, F3, F4, F7, F8, AF3 and AF4). Two additional 

electrodes are used as references, which correspond 

respectively to the P3 region (called DRL for Driven Right 

Leg) and the P4 region (called CMS for Common Mode 

sense). The system’s sampling rate is 128 Hz. Two brain 

indexes are derived in real-time by MENTOR, namely 

mental engagement and workload. 

Engagement 

The engagement index used comes from the work of Pope 

and colleagues (Pope et al., 1995) at the National 

Aeronautics and Space Administration (NASA). This work 

is based on neuroscientific research on attention and 

vigilance (Pope et al., 1995; Prinzel Iii et al., 2002). It was 

found that the user’s performance improved when this 

index is used as a criterion for switching between manual 

and automated piloting mode. This index is computed from 

three EEG frequency bands: θ (4-8 Hz), α (8-13 Hz) and β 

(13-22 Hz) as follows. 

 

                       
  

The engagement index is computed each second from the 

EEG signal. In order to reduce the fluctuations of this 

index, we use a moving average on a 40-second mobile 

window. Thus, the value of the index as the time t 

corresponds to the total average of the ratios calculated on 

a period of 40 seconds preceding t. The extraction of the θ, 

α and β frequency bands is performed by multiplying one 

second of the EEG signal by a Hamming window (in order 

to reduce the spectral leakage) and applying a Fast Fourier 

Transform (FFT). As the Emotiv headset measures 14 

regions at the same time, we used a combined value of the 

θ, α and β frequency bands by summing their values over 

all the measured regions. 

Workload and MENTOR’s Training Mode 

Unlike the engagement index, there is no a common 

established method to directly assess mental workload 

from the EEG data. Therefore, we propose to build an 

individual mental workload predictive model for each 

learner. This model is trained using data collected from a 

training phase during which the learner performs a set of 

brain training exercises. This training phase involves three 

different types of cognitive exercises, namely: digit span, 

reverse digit span and mental computation. 

 The objective of theses training exercises is to induce 

different levels of mental workload while collecting the 

learner’s EEG data. The manipulation of the induced 

workload level is done by varying the difficulty level of the 

exercises: by increasing the number of the digits in the 

sequence to be recalled for digit span and reverse digit 

span, and the number of digits to be added or subtracted for 

the mental computation exercises (see (Chaouachi et al., 

2011) for more details about this procedure). After 

performing each difficulty level, the learner is asked to 

report his workload level using the subjective scale of 

NASA Task load index (NASA_TLX)(Hart et al., 1988). 

Once this training phase completed, the collected EEG raw 

data are cut into 1-second segments and multiplied by a 

Hamming window. A FFT is applied to transform each 

EEG segment into a spectral frequency and generate a set 

of 40 bins of 1 Hz ranging from 4 to 43 Hz (EEG 

pretreated vectors). These data are then reduced using a 

Principal Component Analysis (PCA) to 25 components 

(the score vectors). Next, a Gaussian Process Regression 

(GPR) algorithm with an exponential squared kernel and a 

Gaussian noise (Rasmussen, 2006) is run in order to train a 

mental workload predictive model (the EEG workload 

index) from the normalized score vectors. Normalization is 
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done by subtracting the mean and dividing by the standard 

deviation of the all vectors. In order to reduce the training 

time of the predictive model, we used the local Gaussian 

Process Regression algorithm, which is a faster version of 

the GPR (Nguyen-Tuong et al., 2008).  

Analysis of the computed indexes  

In order to evaluate the learner's mental state, the system 

analyses the behavior of the engagement and workload 

indexes throughout the current learning activity. A slope of 

each index is computed using the least squared error 

function of the index’s values from the beginning of the 

activity. For the engagement index, if the slope value is 

positive, then learner is considered as mentally engaged. 

Otherwise, the learner is considered as mentally 

disengaged. For the workload index, if the slope value is 

between - 0.03 and + 0.03, than the workload is considered 

as moderate (or fair). Otherwise, if the slope value is above 

0.03, the learner is considered as overloaded, and if the 

slope is below -0.03 the learner is considered as under 

loaded. 

Learning mode 

The MENTOR tutoring system has been designed to help 

learners understand the Reverse Polish Notation (RPN), 

which is also known as the postfix notation. The lesson 

presented by the system includes four successive parts. The 

first part presents a set of formal definitions of the 

algebraic expressions as well as their structures and 

constituent elements. The second part explains how to 

determine the priorities between the operators and how to 

evaluate an algebraic expression without parentheses. The 

third part focuses on the concept of the RPN. The basics of 

the postfix notation are introduced and explained. The 

fourth part details the techniques used for the assessment 

of an RPN expression.  

