
Spanning Tree Partitioning Approach for
Configuration Generation in Modular Robots

Ayan Dutta1, Prithviraj Dasgupta1, José Baca1 and Carl Nelson2

1 Computer Science Department, University of Nebraska at Omaha
2 Mechanical and Materials Engineering Department, University of Nebraska-Lincoln.

Email: {adutta, pdasgupta, jbacagarcia}@unomaha.edu, cnelson5@unl.edu

Abstract

We consider the problem of configuration generation in
modular self-reconfigurable robots, where a set of mod-
ules that are in a certain configuration are required to
form a new configuration while remaining within the
size, battery and communication constraints. This prob-
lem is computationally non-trivial as the set of possible
configurations grows exponentially with the number of
modules. We propose a novel, anytime and distributed
algorithm that uses a branch-and-bound pruning tech-
nique to reduce its search space, by constructing a min-
imum spanning tree and finally determines the highest
utility configuration among the set of modules. Experi-
mental results show that our technique can quickly iden-
tify modules to form new configurations for different
configuration sizes.1

Introduction
Modular self-reconfigurable robots (MSRs) (Yim et al.
2007) are autonomous robots composed of individual mod-
ules, which can change their connections with each other
to form different shapes. MSRs are particularly attractive
for maneuvering tasks in initially unknown and unstructured
terrain due to their ability to adapt their shapes to the cur-
rent environment features, so that they can perform their as-
signed task efficiently. A central problem in the reconfigura-
tion of MSRs is the configuration generation problem - how
to identify a suitable set of modules to form a new configu-
ration when it cannot continue to perform its operations in
its current configuration. The MSR configuration generation
problem is non-trivial as the set of possible configurations
increases exponentially as the number of modules increases.
Also, generally the formulation of the problem relies on cen-
tralized algorithms and modules are required to report their
operational parameters to a central location to perform the
computations (Dutta et al. 2014). Because of these issues, it
becomes difficult to realize the centralized techniques within
the time and space constraints available for generation of
configurations.

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1This research has been supported by NASA grant no. NE-
NNX11AM14A as part of the ModRED project.

To address these challenges, we propose a novel technique
that attempts to reduce the search space by first construct-
ing a minimal reachability graph between modules that are
within communication range of each other, in the form of
a minimum spanning tree (MST). Then, the possible com-
binations of only those modules that are connected in the
MST, upto a specific size, nmax, which is determined from
the maneuverability constraints of modules, are explored us-
ing an integer partitioning based technique to find the com-
bination or configuration of modules that gives the highest
expected utility. The computations are performed in a dis-
tributed manner by the modules.We have performed simu-
lated experiments and shown that our proposed technique is
able to rapidly identify the highest utility configuration for
different number of modules and performs significantly bet-
ter in terms of time and space complexity than previously
existing techniques for MSR configuration generation and
coalition structure search algorithms.

Related Work
MSRs are a type of self-reconfigurable robots that are com-
posed of several small modules (Yim et al. 2007). Self-
reconfiguration of MSR involves the problem of finding the
best configuration for current environment. This problem
has been solved using graph search-based techniques (Hou
and Shen 2008) and control-based techniques (Chirikjian,
Pamecha, and Ebert-Uphoff 1996). In (Kurokawa et al.
2008), the authors proposed a task-based reconfiguration
technique where the goal configuration is determined dy-
namically as the configuration that can perform the robot’s
current task efficiently. Our work in this paper is comple-
mentary to these techniques as it enables modules from dif-
ferent disjoint configurations to identify the best set of mod-
ules to form goal configurations that give the highest suit-
ability, denoted in terms of the configurations’ utility for per-
forming the MSR’s current task such as navigation. Any of
the above reconfiguration techniques could be used to effect
the mobility and position selection by modules to reach the
identified goal configurations.

