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Abstract 
While extensive work has been done in both graph mining 
and subgroup discovery, the potential benefits of combining 
the two fields have not been well studied. We propose, im-
plement, and evaluate an adaption of an existing subgroup 
discovery algorithm to mine graph data. Our experiments 
use two different metrics from the subgroup discovery liter-
ature to demonstrate value in using such metrics to guide 
subgraph discovery and to build a foundation to support fur-
ther studies combining subgroup discovery and graph min-
ing. 

Introduction   
The structural relationships revealed in graph representa-
tions of data enables discovery of knowledge that may not 
be as easily mined from other data representations. As part 
of our long-term goal of using knowledge discovery to 
improve healthcare delivery, we seek to apply graph min-
ing to healthcare utilization data. 

Specifically, we want to discover graph-based patterns 
that are associated with high-quality/low-cost care. Sub-
graph discovery, however, typically searches for dominant 
(e.g., most frequent or largest) patterns. We desired a rich-
er palette of heuristics to guide subgraph identification.  

The subgroup discovery literature presents numerous 
heuristics for discovering interesting patterns in data (Her-
rara, et al 2011). This paper seeks to demonstrate the utility 
of applying heuristics from subgroup discovery to sub-
graph mining by adapting an existing subgroup discovery 
algorithm to search for subgraphs instead of subgroups. 
We do not claim that this is the best approach, but instead, 
we use it to illustrate value in using ideas from subgroup 
discovery to guide the identification of subgraphs. 
 Subgroup discovery seeks interesting subgroups. Nu-
merous metrics have been used to quantify the interesting-
ness of discovered subgroups. This exploratory study com-
pares subgraph discovery using two specific subgroup in-
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terestingness metrics with an existing subgraph discovery 
algorithm, SUBDUE (Cook, Holder 2000).  

The next section presents relevant background infor-
mation about subgroup discovery, subgraph mining, and 
SUBDUE. Then, we describe our experimental methodol-
ogy, including the data used in our analysis along with our 
algorithm modifications. After that, we present our results 
followed by conclusions and ideas for future work. 

Background 

Subgroup Discovery 
Given a population of objects and a property of those ob-
jects in which we are interested, subgroup discovery seeks 
to “discover the subgroups of the population that are statis-
tically ‘most interesting,’ i.e. are as large as possible and 
have the most unusual statistical (distributional) character-
istics with respect to the property of interest.” (Wrobel 
2001). 

The following rule illustrates a traditional subgroup def-
inition: 

(Atti=Vali,j) ∧(Attk<Valk,l) ⇒ (Class=TRUE), 

where the antecedent is a conjunction of attribute/value 
pairs and the consequent is membership in the target class.  

Subgroup discovery is an example of supervised de-
scriptive induction tasks that lie between and share goals 
with both predictive and descriptive induction (Novak, 
Lavrač, and Webb 2009).  
 The basic subgroup discovery algorithm that we use, 
SD, employs a heuristic, fixed-width beam search based 
rules interestingness and complexity to select subgroup 
definitions (Gamberger and Lavrač 2002). 
 Herrera, et al. (2011) categorize and define numerous 
quality metrics that have been used to guide the search for 
subgroups. The two metrics that we explore are the preci-
sion measure Qg and Unusualness.  

The precision measure Qg is a ratio of the number of true 
positives to false positives with an additional generaliza-
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tion parameter g (Herrara, et al. 2011). The equation for Qg 

is as follows: 

Qg(R) = TP/(FP + g), 

where R is the rule being evaluated, TP is the number of 
true positives, FP is the number of false positives, and g is 
the generalization parameter. 

Unusualness is the product of coverage and accuracy 
gain. (Lavrač, Flach, Zupan 1999). Coverage is the per-
centage of data items that satisfy the antecedent of the rule, 
and accuracy gain is the positive predictive value of the 
rule (TP/(TP+FP)) minus the percentage of total items that 
are in the target class. Unusualness is computed as follows: 

Unusual(R) = P(cond) * (PPV(R) - P(TargetClass)) 

where P(cond) is the probability of an instance satisfying 
the conditions (antecedent) of a rule or the coverage of the 
rule, PPV(R) is the positive predictive value of the rule, 
P(TargetClass) is the probability of the target class.  

Frequent Subgraph Mining & SUBDUE 
Frequent subgraph mining is "the process of finding those 
subgraphs from a given graph or a set of graphs which 
have frequent or multiple instances within the given graph 
or the set of graphs" (Krishna, Ranga Suri, Athithan 2011).  

SUBDUE is one such algorithm (Cook, Holder 2000). It 
can identify subgraphs by measuring the compression 
achieved when subgraph instances are replaced by a single 
representative vertex. In supervised mode, SUBDUE seeks 
to maximize compression in the target class graphs while 
minimizing compression in graphs outside the target class. 
In unsupervised mode, SUBDUE searches for normative 
subgraph patterns.  