 After the learner finishes each part of the lesson, the 

system presents four pedagogical activities so that the 

learner puts into practice the concepts seen in the previous 

part of the lesson and enhances his understanding. Each 

activity uses one of the two following pedagogical 

resources: 

 Questions: each question presents a problem that the 

learner has to resolve. Hints are provided with each 

problem in order to help the learner find the solution and 

improve his knowledge acquisition. At the end of each 

question, the system informs the learner whether his 

answer was correct or not. In case of a wrong answer, 

the solution of the problem is given without presenting 

any explanation of the resolution process.  

 Worked examples: a worked example describes a 

problem statement with the detailed steps and 

explanations leading to the solution. The learner is 

simply asked to read and understand these examples. 

MENTOR’s adaptive rules 

MENTOR’s decisional process lies mainly in the selection 

of the type of the pedagogical resource (a question or a 

worked example) to be provided as a next activity. In 

summary, 16 decisions (4 parts × 4 activities) have to be 

made by the system according to the learner’s mental state. 

 This choice between worked examples and problems has 

often been discussed in educational psychology. On one 

hand, worked examples tend to have a lower mental load 

impact compared to problems (Paas et al., 2004). Indeed, a 

worked example provides all the required steps of the 

problem resolution process. The only effort that a learner 

has to produce is to understand these steps. On the other 

hand, the problems are more demanding in terms of mental 

efforts as the learner has to resolve the problem and in case 

of a wrong answer, he must also understand the solution.  

 Providing only worked examples to the learners can 

have a negative impact. The learner may not identify the 

relevant information pertaining to the worked example, and 

focuses rather on useless or secondary information. 

Another phenomenon that frequently occurs when the 

learning activities are only based on worked examples is 

the phenomenon of the illusion of understanding. This 

phenomenon arises when the learner thinks that he 

understood the example, while it is not really the case. This 

generally occurs when the learner browses the elements of 

the example superficially without producing a minimum 

effort to understand the goal of each step of the resolution 

process (Kalyuga et al., 2001).  

 Besides, presenting a worked example does not 

guarantee that the learner will be able to generalize from 

the shown example. Indeed, some learners do not 

spontaneously engage efforts in analyzing, reproducing 

and comparing the resolution steps of the example, as 

compared to the efforts that they would have made if they 

had to resolve the problem by themselves. 

 The advantage of using problem solving activities in a 

learning session is therefore to avoid these risks. The 

questions are always considered as an efficient educational 

instrument to assess the learner’s knowledge and to help 

him rapidly acquire new skills. However, using a 

pedagogical approach exclusively based on solving 

problems can also hinder the learning process. In fact, as 

the mental effort is being more important compared to 

worked examples, the learner can be easily tired and 

overloaded. Moreover, if the learner fails to solve the 

problems, he can be frustrated, demotivated and even 

disengaged from the task. 

 The decision of presenting a worked example or a 

problem within MENTOR is based on a continuous 
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analysis of the learner’s mental engagement and workload. 

The goal is to select the pedagogical resource that 

maintains the learner in a positive mental state. More 

precisely, the system has to keep the learner mentally 

engaged and avoid overload and under load. If the system 

detects a negative mental state caused by an engagement 

drop, an overload or an under load, it will then try to 

correct this state by switching the type of the next 

pedagogical activity. 

 A total of seven adaptive rules are used by MENTOR: 

(1) If the learner's mental state is positive (mentally 

engaged and neither overloaded nor under loaded), then 

the system selects a question for the next activity. This 

rule is applied whatever the current activity is 

(question, worked example or reading a part of the 

lesson).  

(2) At the end of a question, if the learner's mental state is 

negative (disengaged, overloaded or under loaded), 

then the system provides a worked example in the next 

activity. 

(3) At the end of a worked example, if the system detects a 

negative mental state due to disengagement or under 

load, then it provides a question as a next activity. 

(4) At the end of a worked example, if the system detects a 

negative mental state due to overload, then it provides a 

worked example in the next activity. 

(5) After reading a part of the lesson, if the system detects 

a negative mental state due to disengagement or under 

load, then it provides a question as a next activity. 

(6) After reading a part of the lesson, if the system detects 

a negative mental state due to overload, then it provides 

a worked example for the next activity. 