Coalition game theory gives a set of techniques that can
be used by a group of agents to form teams or coalitions
with each other. Similar to our proposed approach of limit-
ing team size up to a size of nmax, Shehory and Kraus (She-
hory and Kraus 1998) proposed a search-based heuristic to

360

Proceedings of the Twenty-Eighth International Florida Artificial Intelligence Research Society Conference

find coalitions upto a pre-determined maximum coalition
size. In terms of MSRs, a coalition represents a set of MSR-
modules that are connected together. Within coalition game
theory, the coalition structure generation problem deals with
partitioning the agents into a partition that gives the highest
value. This problem is NP-complete, and researchers have
proposed a coalition structure graph based algorithm (Sand-
holm et al. 1999) to find the optimal coalition structure. In
(Michalak et al. 2010), authors have proposed an algorithm,
which distributes the search space among agents, but also
requires significant communication among them. For physi-
cal robots, because wireless communication consumes en-
ergy and might be unreliable, our proposed algorithm at-
tempts to minimize the communication overhead. However,
in all these approaches the possible module configurations
are generated and inspected in a centralized manner, which
increases the computation by the modules. In contrast, this
paper proposes a distributed solution to this problem.

Dynamic Configuration Generation in MSRs
In this paper, we focus primarily on this problem of deter-
mining a new configuration, while assuming that the basic
operations for maneuvering and moving in a fixed configu-
ration (Baca et al. 2014) are already available. Let A be the
set of modules or agents that have been deployed in the en-
vironment. Let Π(A) be the set of all partitions of A and
let CS(A) = {A1, A2, ..., Ak} ∈ Π(A) denote a specific
partition of A. We call CS(A) a configuration or a coalition
structure, and Ai as a coalition.2 Though we have used this
proposed configuration generation technique for chain-type
MSRs, this technique can be used for other types of MSRs
such as lattice and hybrid also.We denote Bmax as the max-
imum battery power on a module and µAi

B and σAi

B as the
mean and standard deviation of the battery power available
on MSR Ai. Let V al : A → R denote the value function
given below:

V al(Ai) =

{
| Ai |2 (

µ
Ai
B
−σAi

B
Bmax), if | Ai |≤ nmax

0, otherwise
(1)

The value function assigns to each coalition Ai a real num-
ber corresponding to a virtual worth of the coalition. We
have kept the notion of a task abstract; it could correspond to
lifting non-operational modules or crossing a raised surface.
As a single module does not have much physical as well as
computational power, thus most of the time it is better to
form larger coalitions. Again, if the size of the coalition is
huge, then it becomes intractable to manage them, because
of maintenance cost such as communication overhead and
mobility inefficiency of modules etc. (Shehory and Kraus
1998). Our value function ensures that larger coalitions are
able to perform their task better and obtain higher rewards,
up to a size of nmax, subject to their available battery power.

The term (
µ
Ai
B −σ

Ai
B

Bmax) considers the available battery inAi;
it ensures that for two MSRs of same size, higher prefer-
ence is given to the MSR that has a higher mean and lower

2A coalition is a set of modules connected together and a coali-
tion structure or a configuration is set of coalitions.

variance in battery power. Lower variance will ensure sim-
ilar battery power having modules in a particular coalition.
nmax denotes the maximum allowable size of a coalition; it
is given as input to our algorithm and it does not change the
operation of the algorithm. nmax can be determined from the
physical characteristics of the modules (e.g., battery, maxi-
mum weight of other modules that can be lifted by the mod-
ules), the features in the environment such as the amount of
free space, the task that the robot has to perform etc. As the
focus of this paper is on determining the best module config-
urations, the problem of determining nmax is not considered
further in this paper. The value of configuration CS(A) is
given by the summation of the values of coalitions compris-
ing it, i.e., V al(CS) =

∑
Ai∈CS(A)

V al(Ai).

The configuration formation cost incurred by modules in-
cludes the energy expended by them to move to each oth-
ers’ vicinity, align their docking faces appropriately and
finally connect with each other using a docking mecha-
nism. We denote the cost of forming a coalition between Ai
and Aj , following (Dutta et al. 2014), as: cost(Ai, Aj) =
costloc + costdock. The cost of a coalition structure CS(A)

can be written as: Cost(CS) =
∑

Ai,Aj∈CS(A)

cost(Ai, Aj).