Methodology 

Overview 
We completed the following steps, described in detail be-
low: 

1. generate synthetic sets of supervised graphs with 
known subgraph distributions 

2. modify an implementation of the SD subgroup 
discovery algorithm to search for subgraphs 
(called SD´) using the metrics defined above 

3. apply SUBDUE and SD´ to the generated data 
sets to identify subgraphs 

4. analyze results to evaluate the utility of SD´ and 
its subgroup discovery-based quality metrics to 
identify subgraphs 

Data Generation 
We generated data to simulate healthcare utilization data 
with procedure codes linked to the diagnostic codes justify-

ing the procedure. The codes are parts of hierarchies that 
aggregate related codes into code classes (Figures 1 and 2). 
Each child node in these hierarchies is an instance of the 
parent node. In our data, only the leaves in the hierarchies 
represent actual procedures or diagnoses. 
 

 
Figure 1. Synthetic procedure code hierarchy 

 

 
 

Figure 2. Synthetic diagnosis code hierarchy 
 
 Each graph represents a simulated patient’s medical 
claims with vertices for procedures and diagnoses and an 
edge connecting each procedure to its associated diagnosis.  

If a claim contains a procedure P5 is linked to a diagno-
sis D10, we show this with an edge from vertex P5 to ver-
tex D10. Because of the “is-a” relationship in the code hi-
erarchies, this link implies that there are also edges from 
P1 (P5’s parent) to D10, from P5 to D5 (D10's parent), 
from P1 to D5, and so on, up to the roots of the hierarchy 
trees. Imputing these additional links in this domain allows 
discovered subgraphs to contain links between procedure 
classes and diagnosis classes. We believe this capability is 
very important for our medical domain. 

We generated three sets, each with 10,000 patients 
(graphs). Each graph was assigned to either class 0 or class 
1 (our target class). Table 1 describes the distribution of 
graphs across the two classes for each data set.  
 

Table 1. Class distribution 

Data set name Class 0 Class 1 
Balanced 50%  50% 

Imbalanced_10 90%  10% 
Imbalanced_5 95% 5% 

 
 Each patient was defined by the inclusion or exclusion 
of instances of a pair of subgraphs that we refer to as Sub-
graph 1 (Figure 3) and Subgraph 2 (Figure 4). 
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Figure 3. Subgraph 1 (relevant hierarchy graph is in gray) 
 

 
 

Figure 4. Subgraph 2 (relevant hierarchy graph is in gray) 
 

The relative distribution of Subgraphs 1 and 2 in class 0 
and class 1 was the same in all three data sets and is de-
scribed in Table 2. The appearance of each subgraph is 
conditionally independent. These percentages were select-
ed to represent different conditions that might influence 
subgraph discovery. 
 

Table 2. Subgraph distribution for each class 

Class Subgraph 1 Subgraph 2 
0 50% 1% 
1 100% 50% 

 
 Each graph was generated by determining the class to 
which it belongs and which subgraph(s) (if any) it would 
include. Constituent subgraphs were included along with 
all the implied links involving parent nodes as described 
above. To add an element of randomness to the data, each 
patient graph has a 50% change of having an additional 
random claim (procedure/edge link).  
 The final step was to convert it into attribute-value pairs 
that the subgroup discovery algorithm could process. This 
was possible in our data domain because we could list each 
possible edge as an attribute and set its value to 1 if it was 
present in the graph and 0 if it was missing. 

Modification of SD 
Next, we modified the SD algorithm (Gamberger, Lavrač 
2002) to search for subgraphs. We chose SD as our sub-
group discovery algorithm for its simplicity, since we in-
tend to show value in subgroup discovery metrics in sub-
graph discovery, not the ideal method. We started with the 
implementation of SD in the Orange data mining platform 
(Demšar, Curk, Erjavec 2013). To ensure that discovered 
subgraph definitions would not include conditions that 
excluded edges (where edgei=0), our modified search algo-
rithm, SD´, only considers edges that exist in the graphs. 

SD´ could be guided by either the precision measure Qg or 
Unusualness. 

Identification of Subgraphs 
To evaluate the utility of subgroup discovery metrics in 
identifying subgraphs, we ran each of the three data sets 
(Balanced, Imbalanced_10, and Imbalanced_5) through 
SUBDUE and SD´. We used each of SUBDUE’s three 
metrics (minimum description length, size, and set cover-
age) and both metrics in SD´ (Qg and Unusualness). Our 
experiments used two different values for the parameter g 
in Qg (10 and 100). Thus, we ran 18 different combinations 
of data sets and algorithms/metrics. For SUBDUE, we set 
the iteration parameter to 10, and for SD´, we set the min-
imum support to 1%. 

Results 

Our goal was to see if Subgraphs 1 and 2 could be found in 
each data set. Ideally, we would like to find each subgraph 
individually and precisely as it was defined.   