Whatever the learners’ mental state is, if he answers a 

question incorrectly, then the system provides a worked 

example in the next activity. 

Experimental Study 

To highlight the impact of using the learners’ mental 

indicators as an adaptive criterion to manage the system’s 

pedagogical resources, our experimental study relied on 

two different versions of MENTOR. The difference 

between these versions lies only in the adaptive logic of the 

decisional module. The first version leaves intact the 

adaptive logic with the seven basic intervention rules 

described previously. The selection of the resource to be 

provided is done according to the evolution of the learner’s 

mental state. In particular, the system tends to privilege the 

questions in case of a positive mental state. In the opposite 

case, the selection of the type of the resource is made 

following heuristics that aim to correct the learner’s mental 

state. 

 The second version of the system does not take into 

account the mental indexes of engagement and workload in 

selecting the type of the resource to be provided. Only the 

rule (7) is preserved in the adaptive logic of MENTOR, 

and the six other rules are ignored. The principle of this 

version is quite simple: after reading each part of the 

lesson, the system chooses to ask a question to the learner. 

As the learner answers correctly, the system continues to 

adopt the same strategy: asking questions. However, if an 

incorrect answer is given, the system chooses immediately 

a worked example as a next activity in order to fix the 

learner’s reasoning. Once the learner finishes reading the 

example, the system automatically follows up with a 

question in order to increase his motivation and elicit a 

problem completion effect. So the unique parameter that 

can trigger an adaptation action in this version is an 

incorrect response of the learner. 

 The two used versions share a common point in their 

operation: if the adaptation parameters are positive, the two 

versions opt for a question as a next step. The mental state-

based adaptive version of the system (the first) represents 

then an augmented version of the second, insofar as in 

addition to considering the accuracy of the response 

(through the 7th rule); it also applies other adaptive actions 

based on mental parameters. 

 In summary, we will compare two versions of the 

system, the first uses, in its adaptive logic, an analysis of 

the mental indexes in addition to the response of the 

learner, and the second is based solely on the response of 

the learner. Both versions use, in the same order, exactly 

the same pedagogical resources. That is the two versions 

will have to choose between the same pairs of resources 

including a question and a worked example.  

Participants and Protocol 

14 participants took part in our study. All were students in 

the University of Montréal in the same certification 

program in applied computer science. Each 

participant was randomly assigned to one of the two 

following groups. (1) The experimental group (N = 7) used 

the adaptive version of MENTOR: the learning activities 

are actively adapted to both the learners’ brain indexes and 

answers. (2) The control group (N=7) used the second 

version of MENTOR that considers only the learners’ 

answers.  

 For each participant, the experiment was conducted on 

two successive days. On the first day, the participant uses 

the training mode of MENTOR in order to create his 

individual workload model. In this phase, which lasts about 

an hour, the participant performs a set of 40 brain training 

exercises including digit span, reverse digit span and 

mental computation as described earlier. 
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 On the second day of the experiment, the participant 

uses the learning mode of MENTOR. The duration of this 

phase is approximately one hour, including 20 to 30 

minutes to learn the four parts of the Reverse Polish 

Notation lesson. The session starts with a pre-test followed 

by the lesson, then a post-test, and ends with a debriefing.  

Pre-test and post-test. These tests use a set of 16 

questions relative to the concepts of the lesson. Each of the 

four parts of the lesson is concerned with four different 

questions, and the same questions are asked in the pre-test 

and the post-test. For each question, the learner can answer 

true or false, or may choose not to respond. The score in 

each test is calculated as follows: a correct answer is worth 

1 point and 0 point for a wrong answer. 

Debriefing. During this phase, the learner is first asked to 

report his appreciation of his interaction with the learning 

environment by rating his satisfaction level regarding the 

lesson, using a scale of seven grades ranging from 1 

(strongly disagree) to 7 (strongly agree) on how much he 

agrees with the following statement: “Overall, I am 

satisfied with of my learning experience with the system”. 

 Then, the learner evaluates the quality of the tutoring 

provided by the system by reporting his perceived level of 

relevance of the system’s proposed activities, using 

another scale of seven grades ranging from 1 (strongly 

disagree) to 7 (strongly agree), on how much he agrees 

with the following statement: “Overall, I am satisfied with 

the learning activities selected by the system. The examples 

and questions are presented at the right time and helped 

me to understand the lesson. The choice made between 

asking a question or presenting an example fits my level of 

understanding”.  