The utility of a coalition structure CS(A) is then given by
U(CS) = V al(CS) − Cost(CS). The objective function
of the MSR configuration formation problem is to find CS∗,
where CS∗ = arg max

CS∈Π(A)
U(CS). 3

Spanning Tree Based Representation of Coalitions

Algorithm 1: Stochastic MST Formation
formMST ()
Each module ai will do the following:
for ak in comm. range do

wi,k ← est. range of ak from ai
wmin
i,k , w

max
i,k ← (wi,k − δ, wi,k + δ)

send wi,k = (wmin
i,k , w

max
i,k) to all modules in comm.

range
wait till recd. wi,k from all modules in comm. range
for each ej,l ∈ E do

wmin
j,l ← min(wmin

j,l , w
min
l,j)

wmax
j,l ← max(wmax

j,l , wmax
l,j)

µj,l, σj,l ← mean(wmin
j,l ,w

max
j,l), stdev(wmin

j,l ,w
max
j,l)

w∗j,l ← µj,l − σj,l
G∗ ← Prim(V,E,W ∗)

The first step in our configuration generation process is
to build a communication graph representing the connec-
tivity between the modules. We assume a scenario where
modules can form a connected graph using their commu-
nication range, i.e., any module’s emitted message can be
delivered to every module in the environment. To build the
communication graph each module broadcasts a message

3Modules exchange their positions and amount of battery avail-
able as a pre-processing step.

361

with its unique identifier. Each module receiving this broad-
cast message sends back an acknowledgement message with
its identifier to the modules from whom it has received
broadcast messages. The communication graph is denoted
as G = (V,E,W), where V is the set of nodes (modules),
E is set of edges between modules and W is the set of edge
weights that denotes the cost of the connecting or docking
the modules at the extremities of the edge. Initially, modules
are uncertain about the edge weights. So, they use a decen-
tralized protocol to arrive at a consensus about the expected
weight of each edge as shown in Algorithm 1.

Each module ai estimates weight for edge ei,k between
itself and ak as weight wi,k ± δ, where δ represents un-
certainty that might arise in the edge weight (docking cost)
due to modules’ motion, localization errors and initially un-
known environment features (lines 4− 5). As every module
can have a different realization of wi,k, each module broad-
casts its calculated weights wi,k (line 6). When ai receives
edge weights for edge ej,l,∀j, l ∈ V from all the modules,
it calculates the minimum and maximum values from the
weight estimates wj,l and wl,j , sent by aj and al respec-
tively and sets the weight of ej,l, w∗j,l as the difference be-
tween the mean and standard deviation of the minimum and
maximum weight values (lines 9 − 11). The main idea be-
hind calculating the final edge weights in such as way is to
give preference to edges which have lower standard devia-
tion, i.e., lower uncertainty of connecting the end modules.
Each module then generates the MST G∗ = (V ∗, E∗,W ∗)
from the graph G = (V,E,W ∗) using, for instance Prim’s
algorithm (Prim 1957); G∗ gives a connected set of all the
modules, where

∑
k

w∗k is minimum.

Distributed Tree Partitioning (DTP) Algorithm
After the MST is generated, the next step in our proposed
MSR configuration-generation technique is to distribute the
search for the best configuration among the modules. As
shown in Algorithm 2, we first partition the number of mod-
ules into its integer partitions in a restricted manner. As our
value function gives preference only to the coalitions with
sizes up to nmax, so we prefer searching through the inte-
ger partitions which has no member greater than nmax. Let
IP (n) denote a function that returns an ordered set of inte-
ger partitions of a positive integer n and let IP ∗(n, nmax) ⊂
IP (n), where nmax < n denote the integer partitions of n
which have members not greater than nmax. For example,
with | A |= 4 and nmax = 2, IP (| A |) = IP (4) =
{(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)} while IP ∗(4, 2) =
{(2, 2), (2, 1, 1), (1, 1, 1, 1)}.