Results with the ‘Balanced’ Dataset 
Qg with g = 10 on Balanced, we observed that the only sig-
nificant subgraph it found was a more specific version of 
Subgraph 2. Qg with g = 100, we were able to find Sub-
graph 2 as it was defined along with some unrelated edges. 
We were again unable to find Subgraph 1, only generaliza-
tions that were always accompanied by Subgraph 2 or its 
generalizations. 
  Applying Unusualness to Balanced, we observed the 
most general results, only producing variations of Sub-
graph 1 and 2 with generalized edges (for example, P4-D0 
instead of P4-D4). Thus, we concluded it to be the worst of 
the three in finding subgraphs in Balanced.  
 SUBDUE on the Balanced set using Minimum Descrip-
tion Length (MDL) produced subgraphs that only contain 
both subgraphs as defined. Similarly, in SUBDUE with the 
Size option, we found that the best substructure contained 
both subgraphs as defined. SUBDUE with Set Cover on the 
Balanced set looked similar to the output of SD´. The ini-
tial (and most accurate) subgraph is a generalized version 
of Subgraphs 1 and 2. 

Results with the ‘Imbalanced_10’ Dataset 
Qg (g = 10) was able to find one overly specific version of 
Subgraph 2 with no other edges, generalized results of both 
Subgraphs 1 and 2, and Subgraph 1 with an extra edge. 
  Qg with g = 100 was less insightful. In each induced rule, 
an edge with P2 or D5 (or their parent vertices) is present. 
We were able to find another specific instance of Subgraph 
2 and only generalizations of Subgraphs 1 and 2 together. 
  Unusualness showed the most promising results for this 
data set, finding Subgraph 1 as defined and Subgraph 2 as 
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defined, respectively, with minimal excess edges. It also 
found generalizations of the subgraphs combined. This is 
the only metric and data set in which both Subgraph 1 and 
2 were found as defined.  
 SUBDUE with MDL again generates the graph repre-
senting Subgraphs 1 and 2 as defined along with a pattern 
consisting of vertices and edges all around Subgraph 1, but 
not the hierarchy or the entire subgraph itself, but it is not 
able to find either subgraph by itself. The Set Cover option 
of SUBDUE finds a generic version of both Subgraph 1 
and 2 similar to its performance on the Balanced set. 

Results with the ‘Imbalanced_5’ Dataset 
Qg and g = 10, finds generalizations of both Subgraphs 1 
and 2 and combinations of the two. We are not able to find 
Subgraph 1 or Subgraph 2 as defined. Qg with g = 100, 
finds overly specific examples of Subgraphs 1 and 2 but 
not the combination of the two. Unusualness finds Sub-
graph 2 as defined with some extraneous graphs, variations 
of Subgraph 1, and generalizations of a combination of the 
two. SUBDUE with MDL (and with Size) found a subgraph 
combining Subgraph 1 and 2.  

Discussion 

No method could effectively discover clean versions of 
either of the two subgraphs by themselves. Unusualness on 
Imbalanced_10 came the closest. SUBDUE, however, did 
a good job overall in finding both patterns together. 

Qg with g = 10 did a reasonable job throughout in find-
ing variants of Subgraph 2. With g = 100, Qg provided 
more general results, sometimes finding Subgraph 1 or 2 as 
defined with some extra edges. Table 3 summarizes the 
results, indicating subgraphs found.  The ‘+’ indicates that 
the patterns were found together in the same subgraph. 
 

Table 3. Summary of results 

Method Balanced Imbalanced_10 Imbalanced_5 

SD´ 
Qg g = 10 

SG2 SG2; SG2; SG1 
+ SG2 

SG1; SG2; 
SG1 + SG2 

SD´ 
Qg g = 100 

SG2 SG2; SG1 + 
SG2 

SG1; SG2 

SD´ 
Unusualness 

SG1; 
SG2 

SG1; SG2; SG1 
+ SG2 

SG1; SG2; 
SG1 + SG2 

SUBDUE 
MDL 

SG1 + 
SG2 

SG1 + SG2 SG1 + SG2 

SUBDUE 
Size 

SG1 + 
SG2 

SG1 + SG2 SG1 + SG2 

SUBDUE 
SetCoverage 

SG1 + 
SG2 

SG1 + SG2 SG1 + SG2 

Conclusions and Limitations 

Through our experiments, we have shown that metrics 
from subgroup discovery are capable of adding value to the 
subgraph discovery task by finding subgraphs that were 
different from what SUBDUE identified. In particular, we 
showed that there exist conditions where the Unusualness 
metric was able to isolate and discover known subgraphs 
better than any other technique we tested. 
 A limitation of SD´ is its need for an attribute-value rep-
resentation. In general, graphs do not lend themselves to 
such a representation. Thus, future work includes imple-
menting subgroup metrics directly into subgraph mining 
tools and evaluating them on real world data sets.  
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