Results and discussion 

Learning Performance 

A 2 (group: experimental vs. control) × 2 (time: pre-test vs. 

post-test) mixed-model analysis of variance (ANOVA) was 

conducted to compare the learners’ outcomes of the two 

groups in terms of scores achieved in both tests. The group 

variable is a between-subject factor that compares the 

scores between the two experimental conditions, whereas 

the time variable is a within-subject factor that analyzes, 

for each participant individually, the score variation 

(changes) between the pre-test and the post-test. 

 First, the analysis yielded a main effect of the time 

variable, showing a significant difference of the learners’ 

scores in both groups between the pre-test and the post-

test: F(1, 12) = 2253.353 p < 0.001. Thus, there was 

significant a learning gain regardless of the group, and 

hence regardless of the version of the system which was 

used by the participants. 

 Second the analysis yielded a significant interaction 

effect of both factors (group × time) on the learners’ 

outcomes: F(1, 12) = 29.824, p < 0.001. The results 

revealed that over time, that is between the pre-test and the 

post-test, the learners of the experimental group got 

significantly better learning performances compared to the 

control group. The means of scores obtained in the pre-test 

and the post-test for the both groups are listed in Table 1. 

Table 1. Learners’ outcomes in both groups before and after the 

tutoring session.  

 The comparison of the learners’ scores between the 

experimental group and the control group revealed that 

there was no statistically significant differences between 

the two groups in the pre-test:  F(1, 12) = 4.190, p  = n.s. 

The overall mean score in the pre-test was M = 4.21 

(SD = 1.31). In contrast, the comparison of the learners’ 

scores in the post-test showed that the scores achieved in 

the experimental group were significantly higher than the 

control group: F(1, 12) = 50.069, p < 0.001. The mean 

score of the experimental group was M = 13.86 

(SD = 0.67) against M = 10.71 (SD = 0.95) for the control 

group. These results confirm our first hypothesis, that is 

using the workload and the engagement indexes as a main 

criterion to control the user’s activities can have a positive 

impact on his learning performances. The learners’ whose 

pedagogical resources were selected according to their 

mental states were able to provide an average of 86.6 % 

correct answers after the tutoring session. An increase of 

22.7 % in terms of learning outcomes was achieved using 

this adaptive strategy. 

Subjective Measures  

An ANOVA was conducted in order to compare the 

learners’ satisfaction levels between the experimental 

group and the control group. This ANOVA showed an 

almost significant difference between the two groups: F(1, 

12) = 4.545, p = 0.054. The learners of the experimental 

group reported higher satisfaction (M = 5.71, SD = 1.604) 

in comparison to the control group (M = 4.29, SD = 0.756). 

 A second ANOVA was performed to compare the 

learners’ ratings of the relevance of the activities proposed 

by the tutoring system in both groups. These ratings were 

significantly higher in the experimental group (M = 5, 

SD = 1.414) versus (M = 2.43, SD = 0.787) in the control 

 Pre-test Post-test 

Experimental group   

M 4.86a 13.86b 

SD 1.07 0.70 

Control group   

M 3.57a 10.71c 

SD 1.27 0.95 

Values with different subscripts differ significantly. 

261



group, F(1, 12) = 17.673, p < 0.05. These results confirm 

thus that incresing the system’s adaptive logic with the 

EEG engagement and workload indexes has a positive 

effect on the users’ satisfaction regarding their learning 

experience in general, and their appreciation regarding the 

relevance of the decisions taken by the system in the 

selection of the pedagogical resources more specifically.  

Conclusion 

In this paper we have presented an intelligent tutoring 

system called MENTOR (MENtal tuTOR) that adapts its 

tutoring content according to the user’s brain activity. The 

goal was to show that enhancing the ITS adaptive logic 

with two physiological mental indicators, namely the 

engagement and the workload indexes, can improve the 

learners’ outcomes and interaction experience. 

The learning mode of MENTOR provides a tutoring 

environment that adapts its content actively to the learner’s 

brain indexes. The system evaluates the learner’s mental 

state, and selects the pedagogical activity that best suits to 

his state. An experimental study was conducted to evaluate 

our system. This study showed the following results: (1) 

MENTOR can significantly improve the users’ 

performances in terms of learning gains before and after 

using the tutoring environment, as compared to a control 

group where a non-adaptive version of the system was 

used. (2) The mental state-based adaptive logic of 

MENTOR has a positive influence on the users’ interaction 

experience in terms of satisfaction, and positive reactions 

when using the tutoring environment. 
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