Distribution of partitions: An integer partition and a
coalition structure are complementary representations of
each other - the integer partition denotes the number of mod-
ules in the different coalitions forming a coalition structure,
while the coalition structure denotes the identity of the mod-
ules that comprise the coalitions in a partition. For example,
for integer partition (4) the corresponding coalition structure
is {1, 2, 3, 4}. Similarly, the corresponding coalition struc-
tures of integer partition (3, 1) are given by all coalition
structures which have 2 coalitions in them with sizes of 3

Algorithm 2: Distributed Partition Search
Input: MST G∗ and nmax
Each module ai will do the following:
while All partitions in IP ∗(|A|, nmax) has not been searched
do

for each phase of search do
IPrank ←Ranked set of partitions ipk,
∀ipk ∈ IP ∗(|A|, nmax) and ipk is not searched
before.
Arank ←Ranked set of modules aj , ∀aj ∈ A.
ipcurr ← Allocated partition to module ai.
(Described in text)
searchCS(ipcurr, ipcurr,1)→Generate and search
coalition structures. (Algorithm 3)
if all coalition structures in ipcurr have been
searched then

Communicate with ak, ∀k 6= i and ak in
communication range of ai, to update U∗, CS∗.

and 1 respectively, such as {{1, 2, 3}, {4}}, {{1, 2, 4}, {3}}
and so on. First, we rank the integer partitions from 1 to
|IP ∗(|A|, nmax)| based on the upper bound of the value of
the coalition structures corresponding to the integer parti-
tions. Recall from Equation 1 that the value of a coalition is a
function of its size. Therefore, the coalition structure’s value
can be calculated from the coalition sizes given by its corre-
sponding integer partition. Simultaneously, the modules are
ranked based on decreasing amount of energy (e.g. battery
power) available on them. This ranking is done by every
module before distribution of partitions at every round, from
the battery information available from other modules at the
beginning. The ranked integer partitions are then allocated
to the ranked modules; the integer partition with rank 1 is
allocated to the module ranked 1 and so on.

The main reason behind this rank-based allocation is to
use more ’eligible’ modules that have higher available bat-
tery to look for higher valued coalition structures, so that
they have a higher chance to finish the computations for the
search process with their available energy, as higher ranked
partitions are more likely to contain the best coalition struc-
ture. Each module searches through the coalition structures
corresponding to its assigned integer partition. The search
procedure is described in the next subsection. At the end
of each search phase, the modules exchange the best coali-
tion structure found, CS∗, and the highest utility found, U∗,
among themselves. Then they prune the necessary partitions
from the remaining partitions, (| IP ∗(|A|, nmax) | − | A |),
using the checkFitness rule.

checkFitness Rule: The insight behind this rule is that if
the maximum possible value of a coalition structure, that
can be calculated from its corresponding integer partition
(V al(CS) ≤

∑
j(ipi,j)

2), is already less than the highest
utility (U∗) seen thus far, then there is no need to further
search the coalition structures that can be generated from
that integer partition. For example, if ipi,j is (2, 2), then
highest value of any coalition structure corresponding to
(2, 2) will be max(V al(2) + V al(2)) = 22 + 22 = 8 and
if U∗ is, say 9, then we can say that no coalition structure in

362

partition (2, 2) will have higher utility than U∗. If ipi is the
partition to be searched next, then the checkF itness rule
for ipi is given by:

checkF itness(ipi) =

{
Prune, if

∑
j∈ipi(ipi,j)

2 ≤ U∗

Search, otherwise
(2)

where ipi,j is the j-th member of ipi.
While allocating integer partitions to modules, if the num-

ber of modules is greater than the number of partitions to be
searched, then some of the lower ranked modules are not
allocated any partition to search. An example is shown in
Figure 1.(a) where two modules r1 and r2 need to search 4
integer partitions; modules and integer partitions are ranked
as shown. First, ip1 and ip2 are searched by r1 and r2 re-
spectively; modules r1 and r2 exchange the best utilities
they have found for a coalition structure following their
searches and update U∗ (communication phase). After that,
using checkF itness rule, unfit integer partition ip4 will be
pruned by both modules and the remaining partition ip3 will
be searched by r1 (2nd phase).

Search for the best coalition structure: After the par-
titions are distributed among the modules, each module
searches for the best coalition structure within G∗, corre-
sponding to the partition which is allocated to it. Each con-
nected component inG∗ corresponds to a coalition. Thus the
spanning tree itself is a grand coalition, where all the mod-
ules are connected together. To find the best coalition struc-
ture, modules need to break or partition this grand coalition
and search through the promising coalition structures. For
example, with |A| = 4, if G∗ is 1 − 2 − 3 − 4 (a − b
denotes an edge between nodes a and b.), then the only
coalition structure corresponding to integer partition (2, 2)
is {{1, 2}, {3, 4}}. But {{1, 3}, {2, 4}} and {{1, 4}, {2, 3}}
will not be a promising coalition structure to search because
there is no edge between 1 and 3 or 1 and 4 in G∗; because
weights of these edges are already high, i.e., costs of forming
these coalitions will be higher than others. So, the modules
will only search those coalitions which have a correspond-
ing edge in G∗. Thus the search is already directed towards
the coalitions which have lower costs. A large amount of un-
promising coalitions can be pruned by this search technique
using the minimum spanning tree, and, thus, the time com-
plexity of the search can be reduced drastically.

How the search is done within the minimum spanning tree
corresponding to each partition, is shown in Algorithm 3.
First, we calculate how many edge deletions are needed to
transform the spanning tree (i.e., the grand coalition) to a
coalition structure corresponding to the current integer par-
tition. For example, if the integer partition is (1, 3), then we
need to partition the MST 1 − 2 − 3 − 4, into 2 coalitions,
one with size 1 and the other with size 3. All possible coali-
tions corresponding to ipcurr,i ∈ ipcurr are generated only
from possible connected components in G∗. If deletion of
a certain edge does not generate a coalition corresponding
to ipcurr,i, then we discard information about that coali-
tion from the current search (line 3). Once one coalition is
generated, corresponding connected component is removed
from G∗, to avoid overlap in coalitions (line 7). Coalition

structures are formed by generating member coalitions and
adding them to the coalition structure. Once we add a coali-
tion from ipcurr,i to the current coalition structure, the next
coalition is generated from ipcurr,i+1; and this continues un-
til we find all the member coalitions for a coalition structure
(lines 9 − 10) and then finally we update the best utility
value (lines 13). While generating the member coalitions of
a certain coalition structure, we continuously check whether
the current coalition structure being searched, can be the best
coalition structure or not. This is done using checkCS rule.

C
o

m
m

u
n

ic
a

ti
o

n
p

h
a

s
e ip

1
ip

2
ip

3
ip

4

r1 r2

2
n

d
p

h
a

s
e ip

1
ip

2
ip

3
ip

4

r1 r2

ip
1

ip
2

ip
3

ip
4

r1 r2

Ranked integer partitions

Ranked modules

1
s
t

p
h

a
s
e

0

20

40

60

80

100

120

A!er first round A!er second round A!er third round

N = 8 N = 10 N = 12

Number of rounds of searching

P
er

ce
nt

ag
e

of
 b

es
t u

til
ity

 fo
un

d

(a) (b)

Figure 1: (a) Partition distribution processes among mod-
ules, (b) Empirical data on anytimeness property of DTP al-
gorithm

checkCS Rule: As a coalition structure consists of coali-
tions and we search through the coalitions, so before
adding a coalition to one coalition structure, we check
whether that coalition can help the current coalition struc-
ture to be the best (in terms of utility) or not. Let CSα
be the current coalition structure that is being formed
and C = {C1, C2, .., C|C|}, Ci ⊂ CSα be the set of
non-overlapping coalitions. checkCS Rule says that if∑
j U(Cj) + max

∑
i U(Ci) ≤ U∗, ∀j ∈ {1, curr −

1},∀i ∈ {curr, |C|}, thenCSα need not to be searched any-
more. Cj is the set of coalitions that is already been gener-
ated and added to the current coalition structure CSα. Ccurr
is the current coalition that is being generated. If the max-
imum utility of the future coalitions, i.e. max

∑
i U(Ci) =∑

i |Ci|2, added with the sum of the utilities of previously
added coalitions can not provide higher utility than the cur-
rent best utility U∗, then there is no need to form CSα any-
more. Similar pruning technique has been used in (Rahwan
et al. 2009).

In our proposed model, if an integer partition can pro-
duce a coalition structure which has more number of coali-
tions of size nmax, then that partition is ranked higher and
searched first. Therefore, the first coalition structure gener-
ated will have the highest number, b |A|nmax

c, of coalitions of
size nmax in any coalition structure with | A |modules. This
guarantees that after the first generated coalition structure,
the utility of any coalition structure that is admitted by the
algorithm will be within a certain bound from the optimal
coalition structure, (if not the optimal itself). Therefore, we
can establish a worst case bound from the very first coali-
tion structure inspected by the algorithm, which makes DTP

363

Algorithm 3: Search Algorithm for Finding Best Coali-
tion Structure
searchCS(ipi, ipi,j)
For ipi,curr ∈ ipi do the following:
vipi,j ← generate all combinations of ipi,curr nodes that are
connected in G∗

for each vipi,j ∈ vipi,j do
// vipi,j is a set of ipi,curr nodes, connected in G∗

Apply checkCS rule.
G∗ ← G∗ \ vipi,j
if G∗ 6= {∅} then

curr++;
searchCS(ipi, ipi,curr);

else
// found connected components of all ipi,curr nodes
Update U∗ and CS∗.

return

algorithm anytime.

Lemma 1 checkFitness Rule does not remove an optimal
coalition structure.

Proof: Suppose that checkF itness(ipi) returns Prune
and removes the optimal coalition structure CS∗(A) and let

Z =
|ipi|∑
j=1

(ipi,j)
2. From the definition of checkF itness(ipi)

in Eqn. 2, it follows that Z ≤ U∗. Again, from the definition
of optimal coalition structure, U(CS∗(A)) > U∗. But from
the value function, we can see that Z is the upper bound
of the utility that any coalition structure in ipi can have,
thus U(CS∗(A)) ≤ Z ≤ U∗. So, U(CS∗(A)) < U∗ and
thus CS∗(A) is not the optimal coalition structure. Hence
proved.

Lemma 2 checkCS Rule does not remove an optimal coali-
tion structure.

Proof: Suppose that checkCS(CS) prunes the optimal
coalition structure CS∗, and thus U(CS∗) > U∗, where U∗
is the current best utility. From the definition of checkCS
rule, if

∑
U(Cj) +

∑
|Ci|2 ≤ U∗, where Cj , Ci ∈

CScurr,∀j ∈ {1, curr− 1},∀i ∈ {curr, |C|}. Now if CS∗
has been pruned by this rule, then U(CS∗) ≤ U∗. So, we
can say, U(CS∗) =

∑
U(Cj) +

∑
|Ci|2 ≤ U∗. Now as,∑

|Ci|2 is the upper bound on the value of future coalitions
which need to be added to the current coalition structure and∑
U(Cj) is the total utility for previously generated coali-

tions, so the upper bound of the current coalition structure
is U(CS∗), where U(CS∗) ≤ U∗. Thus the optimal coali-
tion structure can not be pruned by the checkCS rule. Hence
proved.

Experimental Evaluation
We have implemented the DTP algorithm in Webots simu-
lator. We consider different scenarios where the simulated
MSR consists of N = |A| = 4 through 24 modules and
it needs to generate the best configuration. The initial po-
sitions of modules are drawn from U [(0, 0), (10, 10)]; the

0

10

20

30

40

50

60

70

4 6 8 10 12 14 16 18 20 22 24

Run !me

Number of modules

R
u

n
 t

im
e

 i
n

 s
e

c
o

n
d

s

0

10

20

30

40

50

60

70

80

90

100

4 6 8 10 12 14 16 18 20

Run !me

Original Problem Space

Number of modules

L
o
g
 s

ca
le

 c
o
m

p
a
ri
so

n

(a) (b)

Figure 2: (a) Run time of DTP algorithm in seconds, (b)
Comparison of growth of original problem space and run
time of DTP algo. with number of modules

orientations are drawn from U [0, π].The battery left in each
module is also drawn from U [1, 100] andBmax is set to 100.
nmax is set to 2 for N = 4; set to 4 for N = 6 and is set
to 6 for N ≥ 8. For all of the cases, all the modules were
within each others communication range, which is a com-
plete communication graph, which demonstrates the worst
case scenarios for time complexity. Also, we did not notice
significant effect in run time even if we have reduced the
initial communication graph size by 10 − 20%. In the first
set of experiments, we have shown the run time of DTP al-
gorithm for different number of modules. Each test is run 5
times for different number of modules. For 4 modules, DTP
algorithm takes 5.6 seconds in average and for 24 modules
it takes 59 seconds. Figure 2.(a) shows the run time changes
with the number of modules. This result proves that DTP
algorithm scales better than existing algorithms like the BP
algorithm (Dutta et al. 2013) that runs out of memory after
12 agents and the coalition search algorithm in (Rahwan et
al. 2009) that takes around 90 mins for 27 agents. In the next
set of experiments, we have compared the size of the original
problem space, which is NN , and corresponding run time to
search that space. As can be seen in Figure 2.(b), even if the
problem space is increasing exponentially, the run time is
still within an affordable range as it is (almost) constant in
log scale (polynomial in linear scale).

0

50

100

150

200

250

300

350

400

450

4 6 8 10 12

DTP algorithm

searchUCSG algorithm

Number of modules

R
u

n
 t

im
e

 i
n

 s
e

c
o

n
d

s

0

2

4

6

8

10

12

14

16

18

6 8 10 12 14 16 18 20

DTP algorithm

BP algorithm

Number of modules

N
o
 o

f
c
o
a
lit

io
n
 s

tr
u
c
tu

re
s
 s

e
a
rc

h
e
d

(l
o
g
 s

c
a
le

)

(a) (b)

Figure 3: (a) Run time comparison with searchUCSG algo-
rithm, (b) Comparison of no. of coalition structures gener-
ated with BP algorithm

We have also compared the run time of the DTP algo-
rithm against a previous centralized algorithm for reconfigu-
ration planning, namely searchUCSG algorithm (Dutta et al.
2014). The result is shown in Figure 3.(a). As can be seen,
the DTP algorithm outperforms the searchUCSG algorithm
for higher number of modules. For example, for 12 mod-

364

0

5

10

15

20

25

30

35

6 8 10 12 14 16 18 20

3^N

2^N
DTP algorithm

Number of modulesN
o
.
o
f
c
o
a
lit

io
n
 s

tr
u
c
tu

re
s
 s

e
a
rc

h
e
d

(l
o
g
 s

c
a
le

)

0

1

2

3

4

5

6

7

8

9

10

N=8 N=10 N=12

n_max=4 n_max=5 n_max=6

Number of modulesN
o

 o
f

c
o

a
lit

io
n

 s
tr

u
c
tu

re
s
 s

e
a

rc
h

e
d

(l
o

g
 s

c
a

le
)

(a) (b)

Figure 4: (a) Comparison of no. of coalition structures gen-
erated with existing algorithms, (b) Effect of changing nmax

ules, DTP algorithm takes 16.2 seconds on average, whereas
searchUCSG takes 395 seconds. We have also compared
DTP algorithm against the BP algorithm (Dutta et al. 2013),
which is also a size constrained reconfiguration planning al-
gorithm. The comparison with the BP algorithm in Figure
3.(b) shows that our algorithm performs better than the BP
algorithm in terms of number of coalition structures gener-
ated. The comparison is shown in log2 scale. By making the
search procedure distributed and parallel in DTP algorithm,
as opposed to BP, we are reducing time and space complex-
ity largely. In both searchUCSG and BP algorithm, changing
nmax from 4 to 6 caused the jumps between N = 6 and 8 in
the graphs. Note that, even with the changes in nmax values,
variance in DTP algorithm’s performance is nominal.

The complexities of two existing coalition structure
search algorithms, proposed in (Rahwan et al. 2009; Sand-
holm et al. 1999), are 2N and 3N respectively. Figure 4.(a)
illustrates that using our algorithm, each module searches
considerably fewer coalition structures than these algo-
rithms and is able to prune unpromising search spaces in-
telligently. Notice that as the number of modules increases,
the performance of DTP algorithm gets better than the oth-
ers.

The number of coalition structures searched (in log2

scale) for different N and nmax values is shown in Fig-
ure 4.(b). Here N is varied between 8, 10 and 12 and nmax
is varied through 4, 5 and 6. As can be seen, higher the
value of nmax, more coalition structures need to be searched
by modules. So, the number of coalition structures gen-
erated is clearly a function of nmax. For example, with
nmax = 4, number of coalition structures searched for 8, 10
and 12 modules was 119, 270 and 280 respectively. But with
nmax = 6, these numbers went up to 176, 356 and 650 re-
spectively. So, we can see even with increasing nmax val-
ues, our proposed DTP algorithm is able to bound the search
space within an affordable and realistic limit.

Figure 1.(b) provides empirical proof of the anytime na-
ture of DTP algorithm. This test is done while varying N
between 8, 10 and 12. The result shows that in all the cases,
after the third phase, the modules found the coalition struc-
ture with the highest utility. But right after the first round
of searching, modules are able to achieve a good result in
terms of percentage of best utility by finding a solution that
is within 79.52%, 74.38% and 67.41% of the best utility for
N = 8, 10 and 12 respectively. This result shows that our
proposed DTP algorithm is anytime - it can first find a valid

solution quickly and then improve that solution further.

Conclusions and Future Work
In this paper, we have introduced a novel distributed config-
uration generation algorithm. Our algorithm takes into ac-
count different constraints of the real world scenario such
as communication, battery power and size of a configuration
and finds the optimal configuration for the current situation.
To the best of our knowledge, this work is the first approach
to solve the constrained configuration generation problem in
a distributed manner. We are currently trying to develop an
algorithm to find the optimal value of nmax from different
factors like terrain, current task etc. Finally we are planning
to implement this algorithm on real MSRs.

References
Baca, J.; Hossain, S.; Dasgupta, P.; Nelson, C. A.; and Dutta,
A. 2014. Modred: Hardware design and reconfiguration plan-
ning for a high dexterity modular self-reconfigurable robot for
extra-terrestrial exploration. Robotics and Autonomous Systems
62(7):1002–1015.
Chirikjian, G.; Pamecha, A.; and Ebert-Uphoff, I. 1996. Evaluat-
ing efficiency of self-reconfiguration in a class of modular robots.
Journal of robotic systems 13(5):317–338.
Dutta, A.; Dasgupta, P.; Baca, J.; and Nelson, C. 2013. A block
partitioning algorithm for modular robot reconfiguration under un-
certainty. In European Conf. on Mobile Robots, 255–260. IEEE.
Dutta, A.; Dasgupta, P.; Baca, J.; and Nelson, C. 2014. searchucsg:
a fast coalition structure search algorithm for modular robot recon-
figuration under uncertainty. Robotica 32(2):225–244.
Hou, F., and Shen, W.-M. 2008. Distributed, dynamic,
and autonomous reconfiguration planning for chain-type self-
reconfigurable robots. In Robotics and Automation, 2008. ICRA
2008. IEEE International Conference on, 3135–3140. IEEE.
Kurokawa, H.; Tomita, K.; Kamimura, A.; Kokaji, S.; Hasuo, T.;
and Murata, S. 2008. Distributed self-reconfiguration of m-tran
iii modular robotic system. The International Journal of Robotics
Research 27(3-4):373–386.
Michalak, T.; Sroka, J.; Rahwan, T.; Wooldridge, M.; McBurney,
P.; and Jennings, N. R. 2010. A distributed algorithm for any-
time coalition structure generation. In Proc. 9th Intl. Conf. on Au-
tonomous Agents and Multiagent Systems, 1007–1014.
Prim, R. C. 1957. Shortest connection networks and some gener-
alizations. Bell system technical journal 36(6):1389–1401.
Rahwan, T.; Ramchurn, S.; Jennings, N.; and Giovannucci, A.
2009. An anytime algorithm for optimal coalition structure gen-
eration. J. Artif. Intell. Res. (JAIR) 34:521–567.
Sandholm, T.; Larson, K.; Andersson, M.; Shehory, O.; and Tohme,
F. 1999. Coalition structure generation with worst case guarantees.
Artificial Intelligence 111(1-2):209–238.
Shehory, O., and Kraus, S. 1998. Methods for task allocation via
agent coalition formation. Artificial Intelligence 101(1):165–200.
Yim, M.; Shen, W.-M.; Salemi, B.; Rus, D.; Moll, M.; Lip-
son, H.; Klavins, E.; and Chirikjian, G. S. 2007. Modular
self-reconfigurable robot systems [grand challenges of robotics].
Robotics & Automation Magazine, IEEE 14(1):43–52.

365

